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Abstract

Background: Diabetes remains a major health problem in the United States, affecting an estimated 10.5% of the population.
Diabetes self-management interventions improve diabetes knowledge, self-management behaviors, and clinical outcomes.
Widespread internet connectivity facilitates the use of eHealth interventions, which positively impacts knowledge, social support,
and clinical and behavioral outcomes. In particular, diabetes interventions based on virtual environments have the potential to
improve diabetes self-efficacy and support, while being highly feasible and usable. However, little is known about the patterns
of social interactions and support taking place within type 2 diabetes–specific virtual communities.

Objective: The objective of this study was to examine social support exchanges from a type 2 diabetes self-management
education and support intervention that was delivered via a virtual environment.

Methods: Data comprised virtual environment–mediated synchronous interactions among participants and between participants
and providers from an intervention for type 2 diabetes self-management education and support. Network data derived from such
social interactions were used to create networks to analyze patterns of social support exchange with the lens of social network
analysis. Additionally, network correlations were used to explore associations between social support networks.

Results: The findings revealed structural differences between support networks, as well as key network characteristics of
supportive interactions facilitated by the intervention. Emotional and appraisal support networks are the larger, most centralized,
and most active networks, suggesting that virtual communities can be good sources for these types of support. In addition, appraisal
and instrumental support networks are more connected, suggesting that members of virtual communities are more likely to engage
in larger group interactions where these types of support can be exchanged. Lastly, network correlations suggest that participants
who exchange emotional support are likely to exchange appraisal or instrumental support, and participants who exchange appraisal
support are likely to exchange instrumental support.

Conclusions: Social interaction patterns from disease-specific virtual environments can be studied using a social network
analysis approach to better understand the exchange of social support. Network data can provide valuable insights into the design
of novel and effective eHealth interventions given the unique opportunity virtual environments have facilitating realistic
environments that are effective and sustainable, where social interactions can be leveraged to achieve diverse health goals.
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Introduction

Overview
Diabetes remains a major health problem in the United States,
affecting an estimated 34.2 million people of all ages (about
10.5% of the country’s population) [1]. Data show that type 2
diabetes (T2D) accounts for the most diabetes burden (between
90% and 95%), and its prevalence will continue to increase
[1,2]. Diabetes is a challenging chronic illness because
self-management is critical to reduce and delay the onset of
complications and mortality [3-6]. Several evidence-based
strategies, such as diabetes self-management education (DSME)
and ongoing self-management support by peers and providers,
have been shown to be effective in the management of T2D
[7-9]. In particular, self-management is important in T2D given
that patients manage 99% of their own care [10,11]. Moreover,
diabetes self-management interventions improve diabetes
knowledge and self-management behaviors, in addition to
clinical outcomes [12]. Despite these benefits, less than 60%
of people with diabetes attend DSME and only about 7% of
newly diagnosed patients with diabetes attend DSME within
12 months following their diagnosis [13-16], indicating a
pressing need for the delivery of accessible DSME and ongoing
self-management support interventions.

Widespread internet connectivity provides new opportunities
for wider web technology access and use by patients.
Internet-based interventions, also known as eHealth, can connect
patients to both peers and providers to facilitate support as well
as access to evidence-based information [17]. Research suggests
that T2D interventions incorporating interactive, individualized,
and frequent interactions among patients, educators, and
providers are among the most effective approaches [9]. eHealth
interventions can provide such interactions in an effective and
accessible way, which otherwise would be costly and
unsustainable [12]. In addition, eHealth interventions have
shown positive impacts on knowledge, social support, and
clinical and behavioral outcomes [18]. Johnson et al have
highlighted the benefits of eHealth interventions on T2D
management, such as increased support, self-efficacy, and
knowledge; improvements in glycemic levels and
self-management behaviors; and efficient use of primary care
services [12]. Furthermore, successful eHealth programs focused
on DSME provided relevant content, engaging interactive
elements, personalized learning experiences, and self-assessment
tools for monitoring and feedback [17-20]. However, in spite
of the potential benefits eHealth offers for DSME, eHealth
interventions have been mostly based on traditional website
formats. Such website formats generally lack realistic simulated
environments where DSME actually takes place, such as patient
community places (eg, grocery stores and restaurants) [7,21].

Virtual Environments and Diabetes Self-Management
Education and Support
Virtual environments offer an effective way to provide patients
with realistic settings for the acquisition and application of

knowledge in community settings where daily T2D
self-management takes place, while addressing barriers such as
transportation, cost, time, and scheduling issues [22]. In addition,
virtual environments have started to show a potential to improve
diabetes self-efficacy and social support, while being highly
feasible and usable [12]. Second Life (Linden Lab), a highly
popular virtual world, has been shown to be an effective tool
that can lead to “significant learning gains” [23]. Second Life
allows users to socialize and behave in a similar way as they
would naturally do in normal settings through virtual human
representations known as avatars [24]. Furthermore, virtual
environments, such as Second Life, offer the potential for users
to perform behaviors within realistic scenarios by providing
them with presence, immersion, and social interaction, while
facilitating communication between patients, educators, and
providers [12,24]. While virtual environments have been used
to deliver health information, education, social support, and
social networking, most Second Life–based health sites to date
have focused on disseminating information and offering support
groups [24].

Self-management diabetes interventions based on virtual
environments enable diabetes education, the development of
new skills, and the exchange of peer support in synchronous
and asynchronous ways [7]. The Second Life Impacts Diabetes
Education & Self-Management (SLIDES) virtual community
was among the first interventions aimed at providing DSME
and support using Second Life [24]. The results of SLIDES
showed improvements in diabetes self-efficacy, social support,
and foot care, as well as trends toward improvements in diet,
weight loss, and clinical outcomes, while being highly feasible
and usable [12]. The development of the SLIDES platform, as
well as its preliminary effects, is described elsewhere [12,24].
Virtual environments, such as SLIDES, are innovative ways to
provide accessible DSME and ongoing self-management
support. A key characteristic of these environments is the
potential for participants to develop real-world skills via
simulation and rehearsal within the virtual environment that
can be transferable and thus affect behaviors in the real world
[12].

Another significant characteristic of virtual environments is the
facilitation of social support among participants [12,24]. Social
support is generally described as “an exchange of resources
between at least two persons aimed at increasing the wellbeing
of the receiver” [25-27]. Social support is recognized as a key
component of diabetes self-management, in addition to adequate
skills and behavioral development [22,28,29]. Studies have
shown that social support is commonly provided through social
interactions to achieve health outcomes [30,31]. Moreover,
research suggests that people with T2D can benefit from
frequent and sustained social interactions among peers and
providers by obtaining education and support [28,32-34]. In
addition, T2D interventions that are based on virtual
environments can provide realistic, personalized, and ongoing
interaction and support that assist participants in health care
decision making [7,12,34-36]. SLIDES showed that virtual
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environment–mediated interactions resemble physical ones;
therefore, patients with T2D are presented with the possibility
of greatly improving their access to social support [12,34].
However, the social networks highlighting the patterns of
interactions within T2D-specific virtual communities, such as
SLIDES, have not been studied. While the prominent effects
of social relationships on health decisions and related behavior
changes have been established [37,38], little is known about
social interactions and the exchange of support in
disease-specific virtual environments.

Social Network Analysis and Online Health
Communities
The study of social networks provides researchers with a unique
opportunity to get an in-depth view and a better understanding
of the structure of online communities [38,39]. Social network
research has shown that social connections (ie, peers, family
members, etc) disseminate health information, provide social
support, and influence health behaviors [38,39]. Social network
analysis (SNA) has been used to study the ways in which social
connections can influence individuals’ attitudes, believes, and
behaviors. Such network influences can be caused by the
network environment, the position an individual occupies in
the network, or structural or network-level properties [38,39].
For example, being central in a social network determines a
high importance for information dissemination. Similarly,
individuals located on a network’s periphery, known as
peripheral individuals, can act as bridges connecting otherwise
disconnected groups, thus enabling collective actions. Peripheral
individuals are characterized by having one or few connections
on the outside of a network and thus participating infrequently.
Moreover, peripheral individuals are usually free from social
norms and constraints, and thus, innovation can occur [38,39].
Furthermore, network structural properties, such as clustering,
can help to identify highly connected groups of individuals,
where behavior change can be accelerated. Lastly, densely
connected networks have been shown to generate faster diffusion
and increased coordinated action [38,39].

SNA is increasingly becoming useful to the study of online
health communities owing to the exponential growth in the use
of electronic communications [40]. The massive amounts of
social interactions taking place within online communities today
are providing researchers with valuable network data. Research
has focused on the analysis of online social interactions from
both general purpose social media platforms (eg, Twitter and
YouTube) and health care–specific platforms (eg, American
Diabetes Association online community) [41-44]. Often,
qualitative analysis and computational text analysis are used to
analyze social media interactions [41-43]. Studies have shown
that SNA provides insights into social influence, information
dissemination, and behavioral diffusion [39,40,45,46]. On one
hand, communication structure (who communicates with whom)
is key for the study of peer influence on health behaviors [40].
On the other hand, analyses of the structures of online
peer-to-peer communications provide valuable insights into
opinion leaders [40,45,47]. Both approaches have the potential
to help researchers model effective network data–based
interventions [40]. Similarly, social support exchange patterns
within disease-specific virtual communities, such as SLIDES,

can be studied using a SNA approach, which would allow the
visualization and description of communication structures, peer
influences, and behavioral diffusion, as well as the impact on
health outcomes, such as blood glucose levels, for patients with
diabetes [45-50]. However, despite the benefits SNA offers, to
our knowledge, social interactions occurring within virtual
environments have not been studied using this approach. In this
study, a secondary data analysis of SLIDES social interactions
through the SNA lens was carried out to examine social support
exchange patterns between participants and providers [12,24,34].

Research Aims
The overall goal of our study was to examine social support
exchanges from a T2D self-management education and support
intervention (SLIDES) that was delivered via a virtual
environment. The specific aims of our study were as follows:
(1) to examine patterns of social interaction and support of the
SLIDES intervention by creating network structures for different
types of social supports and assessing these support networks
using quantitative network measures; (2) to explore the
associations between social support network structures by
correlating them with each other using the quadratic assignment
procedure (QAP); and (3) to provide insights into the exchange
of social support within a disease-specific virtual environment.

Methods

SNA Methodology

Social Network Data
SLIDES social interaction data were used for our study [34].
SLIDES included a total sample of 24 individuals, with 20
participants and 4 providers (including diabetes educators and
moderators). Detailed participant demographics are described
elsewhere [12]. SLIDES facilitated virtual interactions among
participants with T2D and providers in the following two types
of sessions: education and support. Education sessions were
held twice a week, and support sessions were held weekly.
SLIDES social interactions consisted mostly of synchronous
naturalistic conversations that took place throughout different
locations within the virtual environment (eg, bookstore,
restaurant, and classroom) [12,24]. These conversations enabled
the exchange of social support among participants and between
participants and providers, and were continuously recorded and
transcribed [12,24]. These transcriptions provided the data set
from which network data were derived for our analysis. Detailed
information on the SLIDES study site, theoretical framework,
sample, measures, and outcomes have been published elsewhere
[12,24]. Our analysis focused on interactions where social
support was exchanged among participants and between
participants and providers during a 6-month study enrollment
period [34]. Study participants could log into SLIDES and
participate as much or as little as they wanted and engage in
synchronous conversations. Social support was defined as
“personal informal advice and knowledge that help individuals
initiate and sustain T2D self-management behaviors, thus
increasing adherence” [22,25,27,30,34]. Social support types
included emotional, instrumental, informational, and appraisal
[22,25-27,29,34]. SLIDES social interactions, which were

JMIR Diabetes 2021 | vol. 6 | iss. 1 | e21611 | p. 3http://diabetes.jmir.org/2021/1/e21611/
(page number not for citation purposes)

Pérez-Aldana et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


previously characterized by the aforementioned types of social
support [34,51], were used to create network structures in order
to analyze social support exchange patterns at the group level
(ie, participants/providers who interacted in a conversation by
either listening or engaging directly, where a certain type of
support was exchanged, were all linked together for that
particular conversation). Thus, the unit of analysis included the
tie among participants and between participants and providers
who interacted via synchronous conversations, as well as the
types of social support exchanged in each transcribed
conversation as previously characterized [34,51].

Network Structures and Measures
Network structures were created for each type of social support
by representing participants and providers as nodes and
representing interactions where social support was exchanged
as edges (interconnections between nodes). For each type of
social support network, all edges indicating who participated
in a conversation were included (ie, who interacted with whom
during a virtual conversation in which social support was
exchanged). Quantitative network measures were used to assess
network structures across all types of social support. Network
measures explain structural differences (eg, density and
cohesion), as well as node importance within a network (eg,
centrality) [38,39]. The following network measures were used:
average degree (average number of connections of all nodes;
a higher average degree number means that members of a
network interacted with a higher number of members via
synchronous conversations, either on a one-to-one basis or at a
group level); graph density (proportion of connections relative
to the total number of possible connections; ranging from 0 to
1; a higher graph density means that members of a network
most likely engaged in conversations involving a higher number
of members, ie, larger groups); average path length (average
distance between all node dyads; the distance of a dyad is 1,

which means a direct interaction between two members of the
network; a higher average path length is associated with a higher
distance or number of steps required for two network members
to interact with each other, resulting in a less efficient network);
average clustering coefficient (average measure of the
interconnectivity of the node neighborhood; ranging from 0 to
1; a higher average clustering coefficient means that node
neighborhoods are more interconnected, indicating conversations
among a larger number of members for larger node
neighborhoods); and modularity (the level of development of
subcommunities within a network; ranging from −1 to 1; higher
modularity values indicate higher levels of subcommunity
development within a network) [38,39].

Network Statistical Analysis
Once network structures were created, we correlated them with
each other to explore associations between social support
network structures. The QAP was used to test network
correlations. QAP is a nonparametric method based on
permutations that allows testing structural similarities
(correlations) between social network structures [52]. We used
Gephi version 0.9.2 and UCINET version 6.685 (Analytic
Technologies) to create network structures and to calculate
network measures, as well as to perform correlation analysis
[53,54].

Results

Network Structures
Figure 1 shows a network structure depicting all SLIDES social
interactions where all types of social support were exchanged
among participants and between participants and providers.
Network structures for each type of social support exchanged
by SLIDES participants are shown in Figure 2.

Figure 1. Network structure of social interactions where all types of social supports were exchanged. Node size indicates degree and node color indicates
the existence of three subcommunities or groups, with one larger subcommunity shown in orange and two smaller subcommunities shown in purple
and grey. Further, edge thickness represents the frequency of interactions when members communicated more often.
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Figure 2. Network structures of Second Life Impacts Diabetes Education & Self-Management (SLIDES) social support interactions by the type of
support. Node size indicates degree and node color indicates the existence of subcommunities, where larger subcommunities are shown in orange and
smaller subcommunities are shown in purple and grey.

In addition, Table 1 summarizes the network measures for each
social support network. As seen in Figure 2, the emotional and
appraisal support networks were the most populous, with the
former comprising 24 nodes and 1219 edges and the latter
comprising 20 nodes and 737 edges. Moreover, the emotional
and appraisal support networks had the highest average degrees
(9.08 and 9.5, respectively) compared with the instrumental and
informational support networks (6.0 and 3.2, respectively). This
indicates that each member of these support networks interacted
on average with nine other members via synchronous
conversations, either on a one-to-one basis or at a group level,

thus making them the most active networks. Additionally,
assessment of degree at a node level showed that all support
networks were somewhat centralized around a few nodes,
suggesting that some members were more popular. Furthermore,
the appraisal (0.5) and instrumental (0.43) support networks
were the densest, suggesting that members of these networks
most likely engaged in conversations involving a higher number
of members (ie, larger groups), where some participants directly
exchanged appraisal and/or instrumental support, while other
members of the group had a latent exposure to this support.
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Table 1. Summary of social network metrics for Second Life Impacts Diabetes Education & Self-Management (SLIDES) social support networks.

ModularityClustering coefficientAverage path lengthGraph densityAverage degreeSocial support network

0.110.731.740.399.08Emotional

0.120.761.620.436.0Instrumental

0.460.571.980.353.2Informational

0.120.721.520.59.5Appraisal

Additionally, no substantial differences were observed between
all average path length values. However, the appraisal (1.52)
and instrumental (1.62) support networks had a slightly lower
average path length compared with the emotional (1.74) and
informational (1.98) support networks. This indicates that the
distance or number of steps needed for members of these
networks to interact with each other required on average fewer
steps to exchange the supports, thus making these networks
more efficient. In terms of network structure and community
development, on one hand, the instrumental, emotional, and
appraisal support networks had higher average clustering
coefficients (76%, 73%, and 72%, respectively) compared with
the informational support network (57%). These results indicate
high levels of interconnectivity within these support networks.
On the other hand, the modularity values of the emotional (0.11),
appraisal (0.12), and instrumental (0.12) support networks were
lower compared with that of the informational (0.46) support

network. This indicates that subcommunities of network
members exchanging informational support reached higher
levels of development in comparison with subcommunities from
all other support networks.

Lastly, Figure 3 illustrates a two-mode network representing
the affiliation between participants and providers, and the types
of social support exchanged via social interactions. As seen in
Figure 3, according to degree, the two-mode network is
centralized around emotional and appraisal support, indicating
that a higher number of participants and providers participated
in interactions where these types of support were exchanged
(either directly or indirectly having a latent exposure as
previously discussed). Moreover, a subgroup of participants
and providers engaged more frequently in interactions where
emotional support and appraisal support were exchanged, which
are represented by thicker edges.

Figure 3. Two-mode network structure of social interactions for all types of support. The shape of the nodes distinguishes two sets of nodes as follows:
squares represent participants and providers, and circles represent types of social support. In addition, the color of the circles represents each type of
social support (orange, purple, yellow, and blue representing emotional, appraisal, informational, and instrumental support, respectively). Finally, the
size of the circles indicates degree, and edge thickness represents the frequency of participants’ interactions within each type of support.

Network Statistical Analysis
Table 2 shows network correlation scores obtained by QAP
analysis. All social support networks were correlated with one
another. QAP correlation scores between the emotional and
appraisal, instrumental and appraisal, and instrumental and

emotional support networks were much stronger when compared
with the correlations between the informational and appraisal,
informational and emotional, and instrumental and informational
support networks. The stronger correlation scores suggest that
considerable similarities exist between the aforementioned social
support networks.
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Table 2. Network correlation test results.

InstrumentalInformationalEmotionalAppraisalVariable

Appraisal

0.8330.3440.9741Score

<.001.004<.001—aP value

Emotional

0.8180.31810.974Score

<.001.003—<.001P value

Informational

0.20410.3180.344Score

.02—.003.004P value

Instrumental

10.2040.8180.833Score

—.02<.001<.001P value

aNot applicable.

Discussion

Principal Findings
In this study, we used SNA to examine patterns of social
interactions and support of SLIDES, an intervention for T2D
self-management education and support that was delivered via
a virtual environment [12,24]. To the best of our knowledge,
this study is among the first to explore the patterns of social
interactions of a disease-specific virtual environment. This novel
approach provided insights into the exchange of social support
within the SLIDES virtual community. Our findings indicate
that emotional and appraisal support networks were the largest,
most centralized, and most active, indicating that a virtual
community with a larger number of members can be more
supportive. Moreover, a higher centralization indicated that
some network members were more active, which suggests that
a virtual community benefits from having active members, such
as educators and moderators, because they can help engage the
community. This is important for the design of interventions
based on virtual environments. For example, interventions could
recruit diabetes moderators or leaders to act as peer influencers
or change agents. Moreover, appraisal and instrumental support
networks are more connected than emotional and informational
support networks. This suggests that more members are likely
to engage in larger group synchronous conversations, thus
indicating that well-connected networks can facilitate the
exchange of appraisal and instrumental support within virtual
communities. This finding could be leveraged when designing
interventions that facilitate the exchange of appraisal and/or
instrumental support.

An analysis of the structures of the support networks revealed
higher levels of interconnectivity within the instrumental,
emotional, and appraisal support networks, as indicated by their
higher average clustering coefficients. Clustering can accelerate
information and behavior spread [38,39], thus suggesting that
interventions based on virtual environments can leverage this
characteristic to accelerate the exchange of social support.

Despite high degrees of clustering, instrumental, emotional, and
appraisal support networks had low modularity values,
indicating low levels of subcommunity development. In contrast,
the informational support network showed a higher level of
subcommunity development. From an intervention’s perspective,
subcommunities or groups within informational support
networks can be leveraged to spread resources and behaviors,
in addition to providing informational support. Studies have
shown that groups have norms and exert social pressure,
enabling behavior change, as well as more opportunities to
access information, resources, and support [39].

Our findings also show that a higher number of participants and
providers participated in interactions where emotional support
and appraisal support were exchanged, and they did so more
frequently. These findings diverge from a previous analysis by
Lewinski et al, where informational support and emotional
support were the most commonly exchanged types of support
among participants and between participants and providers, and
appraisal support exchange was lower [34]. Their analysis
focused on support exchanges at a dyadic level in order to
characterize interactions. In contrast, our analysis focused on
support exchanges at a group level, as previously indicated. In
other words, a dyadic analysis for two participants who interact
in a group conversation would identify the frequency of support
exchanged between those two participants. On the other hand,
our network approach to this same scenario would take into
account the connections between all participants who engaged
in the conversation, including those who actively engaged one
another to exchange support, as well as the other participants
who engaged passively and had a latent exposure. Taking this
into account, we hypothesize that a higher and more frequent
engagement in interactions where emotional and appraisal
support were exchanged was caused by the role providers,
specifically diabetes educators, played assisting in the
self-management of diabetes.

Lastly, network correlations showed that all social support
networks were correlated with one another. Specifically, stronger
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correlation scores for emotional and appraisal, instrumental and
appraisal, and instrumental and emotional support networks
indicate that considerable similarities exist between these
networks. These results suggest that SLIDES participants who
exchanged emotional support were likely to exchange appraisal
or instrumental support. Likewise, participants who exchanged
appraisal support were likely to exchange instrumental support.
From an intervention’s perspective, educators and moderators
from virtual communities can leverage interactions where a
certain type of support is exchanged in order to maximize the
provision of advice and support among members of such
communities. For example, by promoting interactions between
members where emotional support is exchanged, further
discussion and opportunities could be created that would most
likely prompt exchange of appraisal or instrumental support
[34,55,56]. As a result, a higher number of supportive
relationships would be fostered among participants and
providers, increasing the effectiveness of support networks and
thus substantiating the value of virtual communities for diabetes
self-management and other health goals.

Limitations
There are several limitations in this study. The small sample
size of the SLIDES study (N=24) created a small virtual
community, which consequently resulted in a small community.
The social dynamics resulting from a small community might
differ from larger ones, which suggests that our findings should
be interpreted with caution. The creation of social networks
from interactions, where some type of social support was
exchanged, was considered at a group conversational level and
not at a dyadic level. This resulted in group identification of
social support interactions, meaning that a type of social support
was assigned to all group participants interacting in a
conversation where social support occurred during a particular
conversation. Future studies could improve network creation
by analyzing participants’ interactions at a dyadic level so that
social support exchanges describe social ties at a dyadic level,
thus providing more accurate social support dynamics. Despite
these limitations, we consider these findings valuable because
of the insights provided into social support exchanges within
disease-specific virtual environments.

Conclusions
This study described the utility of SNA to examine social
support in a DSME virtual environment. Our findings have
revealed structural differences between support networks, as
well as key network characteristics of supportive interactions
facilitated by the virtual community, with emotional and
appraisal networks being large, centralized, and most active,
thus emphasizing the value of virtual environments as sources
of these two support types for T2D patients. In addition, support
networks have highlighted the benefits central members, such
as educators and moderators, can contribute by facilitating
community engagement. Specifically, educators and moderators
from the SLIDES intervention have facilitated community
engagement by leading weekly synchronous group meetings
that include educational sessions, focusing on core American
Diabetes Association/American Association of Diabetes
Education self-management curriculum, as well as support
sessions [12].

Furthermore, our appraisal and instrumental support networks
suggest that members of virtual communities are more likely
to engage in larger group interactions where these types of
support can be exchanged, with the caveat that some members
can engage one another to actively exchange support, while the
other members engage passively and have a latent exposure to
support exchange. Lastly, our network correlation analysis has
shown that participants who exchange emotional support are
likely to exchange appraisal or instrumental support, and
participants who exchange appraisal support are likely to
exchange instrumental support. These associations suggest that
interactions, where a certain type of support is exchanged, could
be leveraged to maximize the provision of advice and support
among network members, thus increasing the effectiveness of
support networks enabled by virtual communities.

Network data can provide valuable insights into the design of
novel and effective digital health interventions given the unique
opportunity disease-specific virtual environments have
facilitating realistic environments that are effective and
sustainable, where social interactions can be leveraged to
achieve diverse health goals.
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