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Abstract

Background: A 75-g oral glucose tolerance test (OGTT) provides important information about glucose metabolism, although
the test is expensive and invasive. Complete OGTT information, such as 1-hour and 2-hour postloading plasma glucose and
immunoreactive insulin levels, may be useful for predicting the future risk of diabetes or glucose metabolism disorders (GMD),
which includes both diabetes and prediabetes.

Objective: We trained several classification models for predicting the risk of developing diabetes or GMD using data from
thousands of OGTTs and a machine learning technique (XGBoost). The receiver operating characteristic (ROC) curves and their
area under the curve (AUC) values for the trained classification models are reported, along with the sensitivity and specificity
determined by the cutoff values of the Youden index. We compared the performance of the machine learning techniques with
logistic regressions (LR), which are traditionally used in medical research studies.

Methods: Data were collected from subjects who underwent multiple OGTTs during comprehensive check-up medical
examinations conducted at a single facility in Tokyo, Japan, from May 2006 to April 2017. For each examination, a subject was
diagnosed with diabetes or prediabetes according to the American Diabetes Association guidelines. Given the data, 2 studies
were conducted: predicting the risk of developing diabetes (study 1) or GMD (study 2). For each study, to apply supervised
machine learning methods, the required label data was prepared. If a subject was diagnosed with diabetes or GMD at least once
during the period, then that subject’s data obtained in previous trials were classified into the risk group (y=1). After data processing,
13,581 and 6760 OGTTs were analyzed for study 1 and study 2, respectively. For each study, a randomly chosen subset representing
80% of the data was used for training 9 classification models and the remaining 20% was used for evaluating the models. Three
classification models, A to C, used XGBoost with various input variables, some including OGTT data. The other 6 classification
models, D to I, used LR for comparison.

Results: For study 1, the AUC values ranged from 0.78 to 0.93. For study 2, the AUC values ranged from 0.63 to 0.78. The
machine learning approach using XGBoost showed better performance compared with traditional LR methods. The AUC values
increased when the full OGTT variables were included. In our analysis using a particular setting of input variables, XGBoost
showed that the OGTT variables were more important than fasting plasma glucose or glycated hemoglobin.

Conclusions: A machine learning approach, XGBoost, showed better prediction accuracy compared with LR, suggesting that
advanced machine learning methods are useful for detecting the early signs of diabetes or GMD. The prediction accuracy increased
when all OGTT variables were added. This indicates that complete OGTT information is important for predicting the future risk
of diabetes and GMD accurately.

JMIR Diabetes 2018 | vol. 3 | iss. 4 | e10212 | p. 1http://diabetes.jmir.org/2018/4/e10212/
(page number not for citation purposes)

Maeta et alJMIR DIABETES

XSL•FO
RenderX

mailto:kfujiba@juntendo.ac.jp
http://www.w3.org/Style/XSL
http://www.renderx.com/


(JMIR Diabetes 2018;3(4):e10212) doi: 10.2196/10212

KEYWORDS

diabetes; machine learning; 75-g oral glucose tolerance test; XGBoost

Introduction

The incidence of diabetes has been increasing for the last decade
and is expected to continue to increase in the future [1-3]. At
present, diabetes is diagnosed and predicted based on fasting
plasma glucose (FPG), glycated hemoglobin (HbA1c), and
plasma glucose levels 2 hours after a 75-g oral glucose tolerance
test (OGTT) [4]. In an OGTT, a patient is asked to ingest a
glucose drink, and their plasma glucose (PG) levels and
immunoreactive insulin (IRI) levels are measured before and
at intervals after the glucose drink is consumed. Although OGTT
provides important information regarding pathological
conditions of glucose metabolism, many diabetes survey tools
predict the risk of diabetes development based only on
noninvasive information, such as self-administered
questionnaires [5]. The combination of parameters used to
diagnose diabetes helps to identify individuals with a high risk
of developing diabetes in the future. Heianza et al [6] showed
that the combination of HbA1c and FPG is useful for finding
patients with a high risk of developing diabetes. Fujibayashi et
al [7] used HbA1c values, FPG levels, and 2-hour PG to predict
instances of high future risk of developing diabetes. Complete
data, including 1-hour and 2-hour PG and IRI values obtained
by OGTT, may improve the prediction accuracy for diabetes
risk.

Previously, logistic regression (LR) analyses were used as initial
screening tests [5,8-10]. Recently, studies have demonstrated
new methods, including machine learning algorithms, big data
mining approaches, and genomic information, for the improved
screening and prediction of diabetes [11,12]. Machine learning
methods using all relevant information from OGTTs may be
able to more accurately predict the risk of developing diabetes
and prediabetes. The goal of this study was to verify this
hypothesis. To our knowledge, no previous study has predicted
the development of diabetes using all of the information from
OGTTs combined with machine learning.

We used XGBoost [13,14] for machine learning, an advanced
algorithm known for obtaining the winning solutions in data
competitions such as Kaggle. In addition, XGBoost has been
applied to other medical fields [15-17]. Gao et al [15] compared
model-based approaches (such as LRs) and model-free
approaches (including using XGBoost) for the task of
forecasting falls by patients with Parkinson disease. The authors
reported that the model-free approach provided more reliable
forecasting. Nishio et al [16] applied XGBoost and support
vector machine methods to the computer-aided diagnosis of
lung nodules. The authors reported that XGBoost was generally

superior to support vector machine methods. Qiao et al [17]
applied XGBoost and recurrent neural networks to a task of
emergency room visit prediction. The authors reported that the
nonlinear models had better performance than linear models.

Methods

Ethics Statement
This study was conducted using data from comprehensive
periodic medical examinations at the Center for Preventive
Medicine, NTT Medical Center Tokyo, from May 2006 to April
2017. In Japan, employers are required by the Industrial Safety
and Health Law to commission medical examinations once a
year to ensure the health of their employees. The Center for
Preventive Medicine has been contracted by a
telecommunications company, Nippon Telegraph and Telephone
Corporation (NTT), to provide periodic medical examinations
to their employees to comply with this law. This program
involves comprehensive periodic medical examinations as well
as many services beyond those mandated by law. The data used
in this study were collected as part of this general health
check-up program at the center. We retrieved subject clinical
data from an institutional database, although the examinations
were not specifically intended to collect new data for our study.
Our research plan was announced on the websites of both our
facility and the Center for Preventive Medicine. All subjects
were informed that the clinical data obtained by the program
would be retrospectively analyzed and published. In addition,
it was announced that subjects could withdraw from our research
study at any time. The study protocol was approved by the
ethical review board of Juntendo University (No. 2017114) and
the institutional ethics committee at the Center for Preventive
Medicine (No. 17-664).

Study Population
Most of the study subjects were volunteers from among the
employees of NTT and their families. They were primarily
healthy office workers ranging in age from 40 to 60 years, with
more male subjects than females. Our investigation focused on
subjects who underwent a 75-g OGTT at the center between
May 2006 to April 2017. Subjects without serious diabetes or
advanced renal failure were assessed regarding the status of
their glucose metabolism using the OGTT.

A total of 20,458 OGTT trials were collected from 9906 subjects
during the period at the center. Table 1 shows the distribution
of subjects with the number of OGTT trials obtained for each
during the period. Overall, 6437 subjects underwent OGTT only
once, while 1 subject had 12 OGTTs.
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Table 1. Distribution of subjects according to the number of oral glucose tolerance test trials.

Subjects, nTrials undergone, n

64371

11572

7363

4594

3315

2516

1727

1438

939

8110

4511

112

Data Collection
The examinations were performed on 2 consecutive days. On
the first day, each patient’s weight and height were measured
after the removal of shoes and heavy clothing, and blood
pressure was measured with an automatic monitor with the
person in the sitting position. In addition, serum samples were
collected from each participant after overnight fasting and
immediately subjected to biochemical analysis. The blood
samples were also used to determine each subject’s HbA1c level,
which was measured using high-performance liquid
chromatography with an automatic analyzer. On the second
day, the subjects underwent an OGTT. We obtained the subjects’
FPG levels along with 1-hour and 2-hour postloading PG IRI
levels during the OGTT. The Japan Diabetes Society (JDS)
HbA1c values were converted to National Glycohemoglobin
Standardization Program values using the formula developed
by the JDS [18]: HbA1c=[HbA1c(JDS)(%)×1.02+0.25(%)].
Insulin sensitivity was calculated with the insulin sensitivity
index (ISI; composite) [19,20]: ISI (composite) =[10,000/
sqrt(FPG level(mg/dL)×fasting IRI level(μU/mL)×2-hour PG
level(mg/dl)×2-hour IRI level(μU/mL))]. The sum of plasma
glucose (SPG) is defined as SPG=FPG levels+1-hour PG
level+2-hour PG level. The sum of immunoreactive insulin
(S-IRI) is defined as S-IRI=fasting IRI level+1-hour IRI
level+2-hour IRI level.

We defined diabetes, normal glucose tolerance (NGT), and
prediabetes according to the American Diabetes Association
guidelines [4]. Diabetes is defined as subjects with an FPG level
≥126 mg/dL, a 2-hour postloading PG level ≥200 mg/dL, or an
HbA1c concentration ≥6.5%. NGT is defined as subjects with
an FPG level <100 mg/dL, a 2-hour postloading PG level <140

mg/dL, and an HbA1c level <5.7%. Prediabetes is defined as
subjects without diabetes who failed to have NGT. In our study,
we defined glucose metabolism disorders (GMD) as either
diabetes or prediabetes.

Data Handling

Inclusion and Exclusion Flow
Initially, a total of 20,458 OGTT trials across all subjects were
included. Data were removed based on the inclusion and
exclusion criteria as shown in Figure 1. First, 6437 subjects
who underwent OGTT only once during the period were
excluded to increase the reliability of the data. Second, missing
data were excluded, and the remaining number of trials was
14,020. Then, 2 studies were conducted: predicting the future
risk of developing diabetes (study 1) or GMD (study 2).

Study 1. Prediction of Future Risk of Developing
Diabetes
Study 1 was aimed at predicting the future risk of developing
diabetes. To apply supervised machine learning to the data, data
labels (at risk: y=1, not at risk: y=0) were required for each
OGTT trial. It is widely known that diabetes can recur even
after remission. In addition, women with a history of gestational
diabetes have a high risk of developing diabetes in the future
[21]. We considered that subjects with a diagnosis of diabetes
in the past had a high risk of developing diabetes in the future.
Because of this hypothesis, we defined the risk group as follows:
a subject was in the risk group (y=1) for diabetes if he or she
was diagnosed with diabetes at least once during the period.
We defined a subject to be in the nonrisk group (y=0) if he or
she did not belong to the risk group. From 14,020 trials, 439
data points from patients diagnosed with diabetes were excluded
to focus only on nondiabetic subjects.
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Figure 1. Inclusion and exclusion criteria.

Figure 2. Examples of risk group and nonrisk group classifications. OGTT: oral glucose tolerance test, NGT: normal glucose tolerance.

Examples of the risk group and nonrisk group for diabetes are
shown in Figure 2 (left). Subjects A and B underwent OGTT 3
times. Subject B was diagnosed with prediabetes, NGT, and
diabetes in the first, second, and third OGTTs, respectively.
Thus, Subject B was classified into the risk group, since he or
she was diagnosed with diabetes at least once during the period.
The third OGTT data point, which occurred after the diagnosis
(marked with superscript a), is removed to focus only on
nondiabetic data. Subject A was diagnosed with NGT,
prediabetes, and NGT in the first, second, and third OGTTs,
respectively. Subject A was classified into the nonrisk group,
since he or she was never diagnosed with diabetes during the
period.

At the end, we had a total of 13,581 OGTT trials of patients
who were diagnosed with NGT or prediabetes, each of which
was labeled with future risk information (y=0 or y=1). We
randomly selected 10,869 (80%) for the training data and used

the remaining 2712 (20%) for test data. A classification model
was trained using the training data, and the prediction accuracy
was evaluated with the test data. Nine classification models
were trained, as described below. Table 2 shows a summary of
the analyzed OGTT data. No significant differences were
observed between the training and test data.

Study 2. Prediction of Future Risk of Glucose
Metabolism Disorders
Study 2 was aimed at predicting the future risk of developing
GMD, which includes either diabetes or prediabetes. Similar to
study 1, we defined a subject as being in the risk group (y=1)
for GMD if he or she was diagnosed with GMD (prediabetes
or diabetes) at least once during the period. We defined a subject
to be in the nonrisk group (y=0) if he or she did not belong to
the risk group for GMD. From 14,020 trials, 7260 data points
from patients diagnosed with GMD were excluded to focus only
on NGT subjects.
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Table 2. Statistical summary of the analyzed oral glucose tolerance test data (study 1).

P valueaTest data (n=2712)Training data (n=10,869)Data points

.7149.71 (9.16)49.78 (9.27)Age, years, mean (SD)

.612509 (92.51)9998 (91.99)Sex, male, n (%)

.2123.35 (2.98)23.43 (3.00)Body mass index (kg/m2), mean (SD)

.215.49 (0.31)5.50 (0.32)Glycated hemoglobin (%), mean (SD)

.5096.47 (8.35)96.59 (8.31)FPGb (mg/dL), mean (SD)

.21146.91 (40.55)145.82 (40.67)1-hour PG (mg/dL), mean (SD)

.73111.26 (26.32)111.07 (26.62)2-hour PG (mg/dL), mean (SD)

.40354.63 (63.51)353.48 (63.99)SPGc (mg/dL), mean (SD)

.896.40 (3.44)6.41 (3.65)Fasting IRId (IU/mL), mean (SD)

.5555.04 (35.21)55.50 (37.16)1-hour IRI (IU/mL), mean (SD)

.3441.32 (31.01)41.95 (32.59)2-hour IRI (IU/mL), mean (SD)

.41102.76 (61.65)103.87 (64.95)S-IRIe (IU/mL), mean (SD)

.598.34 (4.89)8.39 (5.27)ISIf (composite), mean (SD)

.42125.68 (17.37)125.38 (17.65)Systolic BPg (mm Hg), mean (SD)

.1080.13 (11.21)79.74 (11.22)Diastolic BP (mm Hg), mean (SD)

.35200.17 (31.01)200.80 (30.95)Total cholesterol (mg/dL), mean (SD)

.5958.10 (14.45)58.27 (14.39)HDLCh (mg/dL), mean (SD)

.38117.83 (28.40)118.37 (28.12)LDLCi (mg/dL), mean (SD)

.54114.07 (73.87)115.07 (79.98)Triglyceride (mg/dL), mean (SD)

.246.17 (1.30)6.20 (1.27)Uric acid (mg/dL), mean (SD)

.0513.57 (3.14)13.70 (3.18)UNj (mg/dL), mean (SD)

.290.88 (0.15)0.88 (0.14)Serum creatinine (mg/dL), mean (SD)

.2923.81 (9.28)24.02 (9.24)GOTk (IU/L), mean (SD)

.0724.95 (15.43)25.56 (16.44)GPTl (IU/L), mean (SD)

.6446.55 (48.97)47.05 (53.13)γ‐GTPm (IU/L), mean (SD)

.114.50 (0.26)4.51 (0.26)Serum albumin (g/dL), mean (SD)

aUsed t test or chi-square test.
bFPG: fasting plasma glucose.
cSPG: sum of plasma glucose.
dIRI: immunoreactive insulin.
eS-IRI: sum of immunoreactive insulin.
fISI: insulin sensitivity index.
gBP: blood pressure.
hHDLC: high-density lipoprotein cholesterol.
iLDLC: low-density lipoprotein cholesterol.
jUN: serum urea nitrogen.
kGOT: serum glutamic oxaloacetic transaminase.
lGPT: serum glutamic pyruvic transaminase.
mγ‐GTP: serum γ-glutamyl transpeptidase.

Figure 2 (right) shows examples of the risk group and nonrisk
group for GMD. Subjects C and D underwent OGTT 3 times.
Subject D was diagnosed with prediabetes, NGT, and diabetes

in the first, second, and third OGTTs, respectively. Subject D
was classified into the risk group of GMD, since he or she was
diagnosed with prediabetes at least once during the period. The
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first and third OGTT, which were diagnosed with prediabetes
and diabetes, respectively, were removed to focus only on NGT
data. Subject C was diagnosed with NGT all 3 times. Therefore,
subject C was classified into the nonrisk group, since he or she
was never diagnosed with prediabetes or diabetes during the
period.

Finally, we had 6760 OGTT trials of patients who were
diagnosed with NGT, each of which was labeled with future
risk information (y=0 or y=1). We randomly selected 5408
(80%) for training data, and used the remaining 1352 (20%) for
test data. A classification model was trained using the training
data, and the prediction accuracy was evaluated using the test
data. Nine models were trained, as detailed in the Classification
Models section. Table 3 shows a summary of the analyzed data.
No significant differences were observed between the training
and test data.

Statistical Analysis

XGBoost
XGBoost [13] is open-source software [14] that provides a
machine learning method of regression and classification using
ensemble learning with gradient tree boosting (GTB) [22].
XGBoost is well known for obtaining the winning solutions in
data competitions. Chen and Guestrin [13] reported that “Among
the 29 challenge-winning solutions published on Kaggle’s blog
during 2015, 17 winning solutions used XGBoost.” Applications
of XGBoost include practical tasks such as “store sales
prediction, high energy physics event classification, Web text
classification, customer behavior prediction, motion detection,
ad click-through rate prediction, malware classification, product
categorization, hazard risk prediction, and massive on-line
course dropout rate prediction.” See Chen and Guestrin [13] for
details of the applications. In addition, XGBoost has been
applied to medical fields [15-17].

XGBoost (or GTB) learns a regression and classification
function in the data space by sequentially optimizing weak
learners, called regression trees. The parameters of a regression
tree consist of the tree structures and the weights of the leaf
nodes. They are sequentially optimized to minimize an objective
function, consisting of a fitting loss term plus a regularization
term, using gradient methods. XGBoost software is designed
to increase the scalability and acceleration of optimized
computation for practical use. See Chen and Guestrin [13] for
technical details. The underlying GTB algorithm is briefly
discussed in Multimedia Appendix 1. XGBoost includes several
hyperparameters—including the maximum depth of regression
trees, number of weak learners, learning rate, and regularization
parameters—which need to be tuned.

Classification Models
To predict the future risk of diabetes (study 1) or GMD (study
2), we developed 9 classification models (A to I) with different
input variables, shown in Table 4.

Models A, B, and C used XGBoost. For comparison, models
D to I used LR, which is traditionally used in medical research
studies. For each classification model, the input variables were
set as follows. Model A inputs some basic variables relevant to
diabetes or GMD, without OGTT variables. Model B inputs
OGTT variables (1-hour PG, 1-hour IRI, 2-hour PG, and 2-hour
IRI), as well as the variables of model A. Model C inputs all
the measured variables. Blood pressure, lipid parameters, uric
acid values, markers of liver function, and markers of kidney
function are parameters related with metabolic syndrome, fatty
liver, and chronic kidney disease. These conditions are
associated with diabetes and were included as variables [23-25].
Models D to F served as baselines using the well-known
biomarkers FPG and HbA1c. Models G to I used the same
variables as models A to C to directly compare the performances
of XGBoost and LR.

Evaluation
To evaluate the 9 trained classification models, we used the
receiver operating characteristic (ROC) curves and their area
under the curve (AUC) values computed from the test data
[26,27]. ROC curves have commonly been used in diabetes
prediction research. In addition, we report the sensitivity and
specificity at the cutoff values determined by the Youden index.

Hyperparameter Tuning of XGBoost
As mentioned, XGBoost includes several hyperparameters such
as maximum depth of the regression trees, number of weak
learners, learning rate, and regularization parameters that need
to be tuned.

We tuned the parameters using a grid search to maximize the
mean AUC value computed from 5-fold cross validation on the
training data. Specifically, the training data were divided into
5 subsets at random: 4 subsets were used for training XGBoost
and the other subset was used for validation. The ROC curve
and AUC value can be evaluated from the validation subset.
This procedure was repeated 5 times with different validation
subsets. The mean AUC value can be computed by averaging
the 5 AUC values. We tuned the hyperparameters, including
the regularization parameters, with a grid search method to
maximize the mean AUC value. After finding the optimal values
of the hyperparameters, XGBoost was trained using the entire
training data set. The final ROC and AUC values were then
evaluated with the test data.

Given a ROC curve, a cutoff value is required to compute the
sensitivity and specificity. The cutoff value was determined by
averaging 5 cutoff values computed from the Youden index
from 5-fold cross validation.
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Table 3. Statistical summary of analyzed oral glucose tolerance test data (study 2).

P valueaTest data (n=1352)Training data (n=5408)Data points

.4346.93 (8.70)47.13 (8.75)Age, years, mean (SD)

.831210 (89.50)4853 (89.74)Sex, male, n (%)

.8922.72 (2.70)22.71 (2.70)Body mass index (kg/m2), mean (SD)

.435.31 (0.23)5.32 (0.23)Glycated hemoglobin (%), mean (SD)

.7491.41 (5.01)91.46 (4.99)FPGb (mg/dL), mean (SD)

.53128.86 (31.48)129.47 (33.10)1-hour PG (mg/dL), mean (SD)

.7799.73 (18.34)99.89 (18.41)2-hour PG (mg/dL), mean (SD)

.54320.00 (43.52)320.81 (45.05)SPGc (mg/dL), mean (SD)

.475.59 (2.71)5.66 (3.13)Fasting IRId (IU/mL), mean (SD)

.0649.20 (31.85)51.06 (33.02)1-hour IRI (IU/mL), mean (SD)

.2833.45 (21.68)34.16 (22.88)2-hour IRI (IU/mL), mean (SD)

.0888.24 (49.38)90.88 (51.66)S-IRIe (IU/mL), mean (SD)

.779.98 (5.35)9.93 (5.50)ISIf (composite), mean (SD)

.68121.97 (16.01)121.77 (16.63)Systolic BPg (mm Hg), mean (SD)

.5977.38 (10.51)77.55 (10.82)Diastolic BP (mm Hg), mean (SD)

>.99196.35 (30.28)196.35 (30.13)Total cholesterol (mg/dL), mean (SD)

.1160.25 (15.01)59.53 (14.30)HDLCh (mg/dL), mean (SD)

.27113.94 (27.93)114.88 (27.66)LDLCi (mg/dL), mean (SD)

.75102.36 (77.61)101.64 (63.13)Triglyceride (mg/dL), mean (SD)

.706.06 (1.31)6.05 (1.28)Uric acid (mg/dL), mean (SD)

.3613.43 (2.99)13.35 (3.04)UNj (mg/dL), mean (SD)

.950.87 (0.14)0.87 (0.14)Serum creatinine (mg/dL), mean (SD)

.5522.81 (8.42)22.96 (8.20)GOTk (IU/L), mean (SD)

.3222.72 (13.13)23.12 (13.91)GPTl (IU/L), mean (SD)

.5339.87 (46.02)40.74 (45.54)γ‐GTPm (IU/L), mean (SD)

.474.49 (0.27)4.50 (0.26)Serum albumin (g/dL), mean (SD)

aUsed t test or chi-square test.
bFPG: fasting plasma glucose.
cSPG: sum of plasma glucose.
dIRI: immunoreactive insulin.
eS-IRI: sum of immunoreactive insulin.
fISI: insulin sensitivity index.
gBP: blood pressure.
hHDLC: high-density lipoprotein cholesterol.
iLDLC: low-density lipoprotein cholesterol.
jUN: serum urea nitrogen.
kGOT: serum glutamic oxaloacetic transaminase.
lGPT: serum glutamic pyruvic transaminase.
mγ‐GTP: serum γ-glutamyl transpeptidase.
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Table 4. List of trained classification models.

Input variablesAlgorithmModel

Sex, age, BMIa, HbA1c
b, FPGc, and fasting IRIdXGBoostA

Variables in model A, 1-hour PG, 2-hour PG, 1-hour IRI, and 2-hour IRIXGBoostB

Variables in model B, SPGe during the 75-g OGTTf, S-IRIg during the OGTT, simple ISIh (composite), systolic blood

pressure, diastolic blood pressure, total cholesterol, HDLCi, LDLCj, triglyceride, uric acid, UNk, serum creatinine, GOTl,

GPTm, γ‐GPTn, and serum albumin

XGBoostC

FPGLRoD

HbA1cLRE

FPG, HbA1cLRF

Sex, age, BMI, HbA1c, FPG, and fasting IRILRG

Variables in model A, 1-hour PG, 2-hour PG, 1-hour IRI, and 2-hour IRILRH

Variables in model B, SPG during the 75-g OGTT, S-IRI during the OGTT, simple ISI (composite), systolic blood pressure,
diastolic blood pressure, total cholesterol, HDLC, LDLC, triglyceride, uric acid, UN, serum creatinine, GOT, GPT, γ‐
GPT, and serum albumin

LRI

aBMI: body mass index.
bHbA1c: glycated hemoglobin.
cFPG: fasting plasma glucose.
dIRI: immunoreactive insulin.
eSPG: sum of plasma glucose.
fOGTT: oral glucose tolerance test.
gS-IRI: sum of immunoreactive insulin.
hISI: insulin sensitivity index.
iHDLC: high-density lipoprotein cholesterol.
jLDLC: low-density lipoprotein cholesterol.
kUN: serum urea nitrogen.
lGOT: serum glutamic oxaloacetic transaminase.
mGPT: serum glutamic pyruvic transaminase.
nγ‐GPT: serum γ‐glutamyl transpeptidase.
oLR: logistic regression.

Results

Study 1. Prediction of Future Risk of Developing
Diabetes
Figure 3 shows the 6 ROC curves for models A to I. Similarly,
Multimedia Appendix 2 shows the corresponding curves for
models A to F. The horizontal axis represents the false positive
rate, and the vertical axis represents the true positive rate. The
3 solid lines (models A, B, and C) show the ROC curves
obtained from XGBoost. The dashed lines (models G, H, and
I) show the ROC curves obtained from LR.

The AUC values for the 9 classification models are shown in
Table 5. For each model, we also show the sensitivity and
specificity as determined by the Youden index. We observed
that XGBoost had superior performance compared with LR.
The AUC value increased with the number of input variables.
Models B and C, which exploit XGBoost and complete OGTT
information for input variables, showed the best AUC values,
0.90 and 0.93, respectively.

In addition, XGBoost provides an importance score for each
input variable. The importance value for each input variable in
models A to C are shown in Multimedia Appendix 3 (left),
Multimedia Appendix 4 (left), and Multimedia Appendix 5
(left), respectively. In model B, we observed that the OGTT
variables (1-hour PG, 1-hour IRI, 2-hour PG, and 2-hour IRI)
were more important than FPG or HbA1c. In model C, we
observed that SPG and 2-hour PG were more important variables
than FPG or HbA1c, although multicollinearity needs to be
considered.

Study 2. Prediction of Future Risk of Glucose
Metabolism Disorders
Figure 4 shows the 6 ROC curves for models A to I. Similarly,
Multimedia Appendix 6 shows the corresponding 6 ROC curves
for models A to F. The 3 solid lines (models A, B, and C) show
the ROC curves obtained from XGBoost. The dashed lines
(models G, H, and I) show the ROC curves obtained from LR.
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Figure 3. Receiver operating characteristic curves obtained for the prediction of diabetes.

Table 5. Area under the curve, sensitivity, and specificity for predicting diabetes.

Specificity (%)Sensitivity (%)AUCaType and model

Machine learning

97.236.80.86Model A

97.440.40.90Model B

98.439.50.93Model C

Logistic regression

99.412.30.80Model D

99.96.10.78Model E

95.241.20.84Model F

95.938.60.85Model G

96.137.70.88Model H

96.540.40.88Model I

aAUC: area under the curve.

The AUC values for the 9 models are shown in Table 6. The
sensitivity and specificity, as determined by the Youden index,
are also shown in Table 6. Similar to study 1, we observed that
XGBoost had better performance than LR. The AUC values
also increased with the number of input variables. Models B
and C, which exploit XGBoost and complete OGTT information
as input variables, displayed the highest AUC values, 0.75 and
0.78, respectively.

The importance score of each input variable for models A, B,
and C are shown in Multimedia Appendix 3 (right), Multimedia
Appendix 4 (right), and Multimedia Appendix 5 (right),
respectively. In model B, we observed that the OGTT variables
(1-hour PG, 1-hour IRI, 2-hour PG, and 1-hour IRI) were more
important than FPG or HbA1c. In model C, we observed that
the OGTT variables (1-hour PG, 1-hour IRI, 2-hour PG, 2-hour
IRI, and SPG) were more important variables than FPG or
HbA1c, although multicollinearity needs to be considered.
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Figure 4. Receiver operating characteristic curves for the prediction of glucose metabolism disorders.

Table 6. Area under the curve, sensitivity, and specificity for predicting glucose metabolism disorders.

Specificity (%)Sensitivity (%)AUCaType and model

Machine learning

90.934.30.73Model A

91.831.60.75Model B

92.233.70.78Model C

Logistic regression

97.36.60.65Model D

91.621.30.63Model E

98.46.60.69Model F

78.927.60.71Model G

91.627.10.72Model H

84.941.30.72Model I

aAUC: area under the curve.

Discussion

Principal Findings
In this study, we reported on 2 results for predicting the future
risk of diabetes or GMD using complete OGTT information
and machine learning.

A feature of our study is that we used a large-scale dataset that
included thousands of Japanese OGTT trials, even though OGTT
is expensive and invasive. The amount of data enabled us to
use a machine learning approach. It is known that one of the
earliest detectable abnormalities in the development of diabetes
is the deterioration of the early insulin response after glucose
loading [28], and the aggravation of insulin sensitivity affects

the development of diabetes [7,29-32]. Data obtained from
OGTT provide important pathological glucose metabolism
information. We believe that the data obtained from OGTT
contributed to the improvement in prediction of future risk of
diabetes and GMD.

Another feature of our study is that we used an advanced and
powerful machine learning method, XGBoost, which resulted
in better performance compared with LR. Many previous
diabetes risk assessment tools used LR analyses. Recently,
various machine learning algorithms have been used for the
screening and prediction of diabetes [12,33-35]. Linear
approaches are generally unsuited for prediction models with
complex correlations. We believe that XGBoost plays an
important role in improving the prediction of the future risk of
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developing diabetes or GMD. To our knowledge, no previous
study combined large-scale Japanese OGTT data and XGBoost.

By observing the importance scores (Multimedia Appendix
3-Multimedia Appendix 5) of the input variables computed
from XGboost, the OGTT variables (1-hour PG, 1-hour IRI,
2-hour PG, 2-hour IRI) were found to be more important
predictors than FPG or HbA1c for the future risk of diabetes or
GMD, although multicollinearity needs to be taken into account.
The progress of the PG level after loading can reflect
abnormalities in the insulin response. Simultaneous
measurement of PG and IRI levels can help evaluate the insulin
sensitivity. Although multiple collinearity affects the results,
PG and IRI levels after loading appeared to be more important
than FPG or HbA1c.

Limitations
Our research had several limitations. First, we did not use any
information obtained from questionnaires in our research. This
was because we were concerned that subject recall bias may
impact the accuracy of the predictions [36]. As far as we know,
previous diabetes risk assessment tools were based on
information obtained from questionnaires such as family history
and lifestyle habits [5,8-10,37]. Because of this, our results
could not be easily compared with these reports. A previous
study showed that combining the results of blood tests and
questionnaire information improved the prediction accuracy of
diabetes risk assessment [37]. We will attempt to improve the
accuracy of diabetes risk prediction by integrating information
obtained from blood tests and questionnaires. Second, we
merged data from subjects who underwent OGTT different
numbers of times. That is, we handled data from subjects who
had 2 OGTT trials in the same manner as subjects with 10
OGTT trials. Data from subjects who had frequent OGTT trials
may have impacted the calculation. Finally, our subjects were
affected by selection bias, specifically, the “healthy worker”

effect. More than 70% of our participants were healthy male
office workers who ranged in age from 40 to 60 years. Thus,
the limited sample might not accurately represent the entire
population. In addition, we believe that our method is not
suitable for predicting rapidly progressing diabetes, as with type
1 diabetes. Also, validation is still required using other data
sets.

Comparison With Prior Work
Thoopputra et al [5] considered many diabetes risk assessment
tools developed worldwide. In the review, although there a few
that used OGTT data or decision tree algorithms, many diabetes
risk assessment tools used only noninvasive information and
LR analyses. Values for the AUC ranged from 62% to 87%. In
Japan, Nanri et al [37] reported a risk score showing an AUC
value of 0.882 for predicting type 2 diabetes based on
noninvasive information, FPG level and HbA1c, using an LR
analysis. Recently, studies have demonstrated new methods,
including machine learning algorithms, big data mining
approaches, and genomic information, for the screening and
prediction of diabetes [11,12]. Habibi et al [34] developed a
model with an AUC value of 0.875 when screening for type 2
diabetes that used a decision tree method and did not require
any laboratory tests. López et al [12] reported a model for
diabetes prediction having an AUC value of 0.89 that used
genetic information and a random forest algorithm.

Conclusion
Our predictions for the future risk of developing diabetes or
GMD, using data from thousands of OGTT trials and the
machine learning program XGBoost, resulted in higher accuracy
compared with traditional LR analysis. Combining complete
OGTT information with advanced machine learning algorithms
may be useful for detecting the future risk of diabetes or GMD
more accurately.
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GTB: gradient tree boosting
HbA1c: glycated hemoglobin
HDLC: high-density lipoprotein cholesterol
IRI: immunoreactive insulin
ISI: insulin sensitivity index
JDS: Japan Diabetes Society
LDLC: low-density lipoprotein cholesterol
LR: logistic regression
NGT: normal glucose tolerance
NTT: Nippon Telegraph and Telephone Corporation
OGTT: oral glucose tolerance test
PG: plasma glucose
ROC: receiver operating characteristic
S-IRI: sum of immunoreactive insulin
SPG: sum of plasma glucose
UN: serum urea nitrogen
γ‐GTP:  serum γ-glutamyl transpeptidase
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