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Abstract

Background: Patients with diabetes use an increasing number of self-management tools in their daily life. However, health
institutions rarely use the data generated by these services mainly due to (1) the lack of data reliability, and (2) medical workers
spending too much time extracting relevant information from the vast amount of data produced. This work is part of the FullFlow
project, which focuses on self-collected health data sharing directly between patients’ tools and EHRs.

Objective: The main objective is to design and implement a prototype for extracting relevant information and documenting
information gaps from self-collected health data by patients with type 1 diabetes using a context-aware approach. The module
should permit (1) clinicians to assess the reliability of the data and to identify issues to discuss with their patients, and (2) patients
to understand the implication their lifestyle has on their disease.

Methods: The identification of context and the design of the system relied on (1) 2 workshops in which the main author
participated, 1 patient with type 1 diabetes, and 1 clinician, and (2) a co-design session involving 5 patients with type 1 diabetes
and 4 clinicians including 2 endocrinologists and 2 diabetes nurses. The software implementation followed a hybrid agile and
waterfall approach. The testing relied on load, and black and white box methods.

Results: We created a context-aware knowledge-based module able to (1) detect potential errors, and information gaps from
the self-collected health data, (2) pinpoint relevant data and potential causes of noticeable medical events, and (3) recommend
actions to follow to improve the reliability of the data issues and medical issues to be discussed with clinicians. The module uses
a reasoning engine following a hypothesize-and-test strategy built on a knowledge base and using contextual information. The
knowledge base contains hypotheses, rules, and plans we defined with the input of medical experts. We identified a large set of
contextual information: emotional state (eg, preferences, mood) of patients and medical workers, their relationship, their metadata
(eg, age, medical specialty), the time and location of usage of the system, patient-collected data (eg, blood glucose, basal-bolus
insulin), patients’ goals and medical standards (eg, insulin sensitivity factor, in range values). Demonstrating the usage of the
system revealed that (1) participants perceived the system as useful and relevant for consultation, and (2) the system uses less
than 30 milliseconds to treat new cases.

Conclusions: Using a knowledge-based system to identify anomalies concerning the reliability of patients’ self-collected health
data to provide information on potential information gaps and to propose relevant medical subjects to discuss or actions to follow
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could ease the introduction of self-collected health data into consultation. Combining this reasoning engine and the system of the
FullFlow project could improve the diagnostic process in health care.

(JMIR Diabetes 2018;3(3):e10431) doi: 10.2196/10431
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Introduction

Background
Providing the right explanations regarding the situation of a
patient at the right time is a key for improving the diagnostic
process in health care [1]. Data collected by the patients, using
various applications, can be a precious source of information
for characterizing and explaining the situation of a patient
suffering from chronic illnesses, especially diabetes [2], for
both patients as well as their clinicians. Studies have shown that
patients are increasingly using applications for automatically
collecting, storing, and analyzing their data [3]. However,
clinicians cannot effectively use self-collected health data until
it is integrated into their daily workflow and clinical systems,
and often ignore the data if they do not know that it is “accurate,
reliable and aligned with their agenda” [4].

The “Full Flow of Health Data Between Patients and Health
Care Systems,” referenced as FullFlow in this article proposes
to address these issues. This can be achieved by providing a
platform for integrating the patient’s self-collected health data
from diabetes self-management applications (eg,
Diabetesdagboka [5], mySugr [6]) and wearables (eg, FreeStyle
Libre [7]) into Norwegian Electronic Health Records (EHRs)
and Norwegian Personal Health Records (PHRs) through
Norwegian public services. FullFlow aims to (1) facilitate
diagnostic processes conducted by specialists, general
practitioners (GPs), and nurses, by presenting patients’
self-collected health data directly in their EHRs and PHRs, and
(2) empower patients and help them understand their disease.
We limited the focus of FullFlow to diabetes, even if it can
provide a more general service.

FullFlow consists of 3 components. First, there is a data
collection component, which aggregates self-collected health
data from the patients’ tools, by either using application
programming interfaces (ie, automatic collection from patients’
tools) or Web-based schemas (ie, manual collection done by
the patients). Second, there is a data analysis module, which
processes the data and provides statistical analyses and medical
calculations (eg, deviations, insulin sensitivity factor). Third,
there is a Bundles Builder, which organizes the data into Fast
Health Care Interoperability Resources (FHIR). FullFlow uses
FHIR for facilitating its integration with Norwegian public
services starting to implement this standard, especially
Helsenorge.no [8], which contains a collection of health records
generated by health care institutions (PDF only in May 2018)
and accessible by both patients and clinicians in Norway. In
addition to the FHIR-based data, the Bundles Builder provides
reports to help medical workers consulting the data and to
facilitate the integration of self-collected health data for the
EHRs, which are not yet ready to handle FHIR resources but

started to implement it [9]. These reports are dashboards, similar
to the dashboard proposed by Dagliati et al [10] or to Carelink
by Medtronic [11] but differs regarding several points: (1)
FullFlow proposes the usage of self-collected health data as
source of the dashboard, (2) FullFlow is aiming to integrate
self-collected data into clinical systems directly without the use
of external services, and (3) FullFlow is not limiting the data
source to specific companies, sensors or applications. These
reports are in PDF or Hypertext Markup Language and are
directly sent to Norwegian EHRs and PHRs.

Figure 1 illustrates this composition and the data flow, from the
patients to the medical workers.

The reports (see Figure 2) contain distinct areas, each focusing
on a specific need:

1. Overview Area-provides a summary of the data period.
2. Period-displays patient-collected data as linear graphs.
3. Daily Evolution and Daily Distribution-contain graphs with

all types of data available summarized per day and hour.
4. Data List-provides a list of all data collected for the period

in text format.
5. Combined Data-displays all data in a unique graph.

These areas permit clinicians to obtain an overview of a patient’s
self-reported health condition, as well as identify problematic
events or trends, and to recommend actions for managing them.
However, testing the dashboard of the FullFlow revealed
unaddressed challenges.

First, the presence of information gaps in the self-collected
health data. Information gaps are missing problematic events
(eg, unreported hypoglycemic event) and lack of information
for pointing out their causes (eg, undocumented extreme
physical activity before a hypoglycemic event). Multiple factors
lead to these information gaps (1) sensors and wearables used
by the patients are not well calibrated, imprecise or even
defective [12,13], (2) sensors and wearables are incorrectly
operated by the patients [14], (3) patients make errors when
registering data manually, and forget to register data or do not
register at all [15], and (4) patients deliberately lie and edit the
data to hide their poor performance to avoid unfavorable
judgment by medical workers [16] and to avoid potential
penalties. For example, in Norway, patients with more than 2
severe hypoglycemic events risk losing their driving license
[17]. The information gaps limit the possibility for clinicians
to interpret the data correctly and constitute the main barrier to
the acceptance of the FullFlow, as the clinicians are considering
the self-collected health data as less reliable compared to
laboratory results for example.

Second, our workshops with clinicians showed that even when
information gaps are not present, clinicians are unable to extract
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and analyze the data in an acceptable amount of time, especially
during a consultation, even with the help of graphs. According
to them, self-collected health data is too time consuming because
of the amount of self-collected health data (ie, the number of
registrations performed by the patients), of the noise in

self-collected health data (ie, irrelevant data regarding the
self-reported health condition of a patient), and clinicians need
to link and compare different types of health data to extract
information. This constitutes the second main barrier to the
acceptance of the FullFlow.

Figure 1. Simplified data flow of the FullFlow project. API: application programming interface; EHR: electronic health record; FHIR: Fast Health
care Interoperability Resources; PHR: personal health record.

Figure 2. Example of a FullFlow Report.
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Figure 3. FullFlow components with the knowledge-based module (KBM; red). API: application programming interface; FHIR: Fast Health care
Interoperability Resources.

In this paper, we address these challenges: information gaps,
time-consuming processing of data and extraction of the
relevance of the data by presenting the design, and
implementation of a context-aware knowledge-based module
(KBM). The KBM improves the FullFlow system by (1)
providing information on the reliability of self-collected health
data and the potential presence of information gaps, and (2)
presenting relevant information about the self-reported health
of a patient and the origins of problematic events.

The KBM is a complimentary module to dashboard systems
such as FullFlow and could permit clinicians to focus on specific
and relevant information during consultation instead of spending
time consulting the self-collected health data and trying to
extract information on their own. Figure 3 presents the FullFlow
components with the KBM. The result section shows the impacts
of the KBM on the Bundles Builder.

The knowledge base contains rules formulated by medical
experts and relies on a reasoning engine (ie, component
deducing information), based on contextual information, to
identify and interpret relevant data. Dey and Abowd [18] define
context as “any information that can be used to characterize the
situation of an entity”. An entity is a person, place, or object
that is considered relevant to the interaction between a user and
an application, including the user and applications themselves.
In our setting, medical evidence, such as patients’ self-collected
health data, laboratory results and metadata, such as the
identities of the patients and medical workers, and the rules of
the knowledge base themselves compose the context. The
reasoning engine combines these data using a hypothesize and
test strategy for identifying data reliability problems as well as
information gaps and highlighting relevant data related to
problematic events.

This paper also presents the methodologies we followed from
the creation to the assessment of this module, including its
integration in the main system, and its future use.

Methods

This section presents an overview of the different phases and
methodologies used for the design, the implementation and the
testing of the KBM, as shown in Figure 4.

Design of the Module
First, a brainstorming approach to define the scope of the module
for identifying functionalities and potential problems appearing
at a later stage was used by the main (AG) and the second author
(PO). The data flow, technology stack (ie, a combination of
programming languages, tools, and functionalities) and data

model (ie, the standardization of data and relations between
types of data) were also discussed.

Then, 2 facilitated workshops were organized for designing the
KBM, involving the main author (AG), one patient with type
1 diabetes (in house researcher), and one clinician (AH). The
workshops were used for different purposes (see Textbox 1).
However, a wider range of people were invited to participate
in a co-design workshop to contribute to the 3 points described
above, as the 2 facilitated workshops sessions had limited
participants. There were 5 patients with type 1 diabetes, 2
endocrinologists, and 2 nurses specializing in diabetes were
involved in this co-design. The participants were not known to
the authors and were recruited through the authors’ partner
institution, the University Hospital of Northern Norway and on
social media. Acknowledgment from Regional Ethical
Committee was applied and an exemption was received
September 2017. The co-design was organized around 3
sessions: (1) patients only, (2) clinicians only, and (3) all
participants together. Sessions 1 and 2 were held simultaneously
at a different location and before the session 3. This approach
permitted to build the patients’ confidence and to ensure their
thinking points were addressed during the common session.
The patients’ pressure and bias were lowered by the facilitators
(ie, the authors) giving everyone a chance to speak and by using
different methodologies, such as (1) the expense account where
each participant has to use a token before speaking and cannot
speak once their token pile is empty, (2) the Writing Round
Robin where all participants answer a question on paper
simultaneously and then present the answers in turns, and (3)
the 5 whys where a participant is asked “why” 5 times to find
the root of a problem. The methodologies were defined
beforehand by the authors through brainstorming sessions. Time
was also reserved for participants to ask their questions
throughout the sessions.

The co-design was audio recorded, and the audio registrations
were transcribed by the authors for further classification and
analysis. All medical related decisions from these events were
assessed by the third author, who is a medical doctor.

Implementation of the Module
An agile development process (ie, iterative development) was
used for the software implementation when evolution, changes,
and adaptability were the key points (eg, user interactions,
reasoning model). Continuous input and involvement of patients
and health workers were included in this process. A more classic
waterfall approach (ie, sequential development) was used when
stability and performance were the focus, such as the
implementation of the core of the module (ie, the “engine”
which does not interact directly with the users).
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Figure 4. Methodologies used in three different phases: Designing, Implementing and Testing of the KBM.

Textbox 1. The different purposes of the workshops.

1. For identifying contextual information. The context was first identified following the approach proposed by Dey and Abowd [18] with the support
of brainstorming: organizing context around location, identity, time and activity and using a tiered system for further categorization per type of
context, and point of view of the KBM.

2. For creating a model of context, representing the interactions between all entities involved with the KBM (eg, patients, medical workers, EHRs)
and the context interacted between them. This was inspired by the model of context in computer science proposed by Bradley and Dunlop [19]
and was created to provide a complete overview of the usage of the context.

3. For defining a knowledge base and a reasoning model. They were used as requirements for the implementation of the module and to describe
the functionalities of the KBM and its operation.

Testing of the Module
Testing was performed in different ways: a white box (ie, testing
of internal structures of code) approach was used for testing the
core without involving the context and the reasoning model,
while a black box (ie, testing of functionality) approach was
followed for testing whether the system behaved according to
what was defined by the previous creation process. Both
approaches were made using unit tests. Load tests were used
for determining if the performance of the modules could affect
FullFlow in the event of its integration.

Results

System Architecture
This section presents a complete overview of the architecture
of the KBM.

Contextual Information
The first step in the architectural design process (ie, the sequence
of steps to create the KBM) was to identify the contextual
information necessary for the KBM to achieve the goals for
which it was designed. We adopted the context definition
suggested in Dey and Abowd [18]. Their 4 main categories of
context were location, identity, time, and activity. However,
since the types of contextual information in health care domain
is much richer than the context presented by Dey and Abowd,
we introduced several types of context particularly instead of
“activity” category of context.

In total, we identified 9 types of context, as shown in Figure 5.
The first type is health data, containing patient-collected data
and laboratory generated data. Patient-collected data represents
data a patient can bring to the consultation using their sensors,
mobile applications or diaries. The data usually collected by

patients with diabetes are mostly blood glucose, basal-bolus
insulin, carbohydrates, physical activity, and to a less degree
also calories, blood pressure, heart rate, medication, ketones,
stress, menstruation, sickness, insulin sensitivity, polypharmacy,
comorbidity, insulin-to-carbohydrate ratio (I:C), and
carbohydrate absorption rate. Units of measurements can further
characterize each type of the collected data. For example,
physical activity could be expressed as the number of steps, a
period or intensity (eg, light, moderate, extreme), while insulin
intakes could be expressed in international units (UI) or mg.

Laboratory generated data represents data originated from
laboratory tests (eg, blood analysis). Today, FullFlow only has
automatic access to the glycated hemoglobin (HbA1c) data from
several EHRs and cannot obtain other types of data such as
leukocytes, which are associated with diabetes complications
[20], or creatinine which is useful for tracking the progression
of diabetic kidney disease [21]. Therefore, they are not included
in Figure 5.

Medical standards are the third type of context, which covers
reference values for a specific data type. For example, the
recommended range for blood ketones is less than 0.6 mmol/L
or the formulae used for calculating medical values (eg,
1500/1800 rule for approximating the insulin sensitivity factor
[22,23]).

Data registration regularity refers to the registration frequency
for each type of data for different periods. The rationale behind
this context type is to provide information on the regularity of
measurements or samplings made by patients for each type of
data they collect. The data registration contains the total number
of registrations per self-collected data type for the whole period,
as well as the distribution of the number of registrations per
day, per weekday, and per hour, as well as a minimum number
of registrations per data type and per period.
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Figure 5. Categorization of Contextual Information Types.

Measurable personal goals are the next type of context. Patients
define them according to their preferred lifestyle or based on
the feedback from their clinicians. There are several types of
goals: (1) keeping the values of a specific data type within a
specific target range (eg, keeping blood glucose between 4-9
mmol/L), (2) reaching a specific number of measurements for
a fixed period (eg, checking blood glucose values 6 times a day
with a glucose meter), and (3) reaching a threshold value for a
specific data type (eg, weighing 65 kilograms or under).

Goal of the consultation refers to the reason for an appointment
between a patient and the clinician. Clinicians can define the
goal when planning a follow-up with patients, but patients can
also define it if they need help regarding their health situation.
The goal of the consultation may or may not be part of the
patients’ diabetes situation.

System generated context refers to the context produced by the
KBM itself during its execution. It includes hypotheses
generated by the system that needs to be validated or refuted.
The context hypothesis result further characterizes a hypothesis,
with 3 possible states: (1) TRUE if the hypothesis is validated,
(2) FALSE if the hypothesis is rejected, and (3) NOT
APPLICABLE (NA) if the required context is missing (eg, the

invalidation of a hypothesis stating that “the patient has eaten
too much carbohydrates a day” cannot be done if the patient
did not register any carbohydrate intake).

We identified 3 main entries under the identity type of context,
which defines who uses the KBM in an actual situation. It
encompasses patients, medical workers, and their relationship.
Further context characterizes patients: age, sex, diabetes type.
and emotional state (eg, personality, life goals, intentions, and
preferences). Further context also characterizes clinicians: their
specialty (eg, GP, nurse, endocrinologist) and their emotional
state.

The time type of context defines when a patient and a medical
worker use the KBM. In our situation, the usage of the module
corresponds to the usage of the FullFlow system: mainly during
consultations. However, medical workers and patients could
also use it before and after consultation. In the first case, to
prepare for the consultation, and in the second case, to look up
data they did not have time to view during the consultation.

Concerning the location type of context, the KBM can be used
everywhere: at a clinician’s workplace (eg, GP’s office,
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municipal care office, hospital department), at home or on the
go for both patients and doctors, if they are willing to do so.

Instantiation of all these types of contextual information with
the current situation where the KBM operates creates the
“current context”. The current context is dynamic and changes
across patients and different situation of the same patient (eg,,
a particular consultation at a certain date and time and with a
particular clinician for a particular purpose). In the section
“Knowledge base and reasoning engine,” we describe the role
of current context in the reasoning process of the reasoning
engine.

Model of Context
The context taxonomy (ie, a classification scheme) in Figure 5
is the outcome of the first step of the design process. This has
strong implications of the knowledge to be represented in the
knowledge base as well. Context identification and modeling
were performed by the designer group that consists of computer
scientists and medical experts. There were 2 types of context
predefined and do not change across situations: “Medical
Standards” and “Data Registration Regularity”.

Once we identified the categories and the taxonomy of
contextual information, we needed to define the interaction
between entities (ie, the actors) and the specific part of the
context shared during the interactions. To address this issue,
we created a model of context inspired by the approach
described by Bradley and Dunlop [19], as shown in Figure 6.

The knowledge-based module contains 3 components: the
knowledge base, the reasoning engine, and the current context.
There are 3 sources that create different parts of the current
context—in addition to the designer defined ones. The first is
patients. Patients interact with the module directly or through
their PHRs (not displayed in the figure for simplicity) by sending

their metadata (eg, age, sex, diabetes type) and self-collected
health data. Second is medical workers and EHRs. Medical
workers are not interacting directly with the KBM for sharing
context, but through the EHRs they are using. EHRs provide
the KBM with an authentication token for the medical workers
in combination with the laboratory-generated data. Medical
workers and patients interact with each other during a
consultation, which could be face-to-face, remote, in real-time,
or not. Third, is the reasoning engine. Outcomes of the reasoning
engine of the KBM can dynamically change the current context.
Here we refer to “system generated context” in Figure 5. For
example, the original goal of the consultation could have been
to discuss and manage nocturnal hypoglycemic events. However,
the goal could shift toward discussing the insulin correction
factor if the KBM finds that these events are due to wrong
insulin dosage after meals, for example.

This context model allows us to have a clearer view of how the
global flow of context data is in real-life situations.

Knowledge Base and Reasoning Engine
We established the reasoning engine and the knowledge base
by the identified types of contextual information and the model
of context presented above. The reasoning engine provides
problem-identifying functions needed for determining the degree
of reliability of the patients’ self-collected health data and for
identifying “noticeable events” and their potential causes. A
noticeable event is a medical event discovered from the
contextual information, where feedback from the medical worker
could be useful for improving the patient’s situation. To do so,
the reasoning engine relies on a knowledge base and a
hypothesize-and-test reasoning strategy, as shown in Figure 7.

The rectangles in the figure represent the processes of the
reasoning engine, while the parallelograms show the data the
processes use or produce.

Figure 6. Model of Context. The labels next to the arrow represent the different types of context. EHR: electronic health record.
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Figure 7. Our reasoning engine model.

The knowledge base contains the domain knowledge of medical
experts that the hypothesis-and-test strategy needs in this system.
Currently, knowledge base remains static. Each time a patient
shares their self-collected health data with a clinician, the same
knowledge base creates the problem-identifying tasks, while
the Current Context is dynamic. The Explanation Case Base
and the Plan Case Base compose the KB.

We now describe the structure of the Plan Case Base, which
comprises many plans. A plan consists of sequential
problem-identifying tasks to perform and can refer to or include
other plans. For example, plan P1 (ie, evaluates the correctness
of the amount of the last insulin dosage) uses the tasks P1T1
(ie, check the blood glucose value), and P1T2 (ie, estimate the
best insulin amount in this situation) in combination with the

plan P2 (ie, check the insulin sensitivity for the day), which in
turn includes the tasks P2T1 (ie, define the amount of insulin
intakes for a day), and P2T2 (ie, use the 1500/1800 rule for
calculating the insulin sensitivity). Figure 8 illustrates this
example. This hierarchical structure, however, does not indicate
in what sequence the tasks and plans are executed, but this is
handled by rules.

There are 3 types of rules. The Plan Rules define the sequence
of the plans and the tasks composing them (eg, perform the task
“check if insulin registrations are present’before the task ‘check
the amount of insulin intake for a day”). The Activation Rules
define which data are necessary for performing a task (eg,
insulin and carbohydrates registrations are mandatory for the
task “check if the patient forgot to take insulin before or after
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a meal”) and potential conditions for performing the task (eg,
“a carbohydrate intake is considered a meal if done between
11:00 and 13:00”). The Evaluation Rules define the concrete
actions to be taken in order to accomplish a task (eg, for the
task “check if the patient forgot to take insulin before or after
a meal,” the rules define 3 actions: (1) check the carbohydrates
intakes, (2) check if the intakes correspond to a meal time, and
(3) check if an insulin registration is present in a 30 minutes
window before or after the carbohydrates intakes).

The Explanation Case Base defines the complementary or
hierarchical relations between the problem-identifying tasks
and the interpretation of identified problems based on the results
of the problem-identifying tasks. For example, the
problem-identifying tasks “check the amount of carbohydrate
intake from the previous meal” and “calculate the carbohydrates
on board” are complementary and compose the higher-level
task “check the amount of carbohydrates”, which can
characterize a hyperglycemic event.

The first process in the reasoning engine is Hypotheses
Generation. In our model, a hypothesis represents the inferred
candidate result of a task that the reasoning engine validates or
invalidates. For example, the hypothesis “there is no insulin
registration before or after a meal” may be a candidate answer
to the task “check if the patient forgot to take insulin before or
after a meal”. This process generates a current plan case
composed of a sequence of tasks with associated hypotheses to

test based on the plan and the Plan Rules of the Plan Case Base
(Figure 7, no. 1) and on the System Generated Context (current
context). The process uses the results of previously tested
hypotheses to update the active case plan if necessary (Figure
7, no. 5b). For example, if the hypothesis “patient has
hyperglycemia” is true, the process updates the plan and adds
18 hypotheses according to the rules, such as “the latest insulin
intake was lower than the insulin needed defining by the
sensitivity factor for reaching 5.5 mmol/L”. The outcome of
the Hypotheses Generation is a sequence of hypotheses to
validate (or refute), each for the accomplishment of a specific
task constituting the plan.

The second process is Hypothesis Activation. The hypotheses
generation process initiates this process for each hypothesis
listed in the current plan case (Figure 7, no. 2). Hypothesis
Activation requires the Activation Rules from the Plan Case
Base (Figure 7, no. 2c) and the current context from Patients,
EHRs or both (Figure 7, no. 2b). The Hypothesis Activation
process ensures that the required context for evaluating a
hypothesis is available. For example, the hypothesis “patient
has hyperglycemia” requires Blood Glucose registrations from
the Patient entity. If required context is not available for a
hypothesis listed in the current plan case, the system flags the
concerned hypothesis as NA. If the required context is available,
the system activates the hypothesis. The activation of a
hypothesis automatically initiates its evaluation (Figure 7, no.
3).

Figure 8. Example of hierarchy of plans (P) and tasks (T). P1 contains P2 and two tasks, P1T1 and P1T2.

The Hypothesis Evaluation process validates or invalidates the
claim proposed by the hypothesis. To do so, this process uses
the Evaluation Rules of the Plan Case Base (Figure7, no. 3c)
and the current context from Patients, EHRs or both (Figure7,
no. 3b). The output of this process is a hypothesis result
(Figure7, no. 4), which could be true, false, or NA. This output
is then stored with the other hypotheses results (Figure7, no.
5a) and sent back to the Hypothesis Generation process (Figure7,
no. 5b) for potential current plan case updates.

Once the Hypotheses Generation activated all hypotheses in its
current plan case, it triggers the Interpretation process (Figure7,
no. 6). This process uses the Relations between
problem-identifying Tasks and their Explanations from the
Explanation Case Base (Figure7, no. 6b) as well as the
hypotheses results (Figure7, no. 6a) to create a textual
interpretation of the results of the execution of the reasoning

engine to allow users to consult it. The textual interpretation is
the final context generated by the system (Figure7, no. 7). The
system then displays the context to the users.

Hypotheses List
Figure 9 describes all the hypotheses used by the KBM at this
stage. We organized the hypotheses per type and per order of
execution (ie, from top to bottom), according to the Explanation
Case Base and of the Plan Case Base. The interpretation of the
hypotheses defines them, instead of their internal identification
code, for better clarity. For simplicity, we omitted the context
requirements for their activation and generation in this paper.
For example, the generation of the hypothesis “there is not
enough insulin” requires that the hypothesis “patients have
hyperglycemia” be true and its activation requires the
registration of insulin self-collected health data.
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Data Reliability

The first type of hypothesis relates to the data reliability of
patients’ self-collected health data. The first hypothesis “data
is not reliable” is automatically activated. The output of the
evaluation process of this hypothesis is an impact factor of
reliability, which defines how much the results of other
hypotheses and the self-collected data can be trusted based on
a scale of 0-50, from distrust to trust. The trust level is calculated
by subtracting the sum of the value (or grade) of each
sub-hypothesis evaluated to true by the system listed in the plan
case of data reliability. For example, if the HbA1c value
calculated by the module (ie, based on blood glucose
self-measurements) deviates by more than 5% (ie, based on the
approximation of the translation of A1C to estimated average
blood glucose by Nathan et al [24] and the inaccuracy of the
blood-glucose monitoring systems for self-testing [25]) of the
HbA1c value determined by laboratory tests, the trust level
decreases by 10 points. There are several types of
sub-hypothesis. For example, “No [data type] registered”
indicates that the most relevant data type is missing from the
patient’s data: blood glucose, carbohydrates, insulin, and
physical activity. Several sub-hypotheses compose this
hypothesis: one per data type. For each hypothesis validated by
the evaluation process (eg, “no blood glucose registered” is
true), the interpretation process displays a message to users
proposing that they register a new type of data with the support

of examples. For example, if the patient is using insulin and the
hypothesis “no carbohydrates registered” is true, the system
displays “registering carbohydrate intakes will permit a better
estimation of your insulin correction dosage as well as …and
could help you reduce variation, ie, highs and lows of your
blood glucose values”.

“Error values in [data type]” means that the registered values
for a specific data type are probably incorrect. For example, a
blood glucose value of 1.1 mmol/L is probably due to error
either in the registration or measurement process. Importantly,
blood glucose levels less than 1.1 mmol/l provoke neurological
damages [26]. However, the KBM conveys a specific message
to users regarding these events, in addition to grading the trust
level of the data, for them to validate the origin of these values.
Currently, the module focuses only on blood glucose,
carbohydrates, and insulin values for this sub-hypothesis.

“Not enough data registrations” focuses on the minimal number
of registrations per type of data and per day to calculate trends.
For example, patients should check their blood glucose at least
5 times a day for this sub-hypothesis to be false. The National
Institute for Health and Care Excellence (NICE) recommends
self-testing blood glucose level at least four times a day [27],
but we increased this number for better accuracy. The
interpretation process also displays a motivational message to
encourage patients to register data more often if some
hypotheses are true.

JMIR Diabetes 2018 | vol. 3 | iss. 3 | e10431 | p. 10http://diabetes.jmir.org/2018/3/e10431/
(page number not for citation purposes)

Giordanengo et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. List of hypotheses organized per type used by the knowledge-based module (KBM).

“Data not distributed equally between days” concentrates on
the regularity of the total number of registrations per day and
per type of data for the whole data self-collection period. The
participants suggested allowing 20% deviation in the number
of registrations and days. The “Data not distributed equally
between weekdays” follows the same principle but organizes

the day per weekdays instead (eg, Monday, Tuesday.). These
2 hypotheses ensure that patients register data regularly and that
the registrations are not impacted by their lifestyles (eg, working
during the week and performing outdoor activities on the
weekend).
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“Inconsistencies between data source” is another hypothesis
where the system checks the difference in the value of the same
data type from different sources and allows 5% deviation
between them. The module implements 3 sub-hypotheses. The
first is checking the HbA1c value calculated by the module itself
against the same value determined by a laboratory test as
explained previously. The second is checking the insulin
sensitivity calculated by the module against the same value
reported by the patient, and the last is checking the Insulin to
Carbohydrates ratio (I:C) calculated by the module against the
same value reported by the patient. The system alerts the user
to this deviation with warning messages.

The evaluation of the previous hypotheses gives (1) an indication
about the accuracy and the reliability of the self-collected health
data for the clinicians, and (2) recommendations for improving
the reliability of the data for the patients.

Medical Problem Identification

The second type of hypotheses relates to medical problem
identification. The activation of these hypotheses depends on
the value of the patients’ self-collected data and concerns
hyperglycemia, hypoglycemia, high blood pressure events, and
short sleeping patterns. The time of the highest blood glucose
value in a continuous hyperglycemic event (6 hours
maximum—suggested by the participants) and the time of the
lowest blood glucose value in a continuous hypoglycemic event
define a reference time where the possible causes could be easier
to detect by the module.

Hyperglycaemia

In the case of hyperglycemia, Hypotheses Generation activates
the hypothesis and set its result to true if it detects one or more
blood glucose values greater than 9 mmol/L when fasting or
before a meal (ie, if the information is available) or 13.9 mmol/L
at other times of the day during a single continuous event. A
single event is a continuous hyperglycemic event without blood
glucose levels returning to the normal range. We chose a higher
hyperglycemic level than the standard ones (eg, greater than
7mmol/L when fasting [27]) based the input of the co-design
(see section “Relevance of the ” for more details).

Once a hyperglycemia event is detected, the system updates the
plan case automatically and adds 5 sub-hypotheses. The first is
“there is not enough insulin,” whose result is true by default
and which the module tries to invalidate. To do so, the
Hypotheses Generation activates 4 sub-hypotheses and all of
them should be false or NA to invalidate the parent hypothesis.
This includes the current active insulin is less than the average
active insulin. Active insulin, or insulin on board (IOB), is the
amount of insulin remaining active at a time in the body. The
IOB calculation follows the Open Artificial Pancreas System
(OpenAPS) approach [28]. A current IOB lower than the average
IOB means that less insulin is present at this time, which could
be a factor of the hyperglycemic event. Next, the dose of the
last insulin shot was insufficient: the amount of the last insulin
intake was insufficient for bringing the blood glucose value to
5.5 mmol/L. This is the mean value of the recommended range
of blood glucose values defined by several guidelines [27,29].
The hypothesis evaluation process calculates how many units

of insulin are necessary to bring the blood glucose value to this
level based on the insulin sensitivity factor. If the insulin
sensitivity factor is not provided by the patient, it is calculated
by using the 1500/1800 rule [22,23]. Then, the I:C is too low
if a meal was taken up to 4 hours (ie, one hour more than the
time needed for the serum glucose level to return to near-fasting
values in healthy patients [30]) prior to the hyperglycemic event.
The hypothesis evaluation process checks if the amount of
carbohydrates consumed are “covered” by a shot of insulin
using the I:C provided by the patient. If unavailable, the
hypothesis evaluation process uses the daily I:C calculated from
the total carbohydrates and total rapid-acting insulin of the same
day. If the patient did not register carbohydrate intakes, the
system uses the 500/450 rule [23,31]. Finally, no insulin taken
after or before a meal. The hypothesis evaluation process checks
if there was an insulin injection before or after the meal (ie, 30
minutes window—decided by the participants) to compensate
for the carbohydrate intake.

The second sub-hypothesis is “there are too much
carbohydrates”. As with the last hypothesis, this hypothesis is
true unless all sub-hypotheses are false or NA. First, there are
greater carbohydrates on board (COB) than the average COB.
COB is the amount of carbohydrates remaining unabsorbed at
a time. The COB uses the carbohydrate absorption rate reported
by the patient. Too much unabsorbed carbohydrates can lead
to a hyperglycemic event. Second, for patients not following a
low-carb diet, the last carbohydrate intake was greater than the
recommendation: more than 75 carbs for a meal and more than
30 carbs for a snack [32]. The module uses standards mealtime
by default (eg, lunchtime from 11:00 to 13:00) but patients can
report them as well. As with the previous one, a too-high
carbohydrate intake could lead to a hyperglycemic event if not
planned.

The third sub-hypothesis is the presence of external factors,
such as menstruation or polypharmacy. External factors can
greatly affect the patient’s metabolism and render calculations
difficult [33]. The system currently flags their presence in case
other hypotheses fail to find potential causes of the
hyperglycemic event.

The fourth sub-hypothesis is addressing the lack of physical
activity to explain the hyperglycemic event and is set to true if
patients did not engage in any physical activity up to 24 hours
before the noticeable event happened (ie, blood glucose levels
can be impacted by physical activity 24 hours after it ended
[34]).

The last sub-hypothesis is “lack of evidence”. The hypothesis
evaluation process checks if the module has identified possible
causes of the hyperglycemic event based on the results of other
hypotheses. If the system detects a possible cause, the hypothesis
is false. However, it is true if all other hypotheses have false or
NA results. Having a true result for this hypothesis means that
a potential information gap is present at the time of this event,
and the system informs the user and invites them to investigate
the data around the time of this event.
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Hypoglycemia

Regarding hypoglycemic events, the system follows the same
approach. It activates the hypothesis and sets its result to true
if it detects one or more blood glucose values lower than 4
mmol/L when fasting (ie, if the information is available) or 3.5
mmol/L at others time of the day during a single continuous
event. We chose a lower hypoglycemic level than the standard
ones (ie,less than 4 mmol/L when not fasting [27]) based the
input of the co-design session. See section “Relevance of the ”
for more details. Once a hypoglycemia event is detected, the
system further activates 5 sub-hypotheses automatically. The
first is “there is too much insulin,” whose result is true by default
and which the module attempts to invalidate. To do so, it
activates 3 more sub-hypotheses and all of them should be false
or NA to invalidate the parent hypothesis. First, the current
active insulin is greater than the average active insulin. Having
a high amount of insulin could be the cause of a hypoglycemic
event. Second, the last insulin injection was too high: the amount
of the last insulin intake was greater than the requirements
(based on the insulin sensitivity factor) for bringing the blood
glucose value to 5.5 mmol/L (mean value of the recommended
range of blood glucose values defined by several guidelines
[27,29]). Third, the current active insulin is greater than required
according to the I:C.

The second hypothesis is “there are too few carbohydrates”.
This hypothesis is also true by default until invalidated by
processing 2 sub-hypotheses. First, there was no carbohydrate
intake up to 4 hours prior to the hypoglycemic event. This is
one hour more than the time needed for the blood glucose level
to return to near-fasting values in healthy patients [30]. Second,
for patients not following a low-carb diet, the last carbohydrate
intake was lower than the recommendation of less than 30 carbs
for a meal or less than 15 carbs for a snack [32].

The third hypothesis concerns the presence of external factors
and functions the same way as the hyperglycemic event.

The fourth hypothesis is about physical activity prior to the
hypoglycemic event. The module automatically activates and
process 2 sub-hypotheses. First, the patient engaged in light to
moderate physical activity up to 4 hours prior to the
hypoglycemic event. Light to moderate physical activity
intensity can be expressed with an intensity tag (ie, text), in
time (ie, less than 60 minutes—defined by the participants), in
steps (ie, less than 3000 steps [35]) or in Metabolic Equivalent
of Task unit (ie, less than 6 METs [36]). Second, the patient
engaged in extreme physical activity up to 24 hours prior to the
hypoglycemic event [34].

The last hypothesis activated addresses the lack of evidence for
finding possible causes of a hypoglycemic event and functions
in the same manner as its counterpart for a hyperglycemic event.

Regarding high blood pressure events, a hypothesis is activated
and set to true automatically when high blood pressure is
detected (ie, greater than 140/90 (systolic/diastolic) [37]). The
sub-hypotheses then checks the presence or absence of external
factors and function in the same manner as that for the
hyperglycemia and hypoglycemic events.

The last hypothesis concerns the patient’s sleeping pattern. One
hypothesis per night is activated and focuses on identifying the
time elapsed between 2 registrations performed manually by
the patient (ie, not done automatically by sensors). The
hypothesis is set to true if there is less than the recommended
7-hour sleep period [38].

After a discussion, the designers decided to discard
patient-defined target values as input for the hypotheses. For
example, the detection of hyperglycemia and hypoglycemic
events could rely on patient-defined goals focusing on
maintaining a blood glucose range between 3.5-12 mmol/L
instead of the value the module currently uses. However, these
values override medical standards already defining these events
and could potentially induce errors in medical workers. The
designers discarded other contextual information such as ketones
and heart rate for the first version of the module, as patients
rarely measure ketones themselves compared to the other data,
and heart rate not being available on the Diabetesdagboka or
Mysgr applications.

The presence or absence of information gaps also evaluates the
relevance of the data for the clinicians (ie, no information gap
means reliable data). The identification of the potential causes
of a problem could provide conversational topics for clinicians
and a retrospective review of medical events for patients and
clinicians.

Testing
The goal of the testing phase was to ensure that the designed
KBM module works, does not affect the performance of
FullFlow and that participants of the workshops find the module
useful during a consultation. All conditions were met, and the
module was integrated into the FullFlow project.

Testing the relevance of the medical outcome of the module
was out of scope at this stage and will be performed during the
clinical study of the FullFlow project. The discussion section
presents more details on the situation.

Technical Implementation and Performance Assessment
The implementation of the KBM relied on the reasoning engine
model described in Figure 7 and follows the same processes
and sequences. Black and white unit tests were performed
against the KBM (see Methods section) to ensure that the KBM
provides the services defined in the Knowledge base and
reasoning engine section. The assessment of the performance
of the KBM showed that the execution time is lower than 30
milliseconds with a typical load of data and, therefore, does not
affect the performance of FullFlow. Details about the technical
implementation, the tests performed and an excerpt of the results
of one instance of the KBM are provided in Multimedia
Appendix 1.

Relevance of the Module
We asked the participants of the clinician workshops and the
co-design (ie, clinicians and patients) the same question: “do
you think the module could be relevant during a consultation,
especially for identifying potential problems?” and all of them
answered yes. Then we showed the findings of the KBM within
a FullFlow report to the participants. The findings are the results
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of a run of the KBM against self-collected health data provided
by the in-house researcher. The results contained the noticeable
events, their potential causes, and explanation, as well as their
distributions through time, along with the reliability of the data
(Figures 10, 11, 12, and 13 in the next section for more details).

There were 2 patients that preferred to have this module
connected to their self-management solutions to (1) obtain
suggestions on why serious medical events occur, and (2) to
prepare for the consultation. The participants appreciated the
concept of presenting the module between the overall view and
the more detailed graphs in FullFlow because it permits faster
identification of problems without having to examine the data.
We discussed the KBM findings with the participants and how
they felt about them. Based on these discussions the following
actions were taken. First, we removed the data reliability grade
from the visual display because it did not mean anything
concrete to the participants. According to them, an alert stating
the potential problems would be sufficient. Second, we changed
the standards of hypoglycemia (ie, less than 5 mmol/L when
fasting and less than 4 mmol/L at other times of the day) and
hyperglycemia ie, greater than 7 mmol/L when fasting or before
meals and greater than 9 mmol/L at other times) defined by the
NICE [27] and the Norwegian Directorate of Health [29] to
high hyperglycemia (ie, greater than 9 mmol/L when fasting or
before meals and greater than 13.9 mmol/L) and low
hypoglycemia (ie, less than 4 mmol/L when fasting and less
than 3.5 mmol/L at other times) because the patients preferred
to discuss the more serious events with their medical workers
rather than all events outside the recommended range. Third,
we updated the text displaying the feedback regarding medical
events to be more nuanced (eg, “this event may have been due
to…”) because the patients took for granted the findings of the

module. However, in real life, we believe that medical workers
also play a role here by limiting the impact on the patients.

Other than these points, the participants appreciated the module
because it permitted them to obtain possible explanations for
why events occurred and what they could improve.

Figure 10 shows an example of an Interpretation of the KBM
regarding a hypoglycemic event. It this case, 4 potential causes
were identified for explaining this event: (1) higher active insulin
than average, (2) higher insulin to carbohydrates ratio, (3)
presence of moderate or extreme physical activity before the
event, and (4) a low-carbohydrates meal. The system provides
justifications for all potential causes (ie, italic and smaller font
text in the figure). Figure 11 shows an example of a
representation of an information gap concerning a hypoglycemic
event. Figure 12 shows a summary of noticeable events found
by the KBM. It summarizes the number of hypoglycemic and
hyperglycemic events (ie, 10 and 4 respectively) and the number
of their potential main causes (eg, 9 hypoglycemic events may
have been caused by having too much insulin). A single
noticeable event can have multiple potential causes (eg, 14
potential causes are linked to 10 hypoglycemic events in the
figure). The summary also contains a distribution per hour and
per weekdays of the noticeable events. It can help clinicians
identifying trend regarding daily or weekly routines followed
by the patients.

Figure 13 shows a reliability grading of the self-collected health
data. For example, the figure shows that there is a significant
difference regarding the Blood Glucose registrations during the
week, with a deviation of almost 6 registrations, while the rules
allow a deviation of almost 3 registrations.

Figure 10. Example of potential causes expressed by the knowledge-based module of a single hypoglycaemic event.
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Figure 11. Example of information gap expressed by the KBM of a single hypoglycaemic event.

Figure 12. Summary of noticeable events detected by the knowledge-based module, their main potential main causes (top) and their distribution per
hour and per weekdays (bottom).

Figure 13. Summary of the data reliability issues found by the knowledge-based module.
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In 1 out of 14 (8%) noticeable events, the module lacked
evidence to explain why a specific event occurred, which define
an information gap. When discussing this with the patient
concerned, he suggested that this could have been due to factors
such as that he did not register, or estimated incorrectly
carbohydrate intakes, for example.

The discussion showed that the module has a potential to
improve the consultation between patients and clinicians and
has, therefore, be integrated into the FullFlow.

Discussion

Demonstrated Potential
This paper demonstrated how a KBM using a
hypothesize-and-test strategy fed with context may pinpoint the
presence of information gaps in patient self-collected health
data and identify relevant health information. It could address
the barriers of acceptance regarding the introduction of patient
self-collected health data into consultation: defining the
reliability of the data and identify information gaps and reducing
the necessary time for extracting the relevant information from
the data. The recommendation of actions to follow to improve
the self-collected data provided by the system could also
motivate and empower patients by allowing them to be more
aware of the possibilities offered by the technology. The
suggestion of medical subjects related to the causes of medical
events could also help steer the consultation and improve its
efficiency.

Likeliness for Use
We are aware that some patients could feel uncomfortable by
a system judging them based on their disease management
performance and their lifestyle. This could even be
counterproductive for patients who are demotivated or make
them less likely to adopt healthy self-managing routines, but
using this system is intended to be voluntary and based on the
patients deciding whether they want to gather and share data or
not. We believe medical doctors could provide support to such
patients and moderate the outcomes of modules like the one
proposed during consultations. However, such patients are
difficult to recruit for participation in studies for analyzing their
needs, but we believe that by demonstrating the potential of
such a system with examples like proposed in this paper, we
will be able to recruit participants for the coming FullFlow
project pilot. We also plan to organize workshops involving
clinicians and psychologists focusing on motivation to address
this issue.

Chosen Approach
The hypothesize-and-test strategy is only 1 approach for
inductive reasoning, which is the reasoning the module uses.
For example, it was possible to use pattern recognition or
machine learning to achieve the same goal. The key here
concerns data acquisition and data sets. We do not possess
high-quality patient self-collected health data at this time:
insufficient patient diversity, insufficient patients, insufficient
data distributed over long periods and the quality of the data
itself could be doubtful because each patient is different and is
focusing on different goals and using different applications. On

top of that, the data could be erroneous as well. The strategy to
acquire knowledge from experts can circumvent these issues,
even if it is time-consuming and financially demanding.

Limitations
First, the authors did not perform field-tests involving clinicians
and patients in a real situation since the scope of this paper was
to present and discuss the integration of the KBM into FullFlow.

Moreover, self-collected data represent only one source of data
that could affect decision support and cannot replace other
sources such as laboratory tests; above all, it cannot replace the
relationship medical workers and patients have. Medical
feedback concerning the module will be obtained during the
clinical pilot of the FullFlow project, where patients and
clinicians will be involved in a real consultation setting.

Third, we limited the focus of the KBM to patients with type 1
diabetes at this stage. However, the authors designed the
reasoning engine model for supporting a multitude of medical
conditions, especially patients with type 2 diabetes. An update
of the knowledge base can adapt the KBM for patients with
type 2 diabetes. The existing hypothesis “There is not enough
insulin” can be activated only for patients with diabetes type 1
and for patients with diabetes type 2 on insulin therapy, while
a new hypothesis “medication is not taken” can be created and
activated for a patient with type 2 diabetes for example.

The system can exasperate medical workers if it does not support
their needs or yields imprecise or erroneous information.
However, as we defined the system with input from medical
experts, we have reduced this risk.

The last point concerns that one patient only provided the
self-collected health data. The target was to assess the relevance
and usability of the module prior to possible integration into
the FullFlow system, and subsequent trials will involve a larger
number of patients and clinicians. The feedback provided by
this patient and the participants in the workshops was used for
justifying the KBM and prepare the FullFlow system for the
main study.

Dynamic Knowledge Base
At this stage, we decided to limit the scope of the KBM by
keeping the knowledge base static for all situations, meaning
that the system cannot create and interpret rules on its own.
However, the reasoning engine model is dynamic and could
support other diseases with an update of the knowledge base,
as illustrated in the previous section. In addition, the inputs of
the rules are dynamic, meaning that patients can provide their
insulin to carbohydrates ratio or their mealtime to tailor the
execution of the rules relying on these data. More dynamic
inputs can be considered in the future such as measurable
personal goals or recommendations from clinicians for example.

For the next iteration, we plan to use patients’ and clinicians’
context for generating the Plan Base Case and the Explanation
Case Base to provide a more tailored experience for users, by
using for example comorbidity as an input for generating the
rules.
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Conclusion
To conclude, the hypothesize-and-test strategy is a viable
approach for an inductive reasoning-based system when diverse
and large and correct datasets are not available. The
context-sensitive approach permits the integration of multiple
factors for decision making and for simplifying the complexity
and maintenance of this system.

By integrating this module to the FullFlow project, we hope to
bring closer health institutions and self-managing patients, who
do more on their own with seemingly less guidance from health
institutions, by using the foundation for providing tailored health
services during consultation: self-collected health data.

Our future clinical study will document user experience and
medical outcomes through usage logs, interviews and medical
and general surveys, and will help us adjust and improve this
module further.
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FHIR: Fast Health care Interoperability Resources
GP: general practitioner
HbA 1c: glycated haemoglobin
IOB: insulin on board
IU: international unit
KBM: knowledge-based module
MET: Metabolic Equivalent of Task
NA: not applicable
NICE: National Institute for Health and Care Excellence
PHR: personal health record

Edited by G Eysenbach; submitted 25.04.18; peer-reviewed by V Traver Salcedo, S Baptista, K Blondon, K Fitzner; comments to
author 13.05.18; revised version received 27.06.18; accepted 28.06.18; published 11.07.18

Please cite as:
Giordanengo A, Øzturk P, Hansen AH, Årsand E, Grøttland A, Hartvigsen G
Design and Development of a Context-Aware Knowledge-Based Module for Identifying Relevant Information and Information Gaps
in Patients With Type 1 Diabetes Self-Collected Health Data
JMIR Diabetes 2018;3(3):e10431
URL: http://diabetes.jmir.org/2018/3/e10431/
doi: 10.2196/10431
PMID: 30291097

©Alain Giordanengo, Pinar Øzturk, Anne Helen Hansen, Eirik Årsand, Astrid Grøttland, Gunnar Hartvigsen. Originally published
in JMIR Diabetes (http://diabetes.jmir.org), 11.07.2018. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Diabetes, is properly cited. The complete
bibliographic information, a link to the original publication on http://diabetes.jmir.org/, as well as this copyright and license
information must be included.

JMIR Diabetes 2018 | vol. 3 | iss. 3 | e10431 | p. 19http://diabetes.jmir.org/2018/3/e10431/
(page number not for citation purposes)

Giordanengo et alJMIR DIABETES

XSL•FO
RenderX

http://diabetes.jmir.org/2018/3/e10431/
http://dx.doi.org/10.2196/10431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30291097&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

