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Abstract

Background: Personalized feedback is an effective behavior change technique frequently incorporated into mobile health
(mHealth) apps. Innovations in data science create opportunities for leveraging the wealth of user data accumulated by mHealth
apps to generate personalized health forecasts. One Drop’s digital program is one of the first to implement blood glucose forecasts
for people with type 2 diabetes. The impact of these forecasts on behavior and glycemic management has not been evaluated to
date.

Objective: This study sought to evaluate the impact of exposure to blood glucose forecasts on blood glucose logging behavior,
average blood glucose, and percentage of glucose points in range.

Methods: This retrospective cohort study examined people with type 2 diabetes who first began using One Drop to record their
blood glucose between 2019 and 2021. Cohorts included those who received blood glucose forecasts and those who did not
receive forecasts. The cohorts were compared to evaluate the effect of exposure to blood glucose forecasts on logging activity,
average glucose, and percentage of glucose readings in range, after controlling for potential confounding factors. Data were
analyzed using analysis of covariance (ANCOVA) and regression analyses.

Results: Data from a total of 1411 One Drop users with type 2 diabetes and elevated baseline glucose were analyzed. Participants
(60.6% male, 795/1311; mean age 50.2 years, SD 11.8) had diabetes for 7.1 years on average (SD 7.9). After controlling for
potential confounding factors, blood glucose forecasts were associated with more frequent blood glucose logging (P=.004), lower
average blood glucose (P<.001), and a higher percentage of readings in range (P=.03) after 12 weeks. Blood glucose logging
partially mediated the relationship between exposure to forecasts and average glucose.

Conclusions: Individuals who received blood glucose forecasts had significantly lower average glucose, with a greater amount
of glucose measurements in a healthy range after 12 weeks compared to those who did not receive forecasts. Glucose logging
was identified as a partial mediator of the relationship between forecast exposure and week-12 average glucose, highlighting a
potential mechanism through which glucose forecasts exert their effect. When administered as a part of a comprehensive mHealth
program, blood glucose forecasts may significantly improve glycemic management among people living with type 2 diabetes.
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Introduction

Diabetes currently affects an estimated 10.5% of Americans,
while recent projections indicate its prevalence is increasing
worldwide [1,2]. While complications from diabetes range from
microvascular-related organ and peripheral tissue damage to
death [1], the majority of people with diabetes do not adequately
manage their blood glucose [3]. In recent years, mHealth apps
have attempted to promote self-care behaviors that are critical
for the management of type 2 diabetes (T2D) with mixed
success. Compared to non–app users, mHealth app users with
diabetes report higher levels of self-care behaviors [4]. A
meta-analysis pooling results from randomized controlled trials
(RCTs) of 9 mHealth apps found all 9 apps effective in
improving diabetes-related outcomes, reducing hemoglobin A1c

(HbA1c) by a mean 0.49% [5]. Meanwhile, several other reviews
note studies with weaker or no effects for diabetes-related
outcomes [6-10]. The fact that mHealth apps have realized such
varied success raises the question of which components or
features are most effective in driving outcomes.

While mHealth apps for diabetes have a range of different
features [11], modules for logging diabetes-related data such
as blood glucose are among the most common, with many apps
also enabling the logging of food, physical activity, and
medications [12]. Logging as a form of self-monitoring,
delivered along with feedback, constitutes a behavior change
technique, which is a systematic procedure included as an active
component of an intervention designed to change behavior.
Among mHealth apps, it has been noted that self-regulation
techniques, such as self-monitoring, goal setting, and
performance feedback, are the most frequently utilized [13,14].
Given the theoretical impact of such behavior change techniques
on health behavior and clinical outcomes, mHealth apps have
the opportunity to incorporate this logged health information
and deliver personalized feedback to their users [15,16]. In a
previous study, incorporating live feedback from a diabetes
coach in response to hypoglycemic or hyperglycemic events
showed success [17]. Further, a meta-analysis comparing apps
with a feedback component versus those without this feature
found that only apps delivering feedback were effective in
reducing HbA1c [7]. To our knowledge, mHealth apps with
self-monitoring and a feedback component have exclusively
focused on past behavior and outcomes. As mHealth apps scale
and accumulate a larger repository of data, methods of providing
immediate, specific, and personalized feedback about the future
are a worthwhile avenue to explore. Data science techniques,
such as artificial intelligence, machine learning, and predictive
analytics, have been simultaneously described as the next
frontier in mHealth apps and also as one of the greatest
challenges facing them; these innovations may be the drivers
of a personalized and automated feedback mechanism [18].

There are few existing examples of machine learning used to
forecast future events for persons with diabetes. In one example,
the need for pharmacological therapy was forecast for patients
with gestational diabetes [19]. In another study, infections and
hypoglycemic events were accurately forecast for individuals
with type 1 diabetes (T1D) [20,21]. Although they indicated

that diabetes outcomes could be effectively forecast, these
studies focused solely on the development and validation of
predictive models. The application of predictive models within
a diabetes intervention has not previously been tested, to our
knowledge. In 2018, One Drop (Informed Data Systems Inc)
validated a machine learning model for blood glucose forecasts
and subsequently provided the tool to users with T2D in the
One Drop app. When forecasts are delivered, they may be paired
with behavioral suggestions, such as going for a walk and
retesting blood glucose. Multiple studies have established the
effectiveness of One Drop for people with diabetes; program
participation has been associated with reductions in
self-reported, estimated, and lab-tested HbA1c, average blood
glucose, self-reported hyperglycemic symptoms, diabetes
distress, and self-efficacy, [22-24] with preliminary RCT data
showing effects on lab-tested HbA1c, diet, activity, and
depression among persons diagnosed with T2D and
hypertension. One Drop’s blood glucose forecasts have
demonstrated high accuracy and acceptability, with
approximately 92% of users finding them helpful [25,26]. Three
years after its inception, One Drop remains the sole mHealth
app delivering blood glucose forecasts to its users. The
effectiveness of these forecasts has yet to be established.

The current retrospective cohort study evaluated the impact of
One Drop’s 1- to 8-hour blood glucose forecasts on logging
behavior and clinical outcomes among individuals with T2D
and elevated average blood glucose who used the One Drop
app over a 12-week period. First, we evaluated the effects of
exposure to glucose forecasts on average blood glucose and
percentage points in range (%PIR) by comparing participants
who did or did not receive the forecasts. Second, we tested a
potential behavioral mechanism through which the blood glucose
forecasts exert their effect by examining their impact on glucose
logging behavior. Lastly, we investigated a potential mediated
relationship in which forecasts were associated with glucose
management through the mechanism of glucose logging.

Methods

One Drop Intervention
One Drop is a multi-condition mHealth solution that can be
tailored to each user’s unique needs and preferences. The One
Drop digital platform targets people with prediabetes, T1D or
T2D, high blood pressure, high cholesterol, or combinations of
these conditions. The One Drop mobile app can be used
standalone or in conjunction with a monthly or yearly blood
glucose test strip subscription, Bluetooth-enabled One Drop
blood glucose meter, or connected devices (eg, Wi-Fi–enabled
weight scales or Wi-Fi–enabled smart blood pressure monitors).

The One Drop mobile app is available for devices running the
iOS, Android, or WatchOS operating systems. Uses can opt to
enroll in the free or premium versions of the app. The free
version includes extensive logging functionality with the
capacity to log health data (eg, blood glucose, blood pressure,
HbA1c, and weight), intensity and duration of exercise, food
eaten, and medications prescribed and taken. When users begin
logging data actively (ie, manually through the app or with a
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synced One Drop meter) or passively (via integrations with
Apple HealthKit or Google Fit), detailed reports and
visualizations become available, displaying summaries of the
entered data and blood glucose trends over time. Messages of
support, health-related insights, and educational content are also
delivered to users’ in-app inboxes or newsfeeds. The premium
One Drop app subscription additionally provides users with
on-demand access to health coaching with certified health
professionals specializing in their conditions, machine
learning–powered trends and forecasts, adjustable goal setting,
and a personalized content library with hundreds of lessons.

Blood Glucose Forecasts
Blood glucose forecasts were introduced to the One Drop app
as a free feature for users with T2D in September 2018 and
became a premium feature in August 2020. These forecasts
project the direction (ie, up, steady, or down) that a user’s blood
glucose will trend in the following 1 to 8 hours. Users
automatically begin receiving blood glucose forecasts upon
recording their first blood glucose reading and continue to

receive them after each subsequent recording. When a forecast
is generated, users receive a pop-up notification indicating the
direction (rising, steady, or falling blood glucose) and duration
(1-8 hours) of the forecast. These notifications can be paired
with an actionable suggestion to help maintain healthy blood
glucose levels. Figure 1 shows an example of a blood glucose
forecast in the One Drop app.

Users who joined One Drop prior to September 2018 or did not
have a paid subscription after August 2020 did not have access
to the blood glucose forecasts. After forecasts were implemented
in the program, users could become ineligible to receive
forecasts if they failed to meet any of the prediction algorithm’s
requirements. Users did not receive forecasts if (1) they had
extremely high glucose (>600 mg/dL); (2) they had extremely
high glucose variability (>80 mg/dL forecast standard error);
(3) their logging frequency was consistent with continuous
glucose monitor (CGM) use (>50 readings in a 24-hour period);
(4) they had ever recorded bolus insulin use; (5) they recorded
basal insulin use prior to March 2019 (ie, the time when the
model began serving predictions to these users).

Figure 1. Sample blood glucose forecast in the One Drop app.

Study Design and Procedures
This study employed a retrospective cohort design, evaluating
real-world outcomes over a 12-week period; participants were
thus not recruited for study participation. There were 2 cohorts
that were compared after statistically controlling for available

potential confounders. The first cohort received at least one
blood glucose forecast in weeks 1 through 11 and the second
received no forecasts. Those included in the group who received
no forecasts did not have a paid subscription after August 2020
or were ineligible to receive blood glucose forecasts based on
the exclusion criteria.
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On August 10, 2021, One Drop users with T2D who had one
or more blood glucose measurements recorded 12 weeks
following their first recorded reading were identified. Blood
glucose readings were entered either manually through the app
or passively through the One Drop blood glucose meter, another
synced device, or integration with Apple Health Kit or Google
Fit. The query for eligible users was limited to those who had
started using One Drop and recorded their blood glucose for
the first time in 2019 or later to minimize the possibility of
comparing groups that participated in different iterations of One
Drop. Additionally, only users with at-risk baseline blood
glucose (estimated HbA1c≥7%) were queried. Users with a
glucose logging frequency consistent with CGM use were
excluded. The baseline measurement time point was defined
by averaging the first 7 days of blood glucose readings,
beginning with the first recorded blood glucose reading for that
individual. Follow up (in week 12) consisted of measurements
recorded from days 77 to 83.

Study Oversight
One Drop received an exemption for institutional review board
approval and a waiver of informed consent from Solutions IRB,
an independent ethics review company (Little Rock, AR and
Yarnell, AZ) to study all deidentified data owned by One Drop.
User data are stored in a secure cloud-based server. All One
Drop users must actively agree to an end user license agreement
upon creation of their accounts, granting One Drop permission
to use data entered in the app for analysis, reporting, and
research purposes.

Measurements

Group
The total number of forecasts received between weeks 1 and
11 was summed in order to group users according to whether
they had received any blood glucose forecasts during the study
period. Those with zero forecasts in that time period were placed
in the “did not receive forecasts” group (n=177). Those with
≥1 forecast were placed in the “received forecasts” group
(n=1234).

User Characteristics
Date of birth, gender, diabetes type, insulin use, and year of
diagnosis are self-reported in the One Drop app, though not all
users provide these data. Age was calculated as the number of
months between a user’s date of birth and the date of their first
recorded blood glucose measurement divided by 12. Users
taking insulin were identified based on whether they had
recorded taking a dose of basal or bolus insulin on or before the
date of their first blood glucose log. The number of years
diagnosed with diabetes was calculated as the difference
between the user-reported year of diagnosis and the year of a
user’s first recorded blood glucose measurement.

Logging Activity
Logging activity was measured as the number of blood glucose
entries recorded in each user’s first week, as well as the number
of entries in the 11-week period prior to the follow-up week.

Blood Glucose Variability Measurement
Glycemic variability is commonly calculated as the standard
deviation of an individual’s glucose values over time [26,27].
The standard deviation of a user’s blood glucose recordings
during the first week was calculated to express individual
baseline blood glucose variability. Users were required to have
at least 3 readings recorded in week 1 to have a blood glucose
variability metric computed.

Average Glucose Measurement
One Drop’s database consists of real-world data; both
biologically impossible (eg, 0 mg/dL) and implausible (eg,
above 600 mg/dL, which is beyond the measuring capacity of
a glucometer) readings can be entered. The range of plausible
measurements was defined as 30 mg/dL to 600 mg/dL. Readings
outside of this range were not included in average glucose
calculations. For baseline average glucose, an average of all
plausible blood glucose measurements in week 1 was calculated.
Similarly, for follow-up average glucose, all plausible blood
glucose recordings in a user’s week 12 were averaged. In order
to identify the at-risk population in terms of A1c, average glucose
values were translated to an estimated percentage of glycated
hemoglobin (eHbA1c) using the following formula: eHbA1c =
(average glucose + 46.7) / 28.7 [28]. The American Diabetes
Association recommends a goal of <7% HbA1c for most people
with diabetes; achieving this level is associated with a reduced
risk for diabetes-related complications [29]. Users with an
eHbA1c of ≥7%, corresponding to ≥154.2 mg/dL average
glucose, were classified as at risk.

To visualize potential interactions, a multi-categorical variable
was created to further classify those with eHbA1c≥7% into four
categories, indicating an increasing risk of complications from
elevated blood glucose concentration: (1) 8%> eHbA1c ≥7%;
(2) 9%> eHbA1c ≥8%; (3) 10%> eHbA1c ≥9%; and (4) eHbA1c

≥10%.

%PIR Measurement
Research has demonstrated that blood glucose levels falling
below 70 mg/dL or rising above 180 mg/dL are associated with
increased risk for diabetes-related complications [30].
Percentage of blood glucose points in range (%PIR) is a metric
adapted from the CGM-specific metric time in range, applied
to measurements obtained from manual blood glucose meters.
A 10% change in %PIR has been associated with a change in
HbA1c of 0.4% [31].

Blood glucose values were considered in range if they fell
between 70-180 mg/DL. Each user’s %PIR was calculated by
dividing the number of blood glucose measurements in range
by the total number of recorded blood glucose measurements,
for both week 1 and week 12.

Cohort Selection
There were 1411 users included in the analysis. Users were
deemed eligible for analysis if (1) they reported a diagnosis of
T2D; (2) their first week of One Drop participation was between
the years 2019 to 2021; (3) they recorded ≥3 blood glucose
measurements in their first week; (4) they recorded ≥1 blood
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glucose measurement in week 12; (5) they had a self-reported
year of diagnosis; and (6) their calculated week-1 HbA1c was
7.0%.

Users averaging more than 7 blood glucose measurements per
day for the first 11 weeks of the study period were assumed to
be using a CGM (>539 measurements; 7 measurements times
7 days times 11 weeks) and were excluded.

Analyses
All analyses were performed using SPSS Version 28 (IBM
Corp). Our predetermined α level was .05 for all statistical tests.
Between-group differences in the year users started One Drop,
age, gender, years diagnosed with T2D, insulin use, number of
week-1 blood glucose recordings, sum of week-1 to week-11
blood glucose recordings, baseline average glucose, and baseline
individual blood glucose variability were assessed. Differences
were tested with 2-tailed independent-samples t tests for
continuous variables and chi-square tests for categorical
variables. Descriptive statistics were also computed for these
variables. A gender of “other” was reported by 4 users in the
group who did not receive forecasts and zero users in the group
who received forecasts; this value was treated as missing and
excluded from the chi-square analysis assessing between-group
differences in gender.

Variables were omitted from models if high missingness was
observed (greater than 50%), but descriptive statistics for the
variable are still reported. Age was the only variable meeting
this threshold (1143/1411, 81% missing).

We specified 2 analysis of covariance (ANCOVA) models to
determine the forecast group effect on blood glucose outcomes.
Covariates were selected for ANCOVAs if their baseline values

were significantly different in the groups who received and did
not receive forecasts. The first ANCOVA tested the group effect
on week-12 average glucose, controlling for years diagnosed,
insulin use, baseline blood glucose variability, and baseline
average glucose. The second ANCOVA tested the group effect
on week-12 %PIR, controlling for years diagnosed, insulin use,
baseline blood glucose variability, and baseline %PIR.
Interactions between the group variable and covariates were
tested; significant interactions were held and interpreted, while
nonsignificant interactions were dropped from the final reported
models.

The secondary analysis sought to find mechanisms through
which exposure to blood glucose forecasts resulted in greater
reductions in average glucose concentration in week 12; it was
hypothesized that blood glucose logging could be one such
mechanism. This hypothesized model is illustrated in Figure 2.
To test this hypothesis, 3 separate linear regression models were
specified to establish that the direct effect of group on blood
glucose logging behavior and the direct effect of group and
logging behavior on week-12 average glucose were all
significant.

PROCESS is a free software add-on for SPSS that includes over
70 predefined models [32]. Mediation models in PROCESS
incorporate ordinary least squares regression and estimate
indirect effects and their confidence intervals through a
bootstrapping procedure that is robust against nonnormal sample
distributions [33]. Model 4 was specified to estimate the indirect
effect of group on week-12 average glucose via blood glucose
logging with 5000 bootstrap samples. All models included years
diagnosed, insulin use, baseline blood glucose variability, and
baseline average glucose as covariates.

Figure 2. Hypothesized model of how blood glucose logging mediates the effect of group on week-12 average glucose.

Results

A total of 1411 users were included in the analyses. The users
were 60.6% male (795/1311), aged 12 to 84 years old (mean
age 50.2 years, SD 11.8), diagnosed with T2D for <1 to 46 years
(mean 7.1 years, SD 7.9), and recorded between 3 and 78 blood
glucose logs (mean 14.5, SD 9.2) in their first week and between
3 and 532 (mean 122.0, SD 86.1) logs in the 11 weeks before
follow up.

The groups were significantly different in several baseline
variables. Compared to users who received forecasts, those who
did not receive forecasts had a higher average likelihood of

reporting insulin use (14.1% versus 6.2%; χ2
1=14.8; P<.001),

more years diagnosed with T2D (10.4 years, SD 9.1 versus 6.6
years, SD 7.6; t1409=6.00; P<.001), higher baseline average
glucose (256.16 mg/dL, SD 82.36 versus 206.23 mg/dL, SD
48.37; t1409=11.55; P<.001), higher baseline blood glucose
variability (58.64 mg/dL, SD 29.63 versus 43.91 mg/dL, SD
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23.42, t1409=7.55; P<.001) and a lower baseline percentage of
blood glucose logs in range (26.96%, SD 28.91% versus
41.98%, SD 29.9%; t1409=–6.27; P<.001). The groups did not

differ in the year they began using One Drop (P=.21), age
(P=.07), gender (P=.24), or number of week-1 blood glucose
logs (P=.08). Descriptive statistics and P values from tests of
baseline differences are presented in Table 1.

Table 1. Sample characteristics with tests of difference by group.

P valuea
Did not receive fore-
casts (n=177)

Received forecasts
(n=1234)Total (N=1411)Characteristics

.21Year started One Drop, n (%)

84 (47.5)597 (48.4)681 (48.3)2019

84 (47.5)530 (42.9)614 (43.5)2020

9 (5.1)107 (8.7)116 (8.2)2021

.24Gender, n (%)b

94 (56.6)701 (61.2)795 (60.6)Male

72 (43.4)440 (38.4)512 (39.1)Female

0 (0)4 (0.3)4 (0.3)Other

<.00125 (14.1)76 (6.2)101 (7.2)Insulin use, n (%)

.0754.5 (14.7)49.8 (11.4)50.2 (11.8)Age (years), mean (SD)

<.00110.4 (9.1)6.6 (7.6)7.1 (7.9)Years diagnosed with T2Dc, mean (SD)

Blood glucose logs, mean (SD)

.0813.4 (7.9)14.7 (9.4)14.5 (9.2)Week-1 blood glucose logs

.01107.2 (79.0)124.1 (87.0)122.0 (86.1)Week-1 to week-11 blood glucose logs

Glycemic management, mean (SD)

<.001256.16 (82.36)206.23 (48.37)212.50 (56.27)Week-1 average blood glucose (mg/dL)

<.00158.64 (29.63)43.91 (23.42)45.76 (24.76)Week-1 blood glucose variability (mg/dL)

<.00126.96 (28.91)41.98 (29.90)40.10 (30.18)Week-1 points in range (%)

aFrom chi-square test or 2-tailed independent-samples t test.
b“Other” was treated as a missing value and excluded from the chi-square analysis.
cT2D: type 2 diabetes

Primary Outcome 1a: Average Glucose
The ANCOVA revealed significant mean differences between
the groups in week-12 average glucose when controlling for
baseline average glucose and covariates (F7=40.75, P<.001).
All model covariates except insulin use (P=.16) were significant
(years diagnosed, baseline average glucose, and baseline blood
glucose variability; all P<.001). Additionally, significant
interaction effects for group × baseline average glucose
(F1=5.28, P=.02) and group × baseline blood glucose variability
(F1=15.12, P<.001) were observed.

To explore the group × baseline average glucose interaction,
ANCOVA models were specified to evaluate the group effect
at different levels of baseline eHbA1c. Baseline average glucose
was split into eHbA1c risk levels for interpretability. This
interaction is visualized in Figure 3. Users receiving forecasts
ended week 12 with significantly lower average glucose than
those not receiving forecasts when baseline eHbA1c was ≥10%

(mean difference –54.52mg/dL; –1.9% eHbA1c, P=.002).
Nonsignificant results within the other three categories may be
attributed to low power (1-β<.4). Among those with ≥8%
eHbA1c, reductions in week-12 eHbA1c ranged from –0.86% to
–1.9%.

The second interaction, group × baseline glucose variability,
was evaluated by performing a median split on baseline blood
glucose variability and specifying ANCOVA models for each
level. Values below the median were categorized as “low
variability” and values above the median were categorized as
“high variability.” Values at the median were pruned. Among
users with high baseline blood glucose variability, those
receiving forecasts experienced significant reductions in
week-12 average glucose (mean difference –53.22mg/dL;
–1.85% eHbA1c, P<.001) relative to those not receiving
forecasts. Figure 4 visualizes the group × baseline glucose
variability interaction.
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Figure 3. Interaction diagram of the effects of group and baseline average glucose on week-12 average glucose.

Figure 4. Interaction diagram of the effects of group and baseline glucose variability on week-12 average glucose.

Primary Outcome 1b: %PIR
The ANCOVA revealed a significant mean difference between
groups in week-12 %PIR when controlling for covariates
(F6=40.27, P<.001). All model covariates except insulin use
(P=.3) were significant (years diagnosed, baseline %PIR, and
baseline blood glucose variability; all P<.001). Additionally, a
significant interaction effect between group × baseline %PIR
(F1=4.84, P=.03) was observed.

The group × baseline %PIR interaction was evaluated by
performing a median split on baseline %PIR and specifying
ANCOVA models for each level. Values below the median
were categorized as “low %PIR” and values above the median
were categorized as “high %PIR.” Values at the median were
pruned. Among users with low baseline %PIR, those receiving
forecasts experienced a significant increase in %PIR (mean
difference .45%, P<.001) compared to those not receiving
forecasts. A visualization of the group × baseline %PIR
interaction is presented in Figure 5.

Figure 5. Interaction diagram of the effects of group and baseline average percentage points in range on week-12 average glucose.
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Secondary Analysis: Mediation of Group Effect on
Average Glucose by Blood Glucose Logging Behavior
As reported above, the results suggest that users receiving blood
glucose forecasts experienced greater reductions in week-12
average glucose than those not receiving forecasts. We thus
proceeded with our secondary analysis.

The forecast group was significantly and positively associated
with total blood glucose logs (path a; b=20.72, t1405=2.86,
P=.004). Total blood glucose logs were significantly associated
with week-12 average glucose (path b; b=–0.13, t1405=–6.86,
P<.001). The total effect of group on week-12 average glucose
was also significant (path c; b=–21.74, t1405=–4.27, P<.001).

As all 3 paths were significant, we proceeded by regressing
week-12 average glucose on group, controlling for total blood
glucose logs. The direct effect was reduced, but remained
significant (b=–19.22, t1404=–3.82, P<.001).

Results from the bootstrapping procedure produced an estimated
indirect effect (path c’) of group on week 12 average glucose
through total blood glucose logs with a 99% CI that did not
include 0, indicating a significant mediation effect. While the
indirect effect was significant, the direct effect also remained
significant, indicating that blood glucose logging is a partial
mediator of the relationship. Mediation results are summarized
in Table 2. The conceptual model is presented in Figure 6, along
with unstandardized path coefficients.

Table 2. Results of mediation analysis.

P valueb (SE)Mediation analysisa

Model

.00420.72 (7.24)Path from group to blood glucose logging

<.001–21.74 (5.09)Path from group to week-12 average glucose

<.001–0.13 (0.02)Path from blood glucose logging to week-12 average glucose

Effect

<.001–19.22 (5.03)Direct effect of group on week-12 average glucose

–2.52 (0.91; 99% CI –5.30 to –0.48)Indirect effect of group on week-12 average glucose

aModel summary: R2=0.18; P<.001.

Figure 6. Mediation analysis. Path values are unstandardized regression coefficients. The indirect effect was calculated using 5000 bootstrap samples
with a 99% CI.

Discussion

In this retrospective cohort study, One Drop users with T2D
who received blood glucose forecasts had significantly lower
average glucose after 12 weeks than those who did not receive
the forecasts, after accounting for group differences at baseline.
This effect was most pronounced for users with high baseline
blood glucose or high baseline blood glucose variability.
Additionally, among users who had low baseline %PIR, those
who received blood glucose forecasts had significantly higher
%PIR after 12 weeks than those who did not receive blood
glucose forecasts. Over the course of the study period,
participants who received forecasts logged their glucose
significantly more frequently than those who did not receive
forecasts. Our secondary analysis suggests that the forecasts

encouraged users to log their blood glucose more often, which
in turn was associated with lower blood glucose at week 12.

These results have potential implications for the health care
costs of individuals with diabetes. The average yearly cost of
medical care for persons with diabetes is US $9600 [34]. A
systematic review found that mHealth interventions for T2D
were cost-effective [35]. When adjusted for inflation, a one-point
reduction in HbA1c is associated with a US $1376.51 reduction
in patient costs [36]. In this study, among users with ≥8%
eHbA1c, the reduction in week-12 average glucose would
translate to an estimated patient cost savings of US $1183.80
to $2615.37 per year. Among those with high baseline blood
glucose variability, glucose reductions would translate to an
estimated patient cost savings of US $2546.54 per year. Among
those with low baseline %PIR, exposure to forecasts was
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associated with a 45% increase in %PIR. This increase in %PIR
is associated with an eHbA1c reduction of 1.8%, representing a
potential US $2477.72 cost savings [31,36]. These cost savings
are incremental increases for those receiving forecasts compared
to those not receiving forecasts. Previous research highlighting
One Drop’s association with reductions in lab-tested HbA1c was
conducted prior to the advent of blood glucose forecasts;
therefore, actual cost savings for those participating in this
study’s iteration of One Drop may be even higher.

Strengths and Limitations
The data generated for this study were collected from users of
an mHealth app, and thus have real-world generalizability;
however, the rapid evolution of the product, the available data,
and a lack of experimental controls are limitations. First, there
may have been covariates to consider that were not available
for analysis, such as age, race, ethnicity, socioeconomic status,
health motivation, CGM use, and other factors that may have
differed across the groups and impacted outcomes. The impact
of these variables on the relationship between blood glucose
forecasts and diabetes outcomes is a potential avenue for future
research.

Additionally, the groups systematically differed at baseline due
to prespecified criteria that excluded some users from receiving
forecasts. Those who received forecasts had fewer years
diagnosed with T2D, lower glucose, higher %PIR, lower glucose
variability, and were less likely to be taking insulin than those
who did not receive forecasts. While we controlled for these
variables, the bias inherent to this study design may still have
been present. The results should be interpreted with this potential
for selection bias in mind.

Finally, because the One Drop users included in this study
participated at different times over a three-year period, it is
possible that they participated in different iterations of the One
Drop app that differentially impacted their app experiences,
creating potential confounders. The One Drop app is continually
updated and improved based on clinical science, behavior
science, and research performed internally and externally.
Further, participation in this study was limited to 12 weeks.
While other studies of mHealth interventions have evaluated
glucose outcomes at 3 months [37,38], insight into the sustained
impact of forecasts on glucose beyond a 12-week period is
limited. To address these limitations, which are characteristic
of real-world evidence, future long-term, prospective
randomized studies are needed to confirm the causal impact of
forecasts on self-monitoring behavior and glucose management.

While the study design and the nature of real-world data likely
introduced bias in the results, real-world studies confer unique
benefits that extend beyond the confines of a controlled study.
Studies using real-world data exchange the internal validity of
an RCT for external validity [39], allowing our results to be
generalized to other populations with T2D using mHealth apps.
The stringent requirements for inclusion in RCTs may exclude
participants that would normally be seen in a real-world clinical

setting [40]. When used in conjunction with evidence-based
clinical practice, real-world evidence has shown that mHealth
apps can lead to significant improvements in glycemic
management over the course of 1 year [41]. Aside from
supporting an existing care network, mHealth apps may also
have a niche in providing care for hard-to-reach populations
[42].

Blood Glucose Forecasts
A major innovation in data-powered health insights is the
predictive modeling of specific outcomes, such as blood glucose
levels. Although predictive models do not necessarily reveal
causes and effects, these models have been used for discovery,
hypothesis testing, risk prediction, and the identification of
counterfactuals and effective interventions [43]. Despite
promising evidence on machine learning models, such as one
study that demonstrated a significantly reduced glycemic
response when a machine learning model was paired with a
dietary intervention, blood glucose forecasts remain a nascent
technique. There are currently no agreed-upon protocols for
machine learning models in precision health [44,45], and a
number of different models have been used as frameworks for
machine learning training and development [46]. Further, there
is no well-defined approach to estimate carbohydrate intake,
the effect of stress and activity on blood glucose level, or the
portability of machine learning models to capture inter- and
intraindividual variability [45,47].

Until now, the majority of blood glucose forecast research has
been focused on T1D [48]. This has limited the scope and
real-world potential for blood glucose forecasts, as most (90.9%)
diabetes cases in the United States have been diagnosed as T2D
[49]. Blood glucose forecast research for T2D has mainly
focused on forecasting the future incidence of disease or adverse
glycemic events [50]. In addition, blood glucose forecast studies
for either T1D or T2D have largely been limited to a short
forecast horizon of 2 hours or less [48]. The current study
advances the literature in studying a forecast horizon of 8 hours
in an at-risk T2D population.

Conclusion
One Drop is one of the first mHealth apps to provide blood
glucose forecasts to its users; our findings are the first to provide
evidence for the effectiveness of delivering blood glucose
forecasts as part of an mHealth intervention. The results suggest
that exposure to blood glucose forecasts may be effective for
individuals with T2D who have a high level of blood glucose,
with forecast exposure associated with reduced glucose, a higher
percentage of blood glucose %PIR, and increased
self-monitoring of blood glucose. Further, blood glucose logging
was a partial mediator of the relationship between forecast
exposure and glucose reduction, highlighting a potential
mechanism through which forecast exposure is associated with
reduced glucose. Taken together, this novel evidence highlights
the potential for One Drop blood glucose forecasts to improve
glycemic management in individuals with T2D.
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