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Abstract

Background: Most diabetes management involves self-management. Effective self-management of the condition improves
diabetes control, reduces the risk of complications, and improves patient outcomes. Mobile apps for diabetes self-management
(DSM) can enhance patients’ self-management activities. However, they are only effective if clinicians recommend them, and
patients use them.

Objective: This study aimed to explore the determinants of DSM apps’ use by patients and their recommendations by health
care professionals (HCPs). It also outlines the future research agenda for using DSM apps in diabetes care.

Methods: We systematically reviewed the factors affecting the adoption of DSM apps by both patients and HCPs. Searches
were performed using PubMed, Scopus, CINAHL, Cochrane Central, ACM, and Xplore digital libraries for articles published
from 2008 to 2020. The search terms were diabetes, mobile apps, and self-management. Relevant data were extracted from the
included studies and analyzed using a thematic synthesis approach.

Results: A total of 28 studies met the inclusion criteria. We identified a range of determinants related to patients’ and HCPs’
characteristics, experiences, and preferences. Young female patients were more likely to adopt DSM apps. Patients’ perceptions
of the benefits of apps, ease of use, and recommendations by patients and other HCPs strongly affect their intention to use DSM
apps. HCPs are less likely to recommend these apps if they do not perceive their benefits and may not recommend their use if
they are unaware of their existence or credibility. Young and technology-savvy HCPs were more likely to recommend DSM
apps.

Conclusions: Despite the potential of DSM apps to improve patients’ self-care activities and diabetes outcomes, HCPs and
patients remain hesitant to use them. However, the COVID-19 pandemic may hasten the integration of technology into diabetes
care. The use of DSM apps may become a part of the new normal.

(JMIR Diabetes 2022;7(3):e28153)   doi:10.2196/28153
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Introduction

Background
Diabetes prevalence continues to increase worldwide, affecting
1 in 11 people [1]. Persistent hyperglycemia leads to the
development of microvascular and macrovascular complications
and increases the risk of death; this risk is highest in the young
age group [2]. The management of diabetes-induced
cardiovascular disease and chronic kidney disease requires
heavy health care resource consumption and up to a 4-fold
increase in health care costs [3]. Type 2 diabetes is the most
prevalent form of this condition and is characterized by
persistent hyperglycemia and insulin resistance. Most patients
are managed in primary care settings, and given the increasing
prevalence, health care settings are experiencing unprecedented
demands for clinical appointments and input from health care
professionals (HCPs). This often means that patients have
limited time with clinicians to discuss diabetes management
and optimize treatment [4]. Diabetes self-management (DSM)
can improve glycemic control and reduce the risk of
complications [5].

Most diabetes management is thought to involve
self-management [6]. The term self-management is often used
interchangeably with self-care. Self-care refers to behaviors and
activities undertaken to manage acute illnesses or injuries, with
a focus on treatment [7]. Self-management is a more appropriate
term when describing the strategies that patients use to cope
with the emotional and practical issues encountered while living
with a long-term illness [7]. For patients living with type 2
diabetes, DSM entails adherence to prescribed medication,
maintaining a healthy diet, regular physical activity, routine
foot checks, frequent monitoring of blood glucose levels if using
insulin or sulfonylureas, and managing symptoms of low or
very high glucose levels [8]. Patients also have to cope with the
reality of diabetic microvascular and macrovascular
complications [9] and an increased risk of disability and death
[10]. Therefore, DSM education and support is paramount,
especially at the point of diagnosis, to influence patients’
behaviors and enhance their engagement with diabetes care
[11]. When first diagnosed, patients usually receive DSM
education and support from HCPs, followed by ongoing support
from other practitioners and community resources [11].

HCPs are increasingly supporting autonomous DSM given the
current strain on health care resources [5] and the fact that
face-to-face consultations and education courses may not work
for everyone. Digital technology has been shown to encourage
autonomy and improve diabetes outcomes [12]. Digital and
wireless technologies are widely available to support lifestyle
and treatment interventions as well as diabetes medical devices,
such as blood glucose meters, continuous glucose monitoring
devices, and smart insulin pens and pumps [13]. However,
mobile health (mHealth) apps for diabetes management are at
the forefront of innovations that support DSM. A range of
diabetes health apps are available, including nutrition, physical
activity, glucose monitoring, insulin titration and delivery, and
artificial pancreas systems [13].

Mobile apps have been shown to reduce the barriers to
self-management activities, as they provide diabetes education,
data logging and trend viewing, and connecting and transferring
data to HCPs [14]. Furthermore, mobile apps can be useful
elements in effectively modifying lifestyles [15]. The use of
apps can lead to a significant reduction in hemoglobin A1c levels
among patients with type 2 diabetes [16], improve
communication with HCPs, and facilitate remote disease
monitoring [17].

Objectives
Several studies have reported factors that affect patients’
adoption (use) of diabetes management apps, including patients’
characteristics and experiences, app characteristics and
functions, and recommendations by HCPs and other patients
[18]. Various theoretical lenses have been used to explore app
adoption, including the technology acceptance model and the
diffusion of innovation theory [19], theory of reasoned action,
and unified theory of acceptance and use of technology [20].
However, very few studies examined the antecedents influencing
HCPs’ recommendation of DSM apps to their patients and
integrating them into their practice [21]. Although many studies
have explored the factors that affect patients’ adoption of DSM
mobile apps using varying study designs and sample sizes, a
systematic overview of these factors and their importance
remains missing. Thus, this paper aimed to systematically review
the determinants of DSM app adoption by HCPs and patients,
highlighting their significance in facilitating or hindering their
use. The term adoption will be used throughout to indicate
patients’ use of DSM apps and HCPs recommendation of these
apps or integrating them in their practice.

This review makes 3 main contributions. First, it provides a
comprehensive and systematic review of all studied determinants
of DSM app adoption by HCPs and patients. Second, this review
highlights the significance of each of these determinants based
on the frequency of reporting and the type and sample size of
the reporting studies. This will inform commissioners and
diabetes app developers of what patients and HCPs look for in
DSM apps and the circumstances in which they decide to adopt
or reject their use. Third, this review combined patients’ and
HCPs’ perspectives on the determinants of DSM app adoption.
This is critical because DSM apps can only be effective if HCPs
recommend them, and patients use them.

Methods

Data Sources and Searches
We searched PubMed, Scopus, CINAHL, ACM digital library,
IEEE Xplore digital library and Cochrane Central using the
terms “adoption (uptake, acceptance, use, implement),” “mobile
apps (apps, mHealth, smartphones, digital health intervention),”
and “T2DM (diabetes mellitus, type 2, chronic conditions,
long-term conditions).” We also checked the references of the
selected studies and the references of systematic reviews
exploring the use of mobile apps for DSM. Multimedia
Appendix 1 [22-49] lists the search strategy used for PubMed.
The search strategy for PubMed was adapted to search other
databases.
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Eligibility Criteria
We included original studies published between 2008 (when
the main app stores, iOS and Android, were launched) and
February 2020, which reported on the factors affecting the
adoption of self-management apps for diabetes care, involving
patients with type 2 diabetes, and HCPs, or stakeholders, or
caregivers dealing with patients with diabetes, using quantitative,
qualitative, or mixed methods. We did not exclude studies
involving patients with type 2 and type 1 diabetes, patients with
type 2 diabetes and other comorbidities, or patients who did not
specify their diabetes type. This was done to ensure the inclusion
of all relevant studies involving patients with type 2 diabetes.

Adoption refers to the decision to proceed with the full or partial
implementation of an innovation [50]. In this study, the term
adoption specifically refers to patients’ use of DSM apps and
HCPs’ recommendation of these apps and integrating them in
their practice. Mobile apps are defined as “software applications
that can be executed on a mobile platform or a web-based
software application that is tailored to a mobile platform but is
executed on a server” [51]. Studies on health informatics or
digital health intervention or health information technology or
telemedicine or telehealth or mHealth have been included in
this review if the use of mobile diabetes apps is clearly
highlighted. We excluded studies reporting on digital health
interventions that did not involve the use of a mobile app,
including the use of other mobile functions (eg, calls and SMS).

In all, 2 reviewers (HA and AA) independently screened the
titles and abstracts and then full texts to select eligible studies.
Reviewers resolved disagreements through discussion or, if
necessary, through discussion with an arbitrator (IB).

Data Extraction and Quality Assessment
Data extraction and quality assessment were performed by HA
and verified by IB, and any disagreements were resolved through
discussion within the review team. For studies reporting on
mHealth in general, including mobile apps, and eHealth in
general, including mobile apps, careful extraction of data
relating to mobile apps was performed whenever possible.
Critical appraisal skill program tools [52] were used for the
quality assessment of qualitative studies, cohort studies, and
case-control studies. To cover the quality assessment of
cross-sectional studies, the Joanna Briggs Institute critical tools
for observational studies were used [53]. The quality of the
included studies was independently assessed by HA and DA.
The reviewers resolved the discrepancies through discussion.

Data Synthesis and Analysis
To generate new insights from the included studies, the thematic
synthesis methodology of Thomas and Harden (2008) [54] was
used, as it provides a clear process for synthesizing qualitative
data reported in different study designs. This process of data
synthesis follows 3 steps: line-by-line coding, organization of
free codes to build descriptive themes and the development of
analytical themes.

Descriptive data related to the study design, participant type
and age, sample size, types of mobile apps used, and study

outcomes were extracted. Data pertaining to the factors affecting
participants’ use of mobile apps for DSM were independently
coded by 2 reviewers (HA and IB). Discrepancies in coding
were resolved through discussion and the coding frame was
modified accordingly. Similarities between codes were
highlighted, and codes were stratified into (descriptive) themes
to describe data patterns. This was followed by synthesizing or
interrogating descriptive themes to develop analytical themes.
Although this method is mainly used to synthesize evidence
from qualitative studies, it remains a useful approach for
synthesizing qualitative data that can be reported in quantitative
studies. In their review of systematic reviews, Hong et al [55]
noted that data-based convergent synthesis design was
commonly used, where data from qualitative and quantitative
studies were analyzed using the same synthesis method, and
the results are presented together.

Results

Characteristics of the Included Studies
A total of 28 studies met the inclusion criteria. Figure 1
illustrates the study selection process. We identified 1752
citations from 6 databases (291 articles from ACM, 302 from
IEEE Xplore, 514 from Scopus, 302 from PubMed, 149 from
Cochrane Library, and 159 from CINAHL). A total of 131
articles passed title screening, and 55 articles passed the abstract
screening. From the 55 articles, 27 (49%) articles were
eliminated during full-text screening: 2 records were not about
mHealth, 2 records were study protocols, 8 records were about
app development, 7 records about testing new apps, 7 records
were about the impact of mobile apps on diabetes
self-management (DSM), and 1 record was about using mobile
apps as tools for collecting data. All retrieved articles were
published between 2015 and 2019. Most studies (10/28, 36%)
were conducted in the United States [21-24,50-55], followed
by Canada (3/28, 11%) [25-27] and the United Kingdom (3/28,
11%) [28-30]. In addition, (2/28, 7%) studies were conducted
in each of the following countries: Australia [31,32], Saudi
Arabia [33,34], and Germany [35,36]. Furthermore, of 28
studies, 1 (4%) study was conducted in each of the following
countries: Peru [37], Denmark [38], Rwanda [39], New Zealand
[40], Norway [41], and China [42].

The study design of the retrieved papers included qualitative
des ign  in  50% (14 /28)  o f  t he  s tud ie s
[25,26,28,30-32,34,36-38,43-46,48], cross-sectional design in
43% (12/28) of the studies [22,23,27,29,33,35,36,39-42,47,49],
cohort design in 4% (1/28) of the studies [24], and mixed
methods (cross-sectional design and qualitative design) in 4%
(1/28) of the studies [36]. Most studies were primary (26/28,
92%). The data in one study was reported from app entries [24],
and another study used secondary data from a national survey
[27]. The quality of most included studies was moderate to high
(11 and 12, respectively). In all, 18% (5/28) of the studies were
of low quality (Multimedia Appendix 1). Most studies were
rated as valuable, despite the quality assessment score.
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Figure 1. Study selection flow chart.

The Participants’ Characteristics
The participants in 36% (10/28) of the studies included patients
with type 2 diabetes mellitus (T2DM) only
[26,29,32-34,37-39,45,48], 18% (5/28) of the studies included
patients with type 1 diabetes mellitus and T2DM
[22,35,43,46,47], and 7% (2/28) of the studies included patients
with diabetes mellitus without specifying the type [25,41]. In
11% (3/28) of the studies, patients had chronic conditions,

including diabetes [24,27,31], and 11% (3/28) of the studies
included patients with diabetes mellitus and cardiovascular
disease [30,42,44]. In addition, 14% (4/28) of the studies
included patients and HCPs [36,44,47,49]; 4% (1/28) of the
studies included patients with diabetes, HCPs, and research
assistants [30] and 4% (1/28) of the studies were conducted
exclusively with HCPs [23]. The HCPs included in the studies
were dietitians, nurses, diabetes educators, community
pharmacists, physicians, and podiatrists. A study included HCPs
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and decision makers [40], and another study included patients
with prediabetes or T2DM and family, friends, and HCPs [28].

Most of the included studies (20/28, 71%) recruited <100
participants, 14% (4/28) of the studies had 100 to 500
participants [25,35,41,47], 7% (2/28) of the studies had 500 to
1000 participants [24,39], and 11% (3/28) of the studies
recruited >1000 participants [27,42,49].

All studies involved patients aged >18 years, except for a study
that involved patients aged <18 years [41]. On average, the
patients taking part in the included studies were in their 30s in
one study [46], 40s [27] in another study, 50s in studies (9/26,
35%) [25,31,33,34,37,42,45,47,49], and 60s in studies (7/26,
27%) [22,25,29,39,43,44,48]. A total of 4 studies did not report
the patients’ age [28,30,35,36], and 3 studies reported a range
of patient ages [24,38,41]. For the studies involving HCPs, a
study reported the mean age of 38 (SD 6.2) years [44], 4 studies
only provided the participants’age range [23,33,47,49] and one
study did not report the age of the participants [36].

mHealth Interventions
Various mHealth interventions were explored in the reviewed
studies. A total of 21 studies examined mHealth apps for
diabetes, and 4 studies explored mHealth interventions for
diabetes, including mobile apps [22,35,37,40]. In addition, 3
studies explored eHealth interventions for diabetes, including
mHealth mobile apps [31,33,45].

Multimedia Appendix 2 [22-49] summarizes the study design,
participant characteristics, mHealth interventions used, key
outcomes, and determinants of app adoption reported in the
included studies.

Factors Affecting the Adoption of DSM Apps
This part is organized into two main sections: (1) factors
affecting patients’ use of DSM apps and (2) factors affecting
HCPs’ recommendation of DSM apps. Each section is further
divided into subsections. The included studies identified many
factors that were facilitators or barriers to adoption, which were
weighed against the study design and sample size to highlight
the prevalence of the reported factors.

Factors Affecting Patients’ Use of DSM Apps
The patients’ sociodemographic and diabetes characteristics,
perceptions and experiences, and desired app characteristics
determine the likelihood of app adoption.

The Patient’s Sociodemographic and Diabetes
Characteristics
A total of 33% (9/27) of studies found that younger patients
were more likely to use DSM apps [22,35,39,41,42,45,47,49].
In addition, 3 studies reported that female patients [35,41,42]
and those with a higher level of education were more likely to
engage in DSM app use [41,42,49]. Ernsting et al [42] reported
that health app users have a higher level of eHealth literacy (the
ability to use information technology for health); the higher the
eHealth literacy, the more likely patients will adopt DSM apps.
A large cross-sectional study by Zhang et al [49], involving
1276 patients revealed that patients with a higher monthly
income are more likely to adopt diabetes apps.

Technology use also affects patients’ adoption of DSM apps.
A total of 3 studies showed that smartphone users are more
likely to use health apps [22,24,35]. Furthermore 8 studies
reported that patients who do not know how to use apps or find
apps difficult to use were less likely to use DSM apps
[25,26,38,39,43-46]. Finally, 5 studies reported that training
patients on how to use apps improves their adoption
[34,39,41,43,44].

The duration of diagnosis, frequency of blood glucose
monitoring and physical activity, and diabetes control affect
patients’ adoption of DSM apps. A total of 3 studies reported
that newly diagnosed patients were more likely to use DSM
apps [32,33,39]. In addition, patients who regularly monitor
their blood glucose levels [39] and undertake regular physical
activity [42] were more likely to adopt DSM apps. Patients
whose diabetes is adequately controlled and who are not
experiencing diabetic complications are less likely to adopt
DSM apps [38,44]. Table 1 presents the patients’
sociodemographic and diabetes characteristics that affected their
use of DSM apps.
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Table 1. Patients’ sociodemographic and diabetes characteristics (N=5396).

ReferenceStudy typeSample size (participants), n (%)Themes, factors, and definitions

Patients’ characteristics

Age: younger patients are more likely to use DSMa apps

[45]Qualitative12 (0.22)

[47]Cross-sectional189 (3.5)

[35]Cross-sectional233 (4.32)

[33]Cross-sectional44 (0.82)

[42]Cross-sectional1500 (27.8)

[22]Cross-sectional60 (1.11)

[39]Cross-sectional796 (14.75)

[41]Cross-sectional355 (6.58)

[49]Cross-sectional1276 (23.65)

Gender: female patients are more likely to use DSM apps

[35]Cross-sectional233 (4.32)

[42]Cross-sectional1500 (27.8)

[41]Cross-sectional355 (6.58)

Education: the higher the level of education, the more engaged is the patient in app use

[42]Cross-sectional1500 (27.8)

[41]Cross-sectional355 (6.58)

[49]Cross-sectional1276 (23.65)

[42]Cross-sectional1500 (27.8)eHealth literacy: health app users had higher levels of eHealth
literacy

[49]Cross-sectional1276 (23.65)Monthly income: patients with higher income are more likely
to use DSM apps

Technology use

Smartphone users are more interested in using health apps

[35]Cross-sectional233 (4.32)

[22]Cross-sectional60 (1.11)

[24]Cohort503 (9.32)

Patients with difficulties in using new technology are less likely to use DSM apps

[44]Qualitative29 (0.54)

[38]Qualitative30 (0.56)

[46]Qualitative21 (0.34)

[45]Qualitative12 (0.22)

[25]Qualitative287 (5.32)

[26]Qualitative18 (0.33)

[43]Qualitative16 (0.3)

[39]Cross-sectional796 (14.75)

Training on how to use an app improves its adoption

[44]Qualitative29 (0.54)

[34]Qualitative11 (0.2)

[43]Qualitative16 (0.3)

[41]Cross-sectional355 (6.58)
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ReferenceStudy typeSample size (participants), n (%)Themes, factors, and definitions

[39]Cross-sectional796 (14.75)

Diabetes characteristics

Length of diagnosis: newly diagnosed patients are more likely to use DSM apps

[32]Qualitative16 (0.3)

[33]Cross-sectional44 (0.82)

[39]Cross-sectional796 (14.75)

[39]Cross-sectional796 (14.75)Frequent monitoring of blood glucose levels: patients who
frequently monitor sugar levels are more likely to use DSM
apps

[42]Cross-sectional1500 (27.8)Being active: physically active patients are more likely to use
DSM apps

Controlled patients: patients not experiencing problems with diabetes are less likely to use DSM apps

[44]Qualitative29 (0.54)

[38]Qualitative30 (0.56)

aDSM: diabetes self-management.

The Patients’ Perceptions and Experiences
A total of 10 studies reported that patients were confident in
their DSM without the need for apps, and they did not perceive
or were uncertain of the benefits of DSM apps
[26,27,32,34,36,38,39,43,47,48]. Interestingly, in 2 smaller
qualitative studies, patients reported that they would not use
DSM apps, as this puts them in full control of their diabetes and
makes them accountable for their behaviors [26,45].

In addition, 2 studies reported that patients would not use DSM
apps because they preferred direct and in-person services and

interactions [22,45]. However, 5 studies reported that patients
are more likely to use DSM apps if recommended by HCPs
[26,30,38,41,49], other patients, or the media [49].

Other barriers to the use of DSM apps relate to patients’
experiences with the apps. Patients are less likely to use DSM
apps if data entry is onerous [26,32,36,37,43,48] or patients
could not integrate the app with daily activities, creating time
constraints [26,32,36,43,44]. Patients are less likely to use DSM
apps if they are not aware of their existence [26,36,38,39,47].
Table 2 presents the perceptions and experiences that affect
patients’ use of DSM apps.
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Table 2. Patients’ perceptions and experiences (N=3027).

ReferenceStudy typeSample size (participants), n (%)Themes, factors, and definitions

Patients’ perceptions

No perceived benefit: patients are confident without using apps and do not perceive and are uncertain of the benefits of the app in DSMa

[32]Qualitative16 (0.53)

[38]Qualitative30 (0.99)

[36]Qualitative9 (0.3)

[34]Qualitative11 (0.36)

[43]Qualitative16 (0.53)

[26]Qualitative18 (0.6)

[48]Qualitative24 (0.79)

[47]Cross-sectional189 (6.24)

[27]Cross-sectional163 (5.38)

[39]Cross-sectional796 (26.3)

Taking charge and accountability: patients worry that apps put them in full control of their diabetes and make them accountable for their be-
havior

[45]Qualitative12 (0.4)

[26]Qualitative18 (0.6)

Direct contact: patients prefer in-person services

[45]Qualitative12 (0.4)

[22]Cross-sectional60 (1.98)

Recommendation

Patients are more likely to use DSM apps if recommended by HCPsb

[38]Qualitative30 (0.99)

[26]Qualitative18 (0.6)

[30]Qualitative8 (0.26)

[41]Cross-sectional355 (11.73)

[49]Cross-sectional1276 (42.15)

[49]Cross-sectional1276 (42.15)Patients are more likely to use DSM apps if recommended
by other patients

[49]Cross-sectional1276 (42.15)Patients are more likely to use DSM apps if recommended
by media

Lack of awareness of existing apps: patients do not know of existing DSM apps

[38]Qualitative30 (0.99)

[36]Qualitative9 (0.3)

[26]Qualitative18 (0.6)

[47]Cross-sectional189 (6.24)

[39]Cross-sectional796 (26.3)

Patients’ experiences

Data entry: patients find data entry burdensome

[45]Qualitative16 (0.53)

[36]Qualitative9 (0.3)

[37]Qualitative15 (0.5)

[26]Qualitative18 (0.6)

[43]Qualitative16 (0.53)
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ReferenceStudy typeSample size (participants), n (%)Themes, factors, and definitions

[48]Qualitative24 (0.79)

[41]Cross-sectional355 (11.73)

Time constraint: patients could not integrate the app with daily activities

[44]Qualitative29 (0.96)

[32]Qualitative16 (0.53)

[36]Qualitative9 (0.3)

[26]Qualitative18 (0.6)

aDSM: diabetes self-management.
bHCP: health care professional.

The Desired App Characteristics
Other factors that affect patients’ use of DSM apps relate to the
functions and features of these apps. The studies included in
this review either evaluated DSM apps with specific functions
or reported on patients’ preferred app functions and features
that would encourage them to adopt the DSM app and integrate
it into their self-management routines. The functions and
features are presented in Tables 3 and 4, respectively.

Functions related to nutrition and diet have been reported in
73% (19/26) of studies (tracking diet, calorie counting, and
healthy meal recipes) [22,26,27,29,32-35,37-39,41-44,46-49],
followed by blood glucose monitoring functions (diaries and
reminders to check blood glucose levels) reported in 58%
(15/26) of studies [22,26,29,32,33,35,38,39,41,43,46-49], and
physical activity functions (tracking, pedometer functions, and
reminders to exercise) reported in 54% (14/26) studies
[22,27,29,34,35,37-39,41,42,44,46,48,49].

Patients also prefer DSM apps to include medicine management
functions such as insulin calculators, tracking medications, and
medication reminders, as reported in 13 studies
[22,29-31,35,37,38,41,43,44,46,47,49]. Weight management
funct ions  were  repor ted  in  11  s tudies
[22,27,29,35,37-39,41-43,46], followed by mental health

functions in 7 studies, including stress management and
emotional support [27,32,37,39,42,44,46]. Appointment
reminder preferences were reported in 4 studies [31,38,46,47],
and sleep pattern functions were reported in 2 studies [29,42].

Patients are more likely to use DSM apps if they facilitate
communication with HCPs (12/26, 46%)
[26,30,31,33,34,36,38,41,43,44,48,49] and patients (7/26, 27%)
[28,31,35-37,44,49], are visually appealing (10/26, 39%)
[26,32,35-38,43,44,46,48], are easy to use (8/26, 31%)
[26,30,34,37,38,41,48,49], are easy to understand (1/26, 4%)
[43] and easy to access (1/26, 4%) [48], ensure privacy and
security (7/26, 27%) [25,30,35,36,41,43,46], provide instant
feedback (5/26, 19%) [32,34,37,42,48] and personalized
information (2/26, 8%) [26,44], enable goal setting (4/26, 15%)
[26,37,42,46], are not costly (5/26, 19%) [24,38,43,48,49], and
are available in the patients’ native language (1/26, 4%) [46].
In addition, patients are more likely to use DSM apps if they
provide relevant information about diabetes, latest research, and
trends (8/26, 31%) [26,31,36-38,43,46,48], increase access to
patients’ medical history and notes (3/26, 12%) [22,31,47], and
provide information on how to detect and manage hypoglycemia
(2/26, 8%) [39,46]. Patients are less likely to use DSM apps if
they experience technical problems that cause frequent app
crashes (4/26, 15%) [35,38,43,44].

Table 3. The desired diabetes self-management apps’ functions (N=21).

ReferencesStudies, n (%)App function

[22,26,27,29,32-35,37-39,41-44,46-49]19 (90.5)Nutrition and diet; for example, carbohydrates counting, diet plans, and reference
of nutritional values on dishes in restaurants

[22,26,29,32,33,35,38,39,41,43,46-49]15 (71.43)Blood glucose monitoring; for example, diabetes diary, blood sugar test reminder,
and monitoring hypoglycemia symptoms

[22,27,29,34,35,37-39,41,42,44,46,48,49]14 (66.67)Physical activity; for example, tracking physical activity and exercise plan

[22,29-31,35,37,38,41,43,44,46,47,49]13 (61.9)Medicines management; for example, insulin dose calculator and medication re-
minders

[22,27,29,35,37-39,41-43,46]11 (52.38)Weight management; for example, tracking weight and weight loss plans

[27,32,37,39,42,44,46]7 (33.33)Mental health; for example, monitoring mood and well-being and social support

[31,38,46,47]4 (19.05)Appointments reminders

[29,42]2 (9.53)Sleep pattern
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Table 4. The desired diabetes self-management (DSM) apps’ features (N=5524).

ReferenceStudy typeSample size (participants) n (%)Theme (apps’ features): factors and definitions

Ease of use

Patients are more likely to use DSM apps if they are easy to use

[37]Qualitative15 (0.27)

[38]Qualitative30 (0.54)

[26]Qualitative18 (0.33)

[34]Qualitative11 (0.2)

[30]Qualitative8 (0.15)

[48]Qualitative24 (0.43)

[41]Cross-sectional355 (6.43)

[49]Cross-sectional1276 (23.1)

[43]Qualitative16 (0.29)Patients are more likely to use DSM apps if they are easy to under-
stand

[48]Qualitative24 (0.43)Patients are more likely to use DSM apps if they are easy to access

Communication

Patients are more likely to use DSM apps if they enable communication with HCPsa

[44]Qualitative29 (0.52)

[38]Qualitative30 (0.54)

[36]Qualitative9 (0.16)

[26]Qualitative18 (0.33)

[34]Qualitative11 (0.2)

[43]Qualitative16 (0.29)

[30]Qualitative8 (0.15)

[48]Qualitative24 (0.43)

[31]Qualitative53 (0.96)

[33]Cross-sectional44 (0.8)

[41]Cross-sectional355 (6.43)

[49]Cross-sectional1276 (23.1)

Patients are more likely to use DSM apps if they enable communication and knowledge sharing with other patients

[44]Qualitative29 (0.52)

[37]Qualitative15 (0.27)

[36]Qualitative9 (0.16)

[28]Qualitative31 (0.56)

[31]Qualitative53 (0.96)

[35]Cross-sectional233 (4.22)

[49]Cross-sectional1276 (23.1)

Patients are more likely to use DSM apps if they have a social media component

[28]Qualitative31 (0.56)

[30]Qualitative8 (0.15)

[35]Cross-sectional233 (4.22)

Feedback: patients are more likely to use DSM apps if they get real-time feedback

[32]Qualitative16 (0.29)

[37]Qualitative15 (0.27)

JMIR Diabetes 2022 | vol. 7 | iss. 3 |e28153 | p.11https://diabetes.jmir.org/2022/3/e28153
(page number not for citation purposes)

Alaslawi et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


ReferenceStudy typeSample size (participants) n (%)Theme (apps’ features): factors and definitions

[34]Qualitative11 (0.2)

[48]Qualitative24 (0.43)

[42]Cross-sectional1500 (27.15)

Customization: patients are more likely to use DSM apps if they provide personalized or tailored information

[44]Qualitative29 (0.52)

[26]Qualitative18 (0.33)

Presentation

Patients are more likely to use DSM apps if they include visual aids or visual effects

[44]Qualitative29 (0.52)

[32]Qualitative16 (0.29)

[38]Qualitative30 (0.54)

[46]Qualitative21 (0.38)

[36]Qualitative9 (0.16)

[37]Qualitative15 (0.27)

[26]Qualitative18 (0.33)

[43]Qualitative16 (0.29)

[48]Qualitative24 (0.43)

[35]Cross-sectional233 (4.22)

[38]Qualitative30 (0.54)Patients prefer a clear layout of apps and a suitable font size

Goal setting: patients are more likely to use DSM apps if they set up goals

[46]Qualitative21 (0.38)

[37]Qualitative15 (0.27)

[26]Qualitative18 (0.33)

[42]Cross-sectional1500 (27.15)

Privacy and security: patients are more likely to use DSM apps if they ensure data privacy and security

[46]Qualitative21 (0.38)

[36]Qualitative9 (0.16)

[25]Qualitative287 (5.2)

[43]Qualitative16 (0.29)

[30]Qualitative8 (0.15)

[35]Cross-sectional233 (4.22)

[41]Cross-sectional355 (6.43)

Cost: patients consider the cost of apps when deciding to use DSM apps

[24]Cohort503 (9.11)

[38]Qualitative30 (0.54)

[43]Qualitative16 (0.29)

[48]Qualitative24 (0.43)

[49]Cross-sectional1276 (23.1)

Technical problems: patients are less likely to use DSM apps if they experience technical problems or app crashes

[44]Qualitative29 (0.52)

[38]Qualitative30 (0.54)

[43]Qualitative16 (0.29)

[35]Cross-sectional233 (4.22)
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ReferenceStudy typeSample size (participants) n (%)Theme (apps’ features): factors and definitions

[46]Qualitative21 (0.38)Language: patients are more likely to use apps if they are in their native
language in addition to English

Information

Information about diabetes and the latest research findings

[38]Qualitative30 (0.54)

[46]Qualitative21 (0.38)

[36]Qualitative9 (0.16)

[37]Qualitative15 (0.27)

[26]Qualitative18 (0.33)

[43]Qualitative16 (0.29)

[48]Qualitative24 (0.43)

[31]Qualitative53 (0.96)

Patient information, medical history, and medical notes

[31]Qualitative53 (0.96)

[47]Cross-sectional189 (3.42)

[22]Cross-sectional60 (1.09)

Information about symptoms of hypoglycemia and its management

[46]Qualitative21 (0.38)

[39]Cross-sectional796 (14.41)

aHCP: health care professional.

Factors Affecting HCPs’ Recommendation of DSM
Apps
Only a small number of studies involved HCPs
[23,28,30,40,44,47,49], despite their role in promoting and
facilitating DSM. Table 5 presents the relevant findings.

Some factors identified by patients as determinants of DSM
app adoption have also been reported by HCPs. These include
patients’characteristics, beliefs, and experiences. HCPs reported
that patients who find it difficult to use or access technology
are less likely to use DSM apps, and HCPs will be reluctant to
recommend DSM apps to those patients [23,30,44]. Furthermore,
HCPs are more likely to recommend DSM apps if they are easy
to use [23,30], easy to access [23], provide prompt real-time
feedback [30], improve communication between patients and
HCPs [49], are free of charge [23,49], and are available in the
patients’ language [23]. HCPs also reported in the study by
Zhang et al [49] that patients do not trust diabetes apps, and
hence, will not be using them and that patients are less likely
to use DSM apps if they require onerous and time-consuming
data entry tasks.

Similar to patients’ reports, HCPs would recommend DSM apps
if they provide information about diabetes and the latest research
findings [30]. Other similar factors include the desired functions,
features, and information of the apps. Similar to patients, HCPs
would recommend DSM apps if they include nutrition and diet
functions [23,47], blood glucose monitoring [23,49], physical

activity tracking [23], medicines’management [47], and weight
management [23].

HCPs characteristics, beliefs, and awareness of existing DSM
apps also affect their recommendation to patients. A study
reported that HCPs aged between 40 and 49 years are most
likely to recommend DSM apps, and awareness of diabetes apps
increases with the HCP’s age [49]. Moreover, HCPs with Master
of Science degrees, those registered as dietitian nutritionists
[23], and those working in tertiary care settings [49] are more
likely to recommend apps to patients. HCPs who routinely use
apps are more likely to recommend apps to their patients. Those
who are not technology savvy are likely to require training
sessions on how to use apps before recommending them [23].
Zhang et al [49] suggested that HCPs are not convinced of the
impact of DSM apps on blood glucose levels; therefore, they
may be reluctant to recommend them. Furthermore, HCPs’ lack
of awareness of existing or appropriate DSM apps hinders their
recommendations to patients [23,49].

Other factors that may hinder HCPs’ recommendation of app
use are related to work pressure. A total of 3 studies highlighted
that the heavy workload of HCPs would prevent them from
recommending apps, given that they lack the time needed to
train patients on how to use the app [23,30,44,49]. HCPs
reported in the study by Zhang et al [49] that they may not
recommend diabetes apps to patients, as it is not clear if it is
legal to provide diabetes care through apps and how to bill the
patient for this internet-based care.
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Table 5. Summary of the factors affecting health care professionals’ (HCPs) recommendations of diabetes self-management (DSM) apps (N=1297).

ReferenceStudy typeSample size (participants), n (%)Themes, factors, and definitions

Patients’ characteristics—technology use: HCPs report that patients who face difficulties in using or accessing to technology are less likely to use
DSM apps and less likely to recommend apps for them

[44]Qualitative5 (0.39)

[30]Qualitative6 (0.46)

[23]Cross-sectional583 (44.95)

[49]Cross-sectional608 (46.88)Patients’beliefs—patients’distrust: HCPs reported that the main obstacle
to use apps is patients’ distrust of the apps

Patients’ experiences

[30]Qualitative6 (0.46)Data entry: HCPs report that the patients may find data entry burden-
some

[23]Cross-sectional583 (44.95)Time constraint: HCPs report that using apps could be time consum-
ing for patients

HCPs characteristics

[49]Cross-sectional608 (46.88)Age: HCPs awareness about apps increases with age; HCPs aged be-
tween 40 and 49 years are more likely to recommend apps for patients

[23]Cross-sectional583 (44.95)Educational levels: HCPs with masters’ degree and registered dieti-
cian nutritionists are more likely to recommend apps for patients

[49]Cross-sectional608 (46.88)Clinical settings: HCPs in tertiary care are more likely to recommend
and use DSM apps for patients

Technology use: HCPs who are not technology savvy require more training about apps

[44]Qualitative5 (0.39)

[23]Cross-sectional583 (44.95)

[49]Cross-sectional608 (46.88)HCPs beliefs—no perceived benefits: HCPs are less likely to recommend
apps because of the lack of evidence about their effectiveness

HCPs awareness—lack of awareness

HCPs do not know of the existing apps

[36]Cross-sectional95 (7.32)

[49]Cross-sectional608 (46.88)

[49]Cross-sectional608 (46.88)HCPs do not know about the suitable apps to recommend

Work pressures

[49]Cross-sectional608 (46.88)Legal issues: HCPs are less likely to recommend apps for managing
diabetes because they do not know if it is legal to use apps to manage
patients

Workload: workload and workflow challenges are the main barriers to recommend DSM apps

[44]Qualitative5 (0.39)

[30]Qualitative6 (0.46)

[49]Cross-sectional608 (46.88)

[49]Cross-sectional608 (46.88)Billing issues: uncertainty on how to bill the patients about health
care provided through the apps

Apps features

Ease of use

HCPs are more likely to recommend DSM apps to patients if they are easy to use

[30]Qualitative6 (0.46)

[23]Cross-sectional583 (44.95)

[23]Cross-sectional583 (44.95)HCPs are more likely to recommend DSM apps to patients if it
they are easy to access
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ReferenceStudy typeSample size (participants), n (%)Themes, factors, and definitions

[30]Qualitative6 (0.46)Feedback: HCPs are more likely to recommend DSM apps to patients
if they provide real-time feedback

[49]Cross-sectional608 (46.88)Communication: HCPs are more likely to recommend DSM apps to
patients if they improve communication with HCPs

Cost: HCPs are more likely to recommend DSM apps to patients if apps are free of charge

[23]Cross-sectional583 (44.95)

[49]Cross-sectional608 (46.88)

[23]Cross-sectional583 (44.95)Multi-language: HCPs are less likely to recommend DSM apps for
patients if apps are not available in the patients’ language

[30]Qualitative6 (0.46)Apps’ information provision: HCPs would like the apps to have infor-
mation about diabetes and new research findings

Discussion

Principal Findings
This study systematically reviewed the determinants of DSM
app use by patients and their recommendations by HCPs,
highlighting their prevalence and significance in facilitating
and hindering their uptake. To our knowledge, this is the first
review exploring the prevalence and determinants of use by
patients with T2DM and HCPs’ recommendations of mobile
apps for DSM.

Patients’ sociodemographic characteristics are determinants of
app use in DSM. Age has been consistently reported to be a key
influencing factor. Younger [56-59], female [60,61] patients
were more likely to use DSM apps. Older patients are less likely
to engage in digital technologies and health apps [62]. However,
the current COVID-19 pandemic highlights that, when
necessary, older patients can effectively interact with mobile
apps that are beneficial and meet their needs, such as social
networking apps and digital health apps [63]. Older patients are
an important population to target to improve DSM behaviors
[64], given the high prevalence of this condition among this
group. Notably, the literature often focuses on biological age
as a factor and the assumed decline in cognitive function, sight,
hearing, and motor skills over time. However, when considering
technology adoption, the concept of age should be expanded to
incorporate the technological age of patients; people who are
aged 60 years in 2020 have had at least 20 years of familiarity
or experience with digital technology [65].

Patients’ use of DSM apps is also influenced by their level of
education, eHealth literacy, perceptions and digital experiences,
and technical skills [56,66-71]. Interestingly, the duration of
diagnosis also affected the use of DSM apps. Newly diagnosed
patients are more likely to use DSM apps, as shown in the
qualitative study by Baptista et al [71]. The authors further
clarified that patients may become frustrated with the basic
content of the apps as they become more experienced with
diabetes management.

Direct recommendations by health professionals have been
suggested as a significant influencer of patients’ use of DSM
apps [72]. However, only a few studies have explored diabetes
HCPs’ recommendation of DSM apps and their integration into
care pathways. Clinicians are still apprehensive about

recommending DSM apps, especially that consensus regarding
the strength of their evidence base and evaluation methods is
yet to be reached [73].

Several determinants related to DSM apps reported in our review
were also postulated as constructs of the main adoption theories;
for example, diffusion of innovation theory [74], technology
acceptance model [75], and the unified theory of acceptance
and use of technology [76]. These include the relative
advantages of apps in DSM, compatibility with daily schedules,
and ease of use.

It was found that patients with type 2 diabetes prefer interactive
apps with functions that aid them in maintaining a healthy
lifestyle, reducing weight, and managing their medicines.
Privacy, security, and costs also affect use. These are in line
with the findings of the review by Adu et al [77] for developing
diabetes apps and the review of diabetes-related applications
by Doyle-Delgado and Chamberlain [78], as well as the reviews
for other health conditions such as hypertension [79], gestational
diabetes [80], and chronic conditions [81]. Interestingly, mental
health functions were desired to be part of diabetes apps rather
than separate or generic apps, which highlights the importance
patients assign to integrated mental and diabetes health care.

Studies exploring HCPs’ use and recommendations of DSM
apps are scarce. Our review identified similar factors affecting
HCPs’ recommendations of DSM to their patients. HCPs are a
diverse group of technology users, and their own characteristics
and experiences with mobile apps affect their likelihood of
recommending these apps [82]. This highlights the need to
integrate digital health education into health care curricula [82].
Furthermore, workload pressures [19,66,67] have also been
reported to hinder HCPs’ recommendation of apps, especially
if time is required to train patients. It is important to consider
that because of the lack of regulatory frameworks, digital health
clinical guidelines, institutional review, and validation of
available apps, HCPs are likely to hesitate to recommend them
[13,83].

Future Research
Looking forward, there are a few issues to consider, especially
that digital health apps are likely to be one of the legacies of
the COVID-19 pandemic, disrupting traditional health care
delivery models [84]. First, researchers have investigated the
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role and effectiveness of these apps as stand-alone or
complementary resources. Efforts should be dedicated to
investigate how DSM apps can be integrated into care pathways
[83,85], and to explore the roles and responsibilities of health
care organizations, HCPs, and patients in a system where DSM
apps put the patient in the driver seat of managing their
condition, the HCP holding the map and providing feedback
and monitoring, and health care organizations ensuring road
safety and clinical governance. Furthermore, it is important to
explore the impact of ethnicity and race on engagement with
and access to diabetes care when mHealth apps and technologies
are integrated into care pathways. Mobile apps and technologies
may improve access but may also exacerbate inequalities [56].
Answering this question is paramount for designing effective,
efficient, and equitable services. It is also important to fully
investigate the impact of health care delivery, via mobile apps,
on clinical and patient outcomes and how reimbursement and
remuneration can be claimed [86].

Second, several ethical issues must be explored when integrating
health technologies such as mobile apps into care pathways.
One of the most frequently reported barriers to mobile app
adoption in health care is the fear of losing human interaction
between the patient and the HCP, but at the same time, patients
and HCPs see the potential for mobile apps to increase their
contact and meaningful input, albeit internet-based. Research
could explore how mobile apps can be integrated into care
pathways without dehumanizing patients or HCPs [87]. This
may warrant investigating how to affect cultural change,
especially in relation to the management of long-term conditions
and where health technologies fit in the new normal. Privacy
is another issue that is often reported when digital technologies
are used to deliver health care services. Research could explore
the required legal changes, depending on culture and context,
to facilitate a safe transfer of information between patients,
health care organizations, and relevant stakeholders (and who
those stakeholders might be) [88].

Third, regulatory, clinical, and professional bodies’ evaluation
and support of apps is a key facilitator to encourage health care
organizations and HCPs to recommend apps for patient care
and for patients to engage with the recommended apps [13].

Research could develop evaluation and implementation
frameworks and inform the development of clinical and care
guidelines that integrate mobile apps into disease management
pathways.

Study Strengths and Limitations
This is the first systematic review to present a synthesis of the
determinants that affect patients’ use of DSM apps and HCPs
recommending them. It also highlights the features and functions
required for DSM apps. It draws from a range of studies with
qualitative and quantitative designs to improve our
understanding of the significance of these factors when deciding
to use or recommend a DSM app. However, several potential
limitations should be considered when interpreting the findings
of this study. First, we included only studies published in
peer-reviewed journals, and some of which were of poor quality.
Further insights may be reported in conference proceedings and
gray literature resources, which were excluded from this study.
Second, we included studies that reported on the use of DSM
apps in type 2 diabetes, even if those studies reported other
types of diabetes or other long-term conditions. This meant that,
occasionally, it was not possible to separate data relating to type
2 diabetes from data relating to type 1 diabetes, cardiovascular
disease, and other comorbidities. Third, considering the factors
reported in this review were not always explicitly highlighted
in the included studies, our identification, interpretation, and
coding techniques may have affected the review findings.
Finally, several of the reported factors are based on what would
influence patients and HCPs’ hypothetical adoption of DSM
apps rather than actual use. Therefore, hypothetical bias must
be considered when interpreting the findings of our review.

Conclusions
DSM is paramount for improving diabetes outcomes and
reducing the risk of complications. Mobile apps can facilitate
self-management activities if patients use them and HCPs
recommend them. Addressing the technology, patient, and HCP
factors that may hinder the use of DSM apps can improve their
role in diabetes care, especially if these apps are integrated into
diabetes care pathways.

 

Authors' Contributions
HA and IB conceptualized the study. HA, IB, and ZA designed the methodology. HA, AAH, and IB performed data collection,
and the data were validated by HA and IB. Formal analysis was performed by HA and IB, and investigation, by SA and IB. The
original draft was written by HA, IB, and ZA and was reviewed and edited by HA, IB, ZA, AAH, and DA. Visualization was
performed by HA and IB. The study was supervised by IB, ZA, and DA, and HA and IB were involved in project administration.
Funding acquisition was done by HA. All the authors have read and agreed to the published version of the manuscript. This
research is a part of PhD studentship of HA. The PhD studentship of HA is funded by the Kuwaiti Ministry of Health (Kuwait).

Conflicts of Interest
None declared.

Multimedia Appendix 1
PubMed search strategy and the results of the quality assessment of the included studies.
[DOCX File , 104 KB - diabetes_v7i3e28153_app1.docx ]

JMIR Diabetes 2022 | vol. 7 | iss. 3 |e28153 | p.16https://diabetes.jmir.org/2022/3/e28153
(page number not for citation purposes)

Alaslawi et alJMIR DIABETES

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=diabetes_v7i3e28153_app1.docx&filename=4fa2c649b9ab4c42478fad7e4ae4f111.docx
https://jmir.org/api/download?alt_name=diabetes_v7i3e28153_app1.docx&filename=4fa2c649b9ab4c42478fad7e4ae4f111.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 2
Summary and characteristics of the included studies.
[DOCX File , 41 KB - diabetes_v7i3e28153_app2.docx ]

References
1. IDF Diabetes Atlas. International Diabetes Federation. 2019. URL: https://diabetesatlas.org/upload/resources/material/

20200302_133351_IDFATLAS9e-final-web.pdf [accessed 2020-04-06]
2. Wou C, Unwin N, Huang Y, Roglic G. Implications of the growing burden of diabetes for premature cardiovascular disease

mortality and the attainment of the Sustainable Development Goal target 3.4. Cardiovasc Diagn Ther 2019 Apr;9(2):140-149
[FREE Full text] [doi: 10.21037/cdt.2018.09.04] [Medline: 31143635]

3. Nichols G, Ustyugova A, Deruaz-Luyet A, Brodovicz K. 16-OR: contributions of chronic kidney disease and cardiovascular
disease to medical costs of type 2 diabetes. Diabetes 2019;68(Supplement_1) [FREE Full text] [doi: 10.2337/db19-16-OR]

4. 15-minute minimum consultations, continuity of care through 'micro-teams', and an end to isolated working: this is the
future of general practice. Royal College of General Practitioners. URL: https://www.rcgp.org.uk/about-us/news/2019/may/
15-minute-minimum-consultations-continuity-of-care.aspx [accessed 2020-06-14]

5. Lee A, Piette J, Heisler M, Janevic M, Rosland AM. Diabetes self-management and glycemic control: the role of autonomy
support from informal health supporters. Health Psychol 2019 Feb;38(2):122-132 [FREE Full text] [doi: 10.1037/hea0000710]
[Medline: 30652911]

6. Funnell MM, Anderson RM. The problem with compliance in diabetes. JAMA 2000 Oct 04;284(13):1709. [doi:
10.1001/jama.284.13.1709-jms1004-6-1]

7. Self care. Royal College of Nursing. URL: https://www.rcn.org.uk/clinical-topics/public-health/self-care [accessed
2020-03-03]

8. Shrivastava SR, Shrivastava PS, Ramasamy J. Role of self-care in management of diabetes mellitus. J Diabetes Metab
Disord 2013 Mar 05;12(1):14 [FREE Full text] [doi: 10.1186/2251-6581-12-14] [Medline: 23497559]

9. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. J Diabetes Res
2018;2018:3086167-3086164 [FREE Full text] [doi: 10.1155/2018/3086167] [Medline: 29713648]

10. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries
and territories: an analysis from 1990 to 2025. Sci Rep 2020 Sep 08;10(1):14790 [FREE Full text] [doi:
10.1038/s41598-020-71908-9] [Medline: 32901098]

11. Powers M, Bardsley J, Cypress M, Duker P, Funnell MM, Fischl AH, et al. Diabetes self-management education and support
in type 2 diabetes. Diabetes Educ 2017 Feb;43(1):40-53 [FREE Full text] [doi: 10.1177/0145721716689694] [Medline:
28118121]

12. Greenwood DA, Gee PM, Fatkin KJ, Peeples M. A systematic review of reviews evaluating technology-enabled diabetes
self-management education and support. J Diabetes Sci Technol 2017 Sep;11(5):1015-1027. [doi:
10.1177/1932296817713506] [Medline: 28560898]

13. Fleming G, Petrie J, Bergenstal R, Holl R, Peters A, Heinemann L. Diabetes digital app technology: benefits, challenges,
and recommendations. A consensus report by the European Association for the Study of Diabetes (EASD) and the American
Diabetes Association (ADA) diabetes technology working group. Diabetes Care 2020 Jan;43(1):250-260 [FREE Full text]
[doi: 10.2337/dci19-0062] [Medline: 31806649]

14. Basilico A, Marceglia S, Bonacina S, Pinciroli F. Advising patients on selecting trustful apps for diabetes self-care. Comput
Biol Med 2016 Apr 01;71:86-96. [doi: 10.1016/j.compbiomed.2016.02.005] [Medline: 26897071]

15. Beck J, Greenwood D, Blanton L, Bollinger ST, Butcher MK, Condon JE, et al. 2017 national standards for diabetes
self-management education and support. Diabetes Educ 2017 Jul 28;43(5):449-464 [FREE Full text] [doi:
10.1177/0145721717722968]

16. Wu Y, Yao X, Vespasiani G, Nicolucci A, Dong Y, Kwong J, et al. Mobile app-based interventions to support diabetes
self-management: a systematic review of randomized controlled trials to identify functions associated with glycemic efficacy.
JMIR Mhealth Uhealth 2017 Mar 14;5(3):e35 [FREE Full text] [doi: 10.2196/mhealth.6522] [Medline: 28292740]

17. Fatehi F, Gray LC, Russell AW. Mobile health (mHealth) for diabetes care: opportunities and challenges. Diabetes Technol
Ther 2017 Jan;19(1):1-3. [doi: 10.1089/dia.2016.0430] [Medline: 28099051]

18. Zhang Y, Liu C, Luo S, Xie Y, Liu F, Li X, et al. Factors influencing patients' intentions to use diabetes management apps
based on an extended unified theory of acceptance and use of technology model: web-based survey. J Med Internet Res
2019 Aug 13;21(8):e15023 [FREE Full text] [doi: 10.2196/15023] [Medline: 31411146]

19. Gagnon M, Ngangue P, Payne-Gagnon J, Desmartis M. m-Health adoption by healthcare professionals: a systematic review.
J Am Med Inform Assoc 2016 Jan;23(1):212-220 [FREE Full text] [doi: 10.1093/jamia/ocv052] [Medline: 26078410]

20. Maniam A, Dhillon J, Baghaei N. Determinants of patients' intention to adopt diabetes self-management applications. In:
Proceedings of the 15th New Zealand Conference on Human-Computer Interaction. 2015 Presented at: CHINZ 2015: 15th
New Zealand Conference on Human-Computer Interaction; Sep 3 - 4, 2015; Hamilton New Zealand URL: https://doi.org/
10.1145/2808047.2808059 [doi: 10.1145/2808047.2808059]

JMIR Diabetes 2022 | vol. 7 | iss. 3 |e28153 | p.17https://diabetes.jmir.org/2022/3/e28153
(page number not for citation purposes)

Alaslawi et alJMIR DIABETES

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=diabetes_v7i3e28153_app2.docx&filename=5ef756b6f87e4dc18959610f06f43182.docx
https://jmir.org/api/download?alt_name=diabetes_v7i3e28153_app2.docx&filename=5ef756b6f87e4dc18959610f06f43182.docx
https://diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf
https://diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf
https://doi.org/10.21037/cdt.2018.09.04
http://dx.doi.org/10.21037/cdt.2018.09.04
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31143635&dopt=Abstract
https://doi.org/10.2337/db19-16-OR
http://dx.doi.org/10.2337/db19-16-OR
https://www.rcgp.org.uk/about-us/news/2019/may/15-minute-minimum-consultations-continuity-of-care.aspx
https://www.rcgp.org.uk/about-us/news/2019/may/15-minute-minimum-consultations-continuity-of-care.aspx
https://doi.org/10.1037/hea0000710
http://dx.doi.org/10.1037/hea0000710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30652911&dopt=Abstract
http://dx.doi.org/10.1001/jama.284.13.1709-jms1004-6-1
https://www.rcn.org.uk/clinical-topics/public-health/self-care
https://jdmdonline.biomedcentral.com/articles/10.1186/2251-6581-12-14
http://dx.doi.org/10.1186/2251-6581-12-14
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23497559&dopt=Abstract
https://doi.org/10.1155/2018/3086167
http://dx.doi.org/10.1155/2018/3086167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29713648&dopt=Abstract
https://doi.org/10.1038/s41598-020-71908-9
http://dx.doi.org/10.1038/s41598-020-71908-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32901098&dopt=Abstract
https://doi.org/10.1177/0145721716689694
http://dx.doi.org/10.1177/0145721716689694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28118121&dopt=Abstract
http://dx.doi.org/10.1177/1932296817713506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28560898&dopt=Abstract
https://doi.org/10.2337/dci19-0062
http://dx.doi.org/10.2337/dci19-0062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31806649&dopt=Abstract
http://dx.doi.org/10.1016/j.compbiomed.2016.02.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26897071&dopt=Abstract
https://doi.org/10.1177/0145721718754797
http://dx.doi.org/10.1177/0145721717722968
https://mhealth.jmir.org/2017/3/e35/
http://dx.doi.org/10.2196/mhealth.6522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28292740&dopt=Abstract
http://dx.doi.org/10.1089/dia.2016.0430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28099051&dopt=Abstract
https://www.jmir.org/2019/8/e15023/
http://dx.doi.org/10.2196/15023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31411146&dopt=Abstract
https://doi.org/10.1093/jamia/ocv052
http://dx.doi.org/10.1093/jamia/ocv052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26078410&dopt=Abstract
https://doi.org/10.1145/2808047.2808059
https://doi.org/10.1145/2808047.2808059
http://dx.doi.org/10.1145/2808047.2808059
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Byambasuren O, Beller E, Glasziou P. Current knowledge and adoption of mobile health apps among Australian general
practitioners: survey study. JMIR Mhealth Uhealth 2019 Jun 03;7(6):e13199 [FREE Full text] [doi: 10.2196/13199]
[Medline: 31199343]

22. Humble JR, Tolley EA, Krukowski RA, Womack CR, Motley TS, Bailey JE. Use of and interest in mobile health for
diabetes self-care in vulnerable populations. J Telemed Telecare 2016 Jan;22(1):32-38. [doi: 10.1177/1357633X15586641]
[Medline: 26026179]

23. Karduck J, Chapman-Novakofski K. Results of the clinician apps survey, how clinicians working with patients with diabetes
and obesity use mobile health apps. J Nutr Educ Behav 2018 Jan;50(1):62-9.e1 [FREE Full text] [doi:
10.1016/j.jneb.2017.06.004] [Medline: 29325664]

24. North F, Chaudhry R. Apple HealthKit and health app: patient uptake and barriers in primary care. Telemed J E Health
2016 Jul;22(7):608-613. [doi: 10.1089/tmj.2015.0106] [Medline: 27172297]

25. Ofili EO, Pemu PE, Quarshie A, Mensah EA, Rollins L, Ojutalayo F, et al. Democratizing discovery health with N=Me.
Trans Am Clin Climatol Assoc 2018;129:215-234. [Medline: 30166716]

26. Peng W, Yuan S, Holtz B. Exploring the challenges and opportunities of health mobile apps for individuals with type 2
diabetes living in rural communities. Telemed J E Health 2016 Sep;22(9):733-738 [FREE Full text] [doi:
10.1089/tmj.2015.0180] [Medline: 26982017]

27. Robbins R, Krebs P, Jagannathan R, Jean-Louis G, Duncan DT. Health app use among US mobile phone users: analysis
of trends by chronic disease status. JMIR Mhealth Uhealth 2017 Dec 19;5(12):e197 [FREE Full text] [doi:
10.2196/mhealth.7832] [Medline: 29258981]

28. Surkan PJ, Mezzanotte KS, Sena LM, Chang LW, Gittelsohn J, Trolle Lagerros Y, et al. Community-driven priorities in
smartphone application development: leveraging social networks to self-manage type 2 diabetes in a low-income African
American neighborhood. Int J Environ Res Public Health 2019 Jul 30;16(15):2715 [FREE Full text] [doi:
10.3390/ijerph16152715] [Medline: 31366047]

29. Tanenbaum ML, Bhatt HB, Thomas VA, Wing RR. Use of self-monitoring tools in a clinic sample of adults with type 2
diabetes. Transl Behav Med 2017 Jun;7(2):358-363. [doi: 10.1007/s13142-016-0418-4] [Medline: 27270913]

30. Thies K, Anderson D, Cramer B. Lack of adoption of a mobile app to support patient self-management of diabetes and
hypertension in a federally qualified health center: interview analysis of staff and patients in a failed randomized trial. JMIR
Hum Factors 2017 Oct 03;4(4):e24 [FREE Full text] [doi: 10.2196/humanfactors.7709] [Medline: 28974481]

31. Zulman DM, Jenchura EC, Cohen DM, Lewis ET, Houston TK, Asch SM. How can ehealth technology address challenges
related to multimorbidity? Perspectives from patients with multiple chronic conditions. J Gen Intern Med 2015
Aug;30(8):1063-1070. [doi: 10.1007/s11606-015-3222-9] [Medline: 25691239]

32. Desveaux L, Shaw J, Saragosa M, Soobiah C, Marani H, Hensel J, et al. A mobile app to improve self-management of
individuals with type 2 diabetes: qualitative realist evaluation. J Med Internet Res 2018 Mar 16;20(3):e81 [FREE Full text]
[doi: 10.2196/jmir.8712] [Medline: 29549070]

33. Dobson KG, Hall P. A pilot study examining patient attitudes and intentions to adopt assistive technologies into type 2
diabetes self-management. J Diabetes Sci Technol 2015 Mar;9(2):309-315. [doi: 10.1177/1932296814560395] [Medline:
25427965]

34. Pludwinski S, Ahmad F, Wayne N, Ritvo P. Participant experiences in a smartphone-based health coaching intervention
for type 2 diabetes: a qualitative inquiry. J Telemed Telecare 2016 Apr 21;22(3):172-178. [doi: 10.1177/1357633X15595178]
[Medline: 26199275]

35. Conway N, Campbell I, Forbes P, Cunningham S, Wake D. mHealth applications for diabetes: user preference and
implications for app development. Health Informatics J 2016 Dec;22(4):1111-1120 [FREE Full text] [doi:
10.1177/1460458215616265] [Medline: 26635324]

36. Kayyali R, Peletidi A, Ismail M, Hashim Z, Bandeira P, Bonnah J. Awareness and use of mHealth apps: a study from
England. Pharmacy (Basel) 2017 Jun 14;5(2):A [FREE Full text] [doi: 10.3390/pharmacy5020033] [Medline: 28970445]

37. Kelly L, Jenkinson C, Morley D. Experiences of using web-based and mobile technologies to support self-management of
type 2 diabetes: qualitative study. JMIR Diabetes 2018 May 11;3(2):e9 [FREE Full text] [doi: 10.2196/diabetes.9743]
[Medline: 30291098]

38. Jeffrey B, Bagala M, Creighton A, Leavey T, Nicholls S, Wood C, et al. Mobile phone applications and their use in the
self-management of Type 2 Diabetes Mellitus: a qualitative study among app users and non-app users. Diabetol Metab
Syndr 2019;11:84 [FREE Full text] [doi: 10.1186/s13098-019-0480-4] [Medline: 31636719]

39. Trawley S, Baptista S, Browne JL, Pouwer F, Speight J. The use of mobile applications among adults with type 1 and type
2 diabetes: results from the second miles-Australia (miles-2) study. Diabetes Technol Ther 2017 Dec;19(12):730-738. [doi:
10.1089/dia.2017.0235] [Medline: 29028442]

40. Alanzi T. mHealth for diabetes self-management in the Kingdom of Saudi Arabia: barriers and solutions. J Multidiscip
Healthc 2018;11:535-546 [FREE Full text] [doi: 10.2147/JMDH.S174198] [Medline: 30349285]

41. Rafiullah M, David SK. Health apps usage and preferences among Saudi patients with diabetes: a survey. Int J Clin Pract
2019 May 17;73(5):e13345. [doi: 10.1111/ijcp.13345] [Medline: 30884059]

JMIR Diabetes 2022 | vol. 7 | iss. 3 |e28153 | p.18https://diabetes.jmir.org/2022/3/e28153
(page number not for citation purposes)

Alaslawi et alJMIR DIABETES

XSL•FO
RenderX

https://mhealth.jmir.org/2019/6/e13199/
http://dx.doi.org/10.2196/13199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31199343&dopt=Abstract
http://dx.doi.org/10.1177/1357633X15586641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26026179&dopt=Abstract
https://doi.org/10.1016/j.jneb.2017.06.004
http://dx.doi.org/10.1016/j.jneb.2017.06.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29325664&dopt=Abstract
http://dx.doi.org/10.1089/tmj.2015.0106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27172297&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30166716&dopt=Abstract
https://doi.org/10.1089/tmj.2015.0180
http://dx.doi.org/10.1089/tmj.2015.0180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26982017&dopt=Abstract
https://mhealth.jmir.org/2017/12/e197/
http://dx.doi.org/10.2196/mhealth.7832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29258981&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph16152715
http://dx.doi.org/10.3390/ijerph16152715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31366047&dopt=Abstract
http://dx.doi.org/10.1007/s13142-016-0418-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27270913&dopt=Abstract
https://humanfactors.jmir.org/2017/4/e24/
http://dx.doi.org/10.2196/humanfactors.7709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28974481&dopt=Abstract
http://dx.doi.org/10.1007/s11606-015-3222-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25691239&dopt=Abstract
https://www.jmir.org/2018/3/e81/
http://dx.doi.org/10.2196/jmir.8712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29549070&dopt=Abstract
http://dx.doi.org/10.1177/1932296814560395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25427965&dopt=Abstract
http://dx.doi.org/10.1177/1357633X15595178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26199275&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/1460458215616265?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/1460458215616265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26635324&dopt=Abstract
https://www.mdpi.com/resolver?pii=pharmacy5020033
http://dx.doi.org/10.3390/pharmacy5020033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28970445&dopt=Abstract
https://diabetes.jmir.org/2018/2/e9/
http://dx.doi.org/10.2196/diabetes.9743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30291098&dopt=Abstract
https://dmsjournal.biomedcentral.com/articles/10.1186/s13098-019-0480-4
http://dx.doi.org/10.1186/s13098-019-0480-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31636719&dopt=Abstract
http://dx.doi.org/10.1089/dia.2017.0235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29028442&dopt=Abstract
https://dx.doi.org/10.2147/JMDH.S174198
http://dx.doi.org/10.2147/JMDH.S174198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30349285&dopt=Abstract
http://dx.doi.org/10.1111/ijcp.13345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30884059&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


42. Ernsting C, Stühmann LM, Dombrowski SU, Voigt-Antons J, Kuhlmey A, Gellert P. Associations of health app use and
perceived effectiveness in people with cardiovascular diseases and diabetes: population-based survey. JMIR Mhealth
Uhealth 2019 Mar 28;7(3):e12179 [FREE Full text] [doi: 10.2196/12179] [Medline: 30920383]

43. Scheibe M, Reichelt J, Bellmann M, Kirch W. Acceptance factors of mobile apps for diabetes by patients aged 50 or older:
a qualitative study. Med 2 0 2015 Mar 02;4(1):e1 [FREE Full text] [doi: 10.2196/med20.3912] [Medline: 25733033]

44. Brandt LR, Hidalgo L, Diez-Canseco F, Araya R, Mohr DC, Menezes PR, et al. Addressing depression comorbid with
diabetes or hypertension in resource-poor settings: a qualitative study about user perception of a nurse-supported smartphone
app in Peru. JMIR Ment Health 2019 Jun 18;6(6):e11701 [FREE Full text] [doi: 10.2196/11701] [Medline: 31215511]

45. Mathiesen AS, Thomsen T, Jensen T, Schiøtz C, Langberg H, Egerod I. The influence of diabetes distress on digital
interventions for diabetes management in vulnerable people with type 2 diabetes: a qualitative study of patient perspectives.
J Clin Transl Endocrinol 2017 Sep;9:41-47 [FREE Full text] [doi: 10.1016/j.jcte.2017.07.002] [Medline: 29067269]

46. Kabeza CB, Harst L, Schwarz PE, Timpel P. Assessment of Rwandan diabetic patients’ needs and expectations to develop
their first diabetes self-management smartphone application (Kir’App). Therapeutic Advances Endocrinol 2019 Apr
26;10:204201881984531. [doi: 10.1177/2042018819845318]

47. Boyle L, Grainger R, Hall RM, Krebs JD. Use of and beliefs about mobile phone apps for diabetes self-management:
surveys of people in a hospital diabetes clinic and diabetes health professionals in New Zealand. JMIR Mhealth Uhealth
2017 Jun 30;5(6):e85 [FREE Full text] [doi: 10.2196/mhealth.7263] [Medline: 28666975]

48. Torbjørnsen A, Ribu L, Rønnevig M, Grøttland A, Helseth S. Users' acceptability of a mobile application for persons with
type 2 diabetes: a qualitative study. BMC Health Serv Res 2019 Sep 06;19(1):641 [FREE Full text] [doi:
10.1186/s12913-019-4486-2] [Medline: 31492176]

49. Zhang Y, Li X, Luo S, Liu C, Xie Y, Guo J, et al. Use, perspectives, and attitudes regarding diabetes management mobile
apps among diabetes patients and diabetologists in China: national web-based survey. JMIR Mhealth Uhealth 2019 Feb
08;7(2):e12658 [FREE Full text] [doi: 10.2196/12658] [Medline: 30735147]

50. Fixsen D, Naoom S, Blase K, Friedman R, Wallace F. Implementation Research: A Synthesis of the Literature. Tampa,
FL: University of South Florida, Louis de la Parte Florida Mental Health Institute, The National Implementation Research
Network; 2005.

51. Understanding mobile apps. Federal Trade Commission. URL: https://www.consumer.ftc.gov/articles/
0018-understanding-mobile-apps [accessed 2020-03-26]

52. CASP checklist. CASP. URL: https://casp-uk.net/casp-tools-checklists/ [accessed 2022-07-03]
53. Systematic reviews of etiology and risk. In: JBI Manual for Evidence Synthesis. Adelaide, South Australia: JBI; 2020.
54. Thomas J, Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med Res

Methodol 2008 Jul 10;8:45 [FREE Full text] [doi: 10.1186/1471-2288-8-45] [Medline: 18616818]
55. Hong QN, Pluye P, Bujold M, Wassef M. Convergent and sequential synthesis designs: implications for conducting and

reporting systematic reviews of qualitative and quantitative evidence. Syst Rev 2017 Mar 23;6(1):61 [FREE Full text] [doi:
10.1186/s13643-017-0454-2] [Medline: 28335799]

56. Bol N, Helberger N, Weert JC. Differences in mobile health app use: a source of new digital inequalities? Inf Soc 2018
Apr 26;34(3):183-193. [doi: 10.1080/01972243.2018.1438550]

57. Shen C, Wang MP, Chu JT, Wan A, Viswanath K, Chan SS, et al. Health app possession among smartphone or tablet
owners in Hong Kong: population-based survey. JMIR Mhealth Uhealth 2017 Jun 05;5(6):e77 [FREE Full text] [doi:
10.2196/mhealth.7628] [Medline: 28583905]

58. Gardner M, Jenkins S, O'Neil D, Wood D, Spurrier B, Pruthi S. Perceptions of video-based appointments from the patient's
home: a patient survey. Telemed J E Health 2015 Apr;21(4):281-285 [FREE Full text] [doi: 10.1089/tmj.2014.0037]
[Medline: 25166260]

59. Nymberg V, Bolmsjö BB, Wolff M, Calling S, Gerward S, Sandberg M. 'Having to learn this so late in our lives…' Swedish
elderly patients' beliefs, experiences, attitudes and expectations of e-health in primary health care. Scand J Prim Health
Care 2019 Mar;37(1):41-52 [FREE Full text] [doi: 10.1080/02813432.2019.1570612] [Medline: 30732519]

60. Lupton D, Maslen S. How women use digital technologies for health: qualitative interview and focus group study. J Med
Internet Res 2019 Jan 25;21(1):e11481 [FREE Full text] [doi: 10.2196/11481] [Medline: 30681963]

61. Bidmon S, Terlutter R. Gender differences in searching for health information on the internet and the virtual patient-physician
relationship in Germany: exploratory results on how men and women differ and why. J Med Internet Res 2015 Jun
22;17(6):e156 [FREE Full text] [doi: 10.2196/jmir.4127] [Medline: 26099325]

62. Isaković M, Sedlar U, Volk M, Bešter J. Usability pitfalls of diabetes mHealth apps for the elderly. J Diabetes Res
2016;2016:1604609 [FREE Full text] [doi: 10.1155/2016/1604609] [Medline: 27034957]

63. Banskota S, Healy M, Goldberg E. 15 smartphone apps for older adults to use while in isolation during the COVID-19
pandemic. West J Emerg Med 2020 Apr 14;21(3):514-525. [doi: 10.5811/westjem.2020.4.47372] [Medline: 32302279]

64. Paiva JO, Andrade RM, de Oliveira PA, Duarte P, Santos IS, Evangelista AL, et al. Mobile applications for elderly healthcare:
a systematic mapping. PLoS One 2020 Jul 30;15(7):e0236091 [FREE Full text] [doi: 10.1371/journal.pone.0236091]
[Medline: 32730266]

JMIR Diabetes 2022 | vol. 7 | iss. 3 |e28153 | p.19https://diabetes.jmir.org/2022/3/e28153
(page number not for citation purposes)

Alaslawi et alJMIR DIABETES

XSL•FO
RenderX

https://mhealth.jmir.org/2019/3/e12179/
http://dx.doi.org/10.2196/12179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30920383&dopt=Abstract
https://www.medicine20.com/2015/1/e1/
http://dx.doi.org/10.2196/med20.3912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25733033&dopt=Abstract
https://mental.jmir.org/2019/6/e11701/
http://dx.doi.org/10.2196/11701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31215511&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2214-6237(17)30040-6
http://dx.doi.org/10.1016/j.jcte.2017.07.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29067269&dopt=Abstract
http://dx.doi.org/10.1177/2042018819845318
https://mhealth.jmir.org/2017/6/e85/
http://dx.doi.org/10.2196/mhealth.7263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28666975&dopt=Abstract
https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-019-4486-2
http://dx.doi.org/10.1186/s12913-019-4486-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31492176&dopt=Abstract
https://mhealth.jmir.org/2019/2/e12658/
http://dx.doi.org/10.2196/12658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30735147&dopt=Abstract
https://www.consumer.ftc.gov/articles/0018-understanding-mobile-apps
https://www.consumer.ftc.gov/articles/0018-understanding-mobile-apps
https://casp-uk.net/casp-tools-checklists/
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-8-45
http://dx.doi.org/10.1186/1471-2288-8-45
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18616818&dopt=Abstract
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-017-0454-2
http://dx.doi.org/10.1186/s13643-017-0454-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28335799&dopt=Abstract
http://dx.doi.org/10.1080/01972243.2018.1438550
https://mhealth.jmir.org/2017/6/e77/
http://dx.doi.org/10.2196/mhealth.7628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28583905&dopt=Abstract
https://doi.org/10.1089/tmj.2014.0037
http://dx.doi.org/10.1089/tmj.2014.0037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25166260&dopt=Abstract
https://doi.org/10.1080/02813432.2019.1570612
http://dx.doi.org/10.1080/02813432.2019.1570612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30732519&dopt=Abstract
https://www.jmir.org/2019/1/e11481/
http://dx.doi.org/10.2196/11481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30681963&dopt=Abstract
https://www.jmir.org/2015/6/e156/
http://dx.doi.org/10.2196/jmir.4127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26099325&dopt=Abstract
https://doi.org/10.1155/2016/1604609
http://dx.doi.org/10.1155/2016/1604609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27034957&dopt=Abstract
http://dx.doi.org/10.5811/westjem.2020.4.47372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32302279&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0236091
http://dx.doi.org/10.1371/journal.pone.0236091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32730266&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


65. Harris M, Cox K, Musgrove C, Ernstberger K. Consumer preferences for banking technologies by age groups. Int J Bank
Market 2016;34(4):587-602 [FREE Full text] [doi: 10.1108/IJBM-04-2015-0056]

66. O'Connor S, Hanlon P, O'Donnell CA, Garcia S, Glanville J, Mair F. Understanding factors affecting patient and public
engagement and recruitment to digital health interventions: a systematic review of qualitative studies. BMC Med Inform
Decis Mak 2016 Sep 15;16(1):120 [FREE Full text] [doi: 10.1186/s12911-016-0359-3] [Medline: 27630020]

67. Alvarado MM, Kum H, Gonzalez Coronado K, Foster MJ, Ortega P, Lawley MA. Barriers to remote health interventions
for type 2 diabetes: a systematic review and proposed classification scheme. J Med Internet Res 2017 Feb 13;19(2):e28
[FREE Full text] [doi: 10.2196/jmir.6382] [Medline: 28193598]

68. Kampmeijer R, Pavlova M, Tambor M, Golinowska S, Groot W. The use of e-health and m-health tools in health promotion
and primary prevention among older adults: a systematic literature review. BMC Health Serv Res 2016 Sep 05;16 Suppl
5(S5):290 [FREE Full text] [doi: 10.1186/s12913-016-1522-3] [Medline: 27608677]

69. Hahn RA, Truman BI. Education improves public health and promotes health equity. Int J Health Serv 2015;45(4):657-678.
[doi: 10.1177/0020731415585986] [Medline: 25995305]

70. Guo SH, Hsing H, Lin J, Lee C. Relationships between mobile eHealth literacy, diabetes self-care, and glycemic outcomes
in Taiwanese patients with type 2 diabetes: cross-sectional study. JMIR Mhealth Uhealth 2021 Feb 05;9(2):e18404 [FREE
Full text] [doi: 10.2196/18404] [Medline: 33544088]

71. Baptista S, Wadley G, Bird D, Oldenburg B, Speight J, My Diabetes Coach Research Group. User experiences with a type
2 diabetes coaching app: qualitative study. JMIR Diabetes 2020 Jul 17;5(3):e16692 [FREE Full text] [doi: 10.2196/16692]
[Medline: 32706649]

72. Rossmann C, Riesmeyer C, Brew-Sam N, Karnowski V, Joeckel S, Chib A, et al. Appropriation of mobile health for diabetes
self-management: lessons from two qualitative studies. JMIR Diabetes 2019 Mar 29;4(1):e10271 [FREE Full text] [doi:
10.2196/10271] [Medline: 30924786]

73. The Transformative Power of Mobile Medicine Leveraging Innovation, Seizing Opportunities and Overcoming Obstacles
of MHealth. Amsterdam, Netherlands: Elsevier Science; 2019.

74. Rogers E. Diffusion of Innovations, 5th Edition. New York: Free Press; 2003.
75. Davis FD. User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. Int

J Man Machine Stud 1993 Mar;38(3):475-487. [doi: 10.1006/imms.1993.1022]
76. Venkatesh V, Davis FD. A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag

Sci 2000 Feb;46(2):186-204. [doi: 10.1287/mnsc.46.2.186.11926]
77. Adu MD, Malabu UH, Malau-Aduli AE, Malau-Aduli BS. Users' preferences and design recommendations to promote

engagements with mobile apps for diabetes self-management: multi-national perspectives. PLoS One 2018 Dec
10;13(12):e0208942 [FREE Full text] [doi: 10.1371/journal.pone.0208942] [Medline: 30532235]

78. Doyle-Delgado KJ, Chamberlain JJ. Use of diabetes-related applications and digital health tools by people with diabetes
and their health care providers. Clin Diabetes 2020 Dec;38(5):449-461 [FREE Full text] [doi: 10.2337/cd20-0046] [Medline:
33384470]

79. Alessa T, Abdi S, Hawley MS, de Witte L. Mobile apps to support the self-management of hypertension: systematic review
of effectiveness, usability, and user satisfaction. JMIR Mhealth Uhealth 2018 Jul 23;6(7):e10723 [FREE Full text] [doi:
10.2196/10723] [Medline: 30037787]

80. Chen J, Gemming L, Hanning R, Allman-Farinelli M. Smartphone apps and the nutrition care process: current perspectives
and future considerations. Patient Educ Couns 2018 Apr;101(4):750-757. [doi: 10.1016/j.pec.2017.11.011] [Medline:
29169863]

81. Birkhoff SD, Smeltzer SC. Perceptions of smartphone user-centered mobile health tracking apps across various chronic
illness populations: an integrative review. J Nurs Scholarsh 2017 Jul;49(4):371-378. [doi: 10.1111/jnu.12298] [Medline:
28605151]

82. Machleid F, Kaczmarczyk R, Johann D, Balčiūnas J, Atienza-Carbonell B, von Maltzahn F, et al. Perceptions of digital
health education among European medical students: mixed methods survey. J Med Internet Res 2020 Aug 14;22(8):e19827
[FREE Full text] [doi: 10.2196/19827] [Medline: 32667899]

83. Gordon W, Landman A, Zhang H, Bates DW. Beyond validation: getting health apps into clinical practice. NPJ Digit Med
2020;3:14 [FREE Full text] [doi: 10.1038/s41746-019-0212-z] [Medline: 32047860]

84. Securing a positive health care technology legacy from COVID-19. The Health Foundation. URL: https://www.health.org.uk/
publications/long-reads/securing-a-positive-health-care-technology-legacy-from-covid-19 [accessed 2021-06-10]

85. Ramdani B, Duan B, Berrou I. Exploring the determinants of mobile health adoption by hospitals in China: empirical study.
JMIR Med Inform 2020 Jul 14;8(7):e14795 [FREE Full text] [doi: 10.2196/14795] [Medline: 32459630]

86. Esser M, Boreham A, Ring C, Schreier J. PNS100 The New Reimbursement Route for Digital Health Applications (DIGA)
in Germany: critical appraisal and first evaluation of the possible effect on the German Healthcare System. Value Health
2020 Dec;23:S658-S659. [doi: 10.1016/j.jval.2020.08.1544]

87. Botrugno C. Information technologies in healthcare: enhancing or dehumanising doctor-patient interaction? Health (London)
2021 Jul 18;25(4):475-493. [doi: 10.1177/1363459319891213] [Medline: 31849239]

JMIR Diabetes 2022 | vol. 7 | iss. 3 |e28153 | p.20https://diabetes.jmir.org/2022/3/e28153
(page number not for citation purposes)

Alaslawi et alJMIR DIABETES

XSL•FO
RenderX

https://doi.org/10.1108/IJBM-04-2015-0056
http://dx.doi.org/10.1108/IJBM-04-2015-0056
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0359-3
http://dx.doi.org/10.1186/s12911-016-0359-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27630020&dopt=Abstract
https://www.jmir.org/2017/2/e28/
http://dx.doi.org/10.2196/jmir.6382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28193598&dopt=Abstract
https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-016-1522-3
http://dx.doi.org/10.1186/s12913-016-1522-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27608677&dopt=Abstract
http://dx.doi.org/10.1177/0020731415585986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25995305&dopt=Abstract
https://mhealth.jmir.org/2021/2/e18404/
https://mhealth.jmir.org/2021/2/e18404/
http://dx.doi.org/10.2196/18404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33544088&dopt=Abstract
https://diabetes.jmir.org/2020/3/e16692/
http://dx.doi.org/10.2196/16692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32706649&dopt=Abstract
https://diabetes.jmir.org/2019/1/e10271/
http://dx.doi.org/10.2196/10271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30924786&dopt=Abstract
http://dx.doi.org/10.1006/imms.1993.1022
http://dx.doi.org/10.1287/mnsc.46.2.186.11926
https://dx.plos.org/10.1371/journal.pone.0208942
http://dx.doi.org/10.1371/journal.pone.0208942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30532235&dopt=Abstract
https://doi.org/10.2337/cd20-0046
http://dx.doi.org/10.2337/cd20-0046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33384470&dopt=Abstract
https://mhealth.jmir.org/2018/7/e10723/
http://dx.doi.org/10.2196/10723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30037787&dopt=Abstract
http://dx.doi.org/10.1016/j.pec.2017.11.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29169863&dopt=Abstract
http://dx.doi.org/10.1111/jnu.12298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28605151&dopt=Abstract
https://www.jmir.org/2020/8/e19827/
http://dx.doi.org/10.2196/19827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32667899&dopt=Abstract
https://doi.org/10.1038/s41746-019-0212-z
http://dx.doi.org/10.1038/s41746-019-0212-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32047860&dopt=Abstract
https://www.health.org.uk/publications/long-reads/securing-a-positive-health-care-technology-legacy-from-covid-19
https://www.health.org.uk/publications/long-reads/securing-a-positive-health-care-technology-legacy-from-covid-19
https://medinform.jmir.org/2020/7/e14795/
http://dx.doi.org/10.2196/14795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32459630&dopt=Abstract
http://dx.doi.org/10.1016/j.jval.2020.08.1544
http://dx.doi.org/10.1177/1363459319891213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31849239&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


88. Grundy Q, Chiu K, Held F, Continella A, Bero L, Holz R. Data sharing practices of medicines related apps and the mobile
ecosystem: traffic, content, and network analysis. BMJ 2019 Mar 20;364:l920 [FREE Full text] [doi: 10.1136/bmj.l920]
[Medline: 30894349]

Abbreviations
DSM: diabetes self-management
HCP: health care professional
mHealth: mobile health
T2DM: type 2 diabetes mellitus

Edited by K Mizokami-Stout; submitted 01.03.21; peer-reviewed by N Gordon, L Nelson, C Della Vecchia, S Li; comments to author
24.04.21; revised version received 30.06.21; accepted 24.03.22; published 28.07.22.

Please cite as:
Alaslawi H, Berrou I, Al Hamid A, Alhuwail D, Aslanpour Z
Diabetes Self-management Apps: Systematic Review of Adoption Determinants and Future Research Agenda
JMIR Diabetes 2022;7(3):e28153
URL: https://diabetes.jmir.org/2022/3/e28153 
doi:10.2196/28153
PMID:35900826

©Hessah Alaslawi, Ilhem Berrou, Abdullah Al Hamid, Dari Alhuwail, Zoe Aslanpour. Originally published in JMIR Diabetes
(https://diabetes.jmir.org), 28.07.2022. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Diabetes, is properly cited. The complete bibliographic
information, a link to the original publication on https://diabetes.jmir.org/, as well as this copyright and license information must
be included.

JMIR Diabetes 2022 | vol. 7 | iss. 3 |e28153 | p.21https://diabetes.jmir.org/2022/3/e28153
(page number not for citation purposes)

Alaslawi et alJMIR DIABETES

XSL•FO
RenderX

http://www.bmj.com/lookup/pmidlookup?view=long&pmid=30894349
http://dx.doi.org/10.1136/bmj.l920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30894349&dopt=Abstract
https://diabetes.jmir.org/2022/3/e28153
http://dx.doi.org/10.2196/28153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35900826&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Association Between Mobile Health App Engagement and Weight
Loss and Glycemic Control in Adults With Type 2 Diabetes and
Prediabetes (D’LITE Study): Prospective Cohort Study

Su Lin Lim1, PhD; Melissa Hui Juan Tay1, BSc; Kai Wen Ong1, BSc; Jolyn Johal1, BND; Qai Ven Yap2, BSc; Yiong

Huak Chan2, PhD; Genevieve Kai Ning Yeo1, BA; Chin Meng Khoo3,4, MBBS, PhD; Alison Yaxley5, PhD
1Department of Dietetics, National University Hospital, Singapore, Singapore
2Biostaistics Unit, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
3Division of Endocrinology, Department of Medicine, National University Hospital, Singapore, Singapore
4Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
5Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia

Corresponding Author:
Su Lin Lim, PhD
Department of Dietetics
National University Hospital
5 Lower Kent Ridge Road
Singapore, 119074
Singapore
Phone: 65 67724580
Fax: 65 67791938
Email: su_lin_lim@nuhs.edu.sg

Abstract

Background: Mobile health apps are increasingly used as early intervention to support behavior change for diabetes prevention
and control, with the overarching goal of lowering the overall disease burden.

Objective: This prospective cohort study conducted in Singapore aimed to investigate app engagement features and their
association with weight loss and improved glycemic control among adults with diabetes and prediabetes from the intervention
arm of the Diabetes Lifestyle Intervention using Technology Empowerment randomized controlled trial.

Methods: Diabetes and prediabetes participants (N=171) with a median age of 52 years, BMI of 29.3 kg/m2, and glycated
hemoglobin (HbA1c) level of 6.5% and who were being assigned the Nutritionist Buddy Diabetes app were included. Body weight
and HbA1c were measured at baseline, 3 months, and 6 months. A total of 476,300 data points on daily app engagement were
tracked via the backend dashboard and developer’s report. The app engagement data were analyzed by quartiles and weekly
means expressed in days per week. Linear mixed model analysis was used to determine the associations between the app
engagements with percentage weight and HbA1c change.

Results: The median overall app engagement rate was maintained above 90% at 6 months. Participants who were actively
engaged in ≥5 app features were associated with the greatest overall weight reduction of 10.6% from baseline (mean difference
−6, 95% CI −8.9 to −3.2; P<.001) at 6 months. Adhering to the carbohydrate limit of >5.9 days per week and choosing healthier
food options for >4.3 days per week had the most impact, eliciting weight loss of 9.1% (mean difference −5.2, 95% CI −8.2 to
−2.2; P=.001) and 8.8% (mean difference −4.2, 95% CI −7.1 to −1.3; P=.005), respectively. Among the participants with diabetes,
those who had a complete meal log for >5.1 days per week or kept within their carbohydrate limit for >5.9 days per week each
achieved greater HbA1c reductions of 1.2% (SD 1.3%; SD 1.5%), as compared with 0.2% (SD 1%; SD 0.6%). in the reference
groups who used the features <1.1 or ≤2.5 days per week, respectively.

Conclusions: Higher app engagement led to greater weight loss and HbA1c reduction among adults with overweight or obesity
with type 2 diabetes or prediabetes.

Trial Registration: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12617001112358;
https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12617001112358
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Introduction

Background
Globally, 374 million people are at an increased risk of
developing type 2 diabetes [1]. With the increasingly urbanized
and aging population, these numbers are expected to increase
to 700 million by 2045 [1]. In Singapore, diabetes accounts for
8.6% of the total disease burden [2]. The prevalence of diabetes
in Singapore increased from 8.2% in 2004 to 8.8% in 2017,
with the latest prevalence at 9.5% in 2020 [3]. Of greater
concern, 1 in 3 patients with diabetes has poor control of their
condition and is at increased risk of a host of diabetes-related
complications [4]. In addition, people with prediabetes who
make up 14.4% of the Singapore population have a one-third
chance of developing diabetes in the next 8 years [4]. Therefore,
preventing the progression from prediabetes to diabetes and
slowing the progression of diabetes are of utmost importance.

Weight reduction is associated with prevention and slowing of
diabetes progression in patients with overweight or obesity with
prediabetes or diabetes [5]. A 5% weight loss is associated with
improved insulin sensitivity, better glycemic control, and
reduced need for diabetes medications [5,6]. A 1% decrease in
glycated hemoglobin (HbA1c) has been found to decrease death
by 21%, myocardial infarction by 14%, and microvascular
complications by 37% [7].

Apart from receiving medical care from health care providers,
self-management (eg, monitoring of food intake, weight, and
blood glucose) is an integral part of diabetes management to
achieve sustainable health outcomes. In line with the
self-regulation theory, patients with good self-management
practices showed better management of their diabetes compared
with patients who were simply prescribed medications [8]. In
addition, good self-management practices can help patients to
lose weight and improve hypertension and hyperlipidemia,
which are key cardiovascular risk factors [9].

Numerous mobile apps have been developed to promote diabetes
self-management. A meta-analysis with follow-up periods of
approximately 6 months revealed a significant HbA1c reduction
(mean difference 0.49%, 95% CI 0.30-0.68) through diabetes
self-management via mobile phone interactions [8]. Similarly,
another meta-analysis of diabetes apps specifically designed to
improve self-management practices reported a statistically
significant reduction in body weight (mean difference 0.84 kg,
95% CI 0.17-1.51) among participants with diabetes [9].

There is limited research assessing users’ app engagement and
the association with weight and HbA1c changes in people with
diabetes. App engagement studies were not focused on diabetes
or had limited description on how engagement data were derived
[10]. The question remains as to which app engagement features
are associated with weight loss and improved glycemia to

replicate similar findings in the real-world application. This
prospective cohort study would add insight to the effectiveness
of key app engagement functions associated with metabolic
benefits among a group of individuals with diabetes risk and
non–insulin-dependent diabetes.

Objective
The primary Diabetes Lifestyle Intervention using Technology
Empowerment (D’LITE) study has shown that both participants
with prediabetes or diabetes achieved significant weight loss
with a mean difference of −3.1 kg (95% CI −4.5 to −1.7;
P<.001) and −2.4 kg (95% CI −3.5 to −1.3; P<.001) at 6 months,
respectively, when compared with the control group [11,12].
The participants with prediabetes were 2.1 times likely to
achieve normoglycemia (defined as HbA1c<5.7%) than in the
control group (P<.018). Participants with diabetes also
experienced a significant decrease in HbA1c levels (mean change
−0.7%, SD 1.2% vs −0.3%, SD 1.0%; P<.01) [11]. This further
accentuates the need for investigating the various engagement
levels within the app and its association with weight and HbA1c

reduction.

Therefore, the primary aim of our study was to investigate the
association between participant engagement with a diabetes app
and weight change and glycemic control in adults with diabetes
and prediabetes. The findings of this study would provide
insights on how diabetes apps could be used effectively to
facilitate positive behavioral changes to improve health
outcomes.

Methods

Study Design
This prospective cohort study included prespecified subgroup
analysis of all participants from the intervention arm of the
D’LITE study (N=171) who were assigned the Nutritionist
Buddy Diabetes (nBuddy Diabetes) app [11,12]. A full
description of the D’LITE study and the intervention details for
both diabetes and prediabetes groups have previously been
published [11,12].

The conceptualization of the nBuddy Diabetes app was based
on behavioral science and the app was built with an extensive
local food database and culturally appropriate automated cues
[11]. In brief, the nBuddy Diabetes app comprises multiple
features intended to support a participant’s self-management
efforts including self-monitoring features of meal logging,
calorie (CAL) and carbohydrate (CHO) limit alerts, and step
tracking, which relies on the phone’s built-in pedometer and
syncing with the user’s mobile phone. CAL and CHO limits
were autocalculated by the app and individualized based on the
participants’ input of their current weight, age, gender, and
activity level in the app. When the CAL or CHO limit is reached
per meal or per day, the automated cues designed with
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behavioral science embedded in the app algorithm will send a
real-time prompt to remind participants to make a healthier meal
choice. In addition, the app provides outcome tracking features
such as weight charting and self-monitoring of blood glucose
(SMBG), fasting and random blood glucose (RBG), to be
inputted by the participants. A chat function involving 2-way
communication between the dietitian and participants to
facilitate individual lifestyle modification and coaching were
made available within the app. Educational videos were
uploaded onto the app and participants were notified upon
upload via the chat function. Automated suggestions of healthier
and culturally appropriate food alternatives and reminders for
participants to engage with the app were also included.

At baseline, participants were taught to download and use the
nBuddy Diabetes app to facilitate weight loss and glycemic
control. Participants were advised to track their food and
exercise daily while measuring their body weight twice weekly.
During the first 3 months, participants were advised to measure
their blood glucose 2 days per week. Participants were provided
with a glucometer (FreeStyle Optium Neo) and a digital
weighing scale (Omron HN-289). They were encouraged to
achieve daily step count goals starting with an initial 3000 steps
in the first week, 7000 in the second week, and 10,000 by the
third week. Participants were advised to keep within the
individualized CAL and CHO limits that were automatically
calculated by the app based on the users’ profile.

Setting and Participants
The study recruitment was conducted at government polyclinics,
general practitioner clinics, health screening facilities, and
hospital outpatient clinics in Singapore from October 2017 to
September 2019. The inclusion criteria were adults who were
21 to 75 years of age, were literate in English, had a diagnosis

of type 2 diabetes or prediabetes, had a BMI of ≥23 kg/m2, had
a smartphone, and had provided written informed consent.
Patients were excluded if they had been diagnosed with heart
failure, advanced kidney disease, type 1 diabetes, severe
cognitive or psychological disabilities, untreated
hypothyroidism, thalassemia, or blood disorders or were
pregnant. In addition, participants with insulin use,

noncompliance to prescribed medications, and anemia were
also excluded.

Outcome Variables
Participants were assessed at baseline, 3 months, and 6 months
from enrollment. The outcomes of interest were percentage
changes in weight and HbA1c levels from baseline to 3 months
and 6 months. Body weight was measured using a calibrated
digital weighing scale (Omron HN-289) at the clinic, while
blood samples were obtained by a research assistant to determine
HbA1c levels following the standard methods of testing at
National University Hospital Department of Laboratory
Medicine and National Healthcare Group Diagnostics (both
accredited by the College of American Pathologists). Reductions
of 0.5% of HbA1c levels and weight loss of ≥5% are considered
clinically meaningful improvements associated with a decrease
in cardiovascular risk in patients with diabetes in 12 months
[13,14]. As such, the cut-offs of ≥5% weight loss and ≥0.5%
HbA1c reduction were chosen for use in interpretation of the
data.

Data Sources
App engagement data during the intervention period were
tracked via the app’s backend dashboard and developer’s report.
A total of 476,300 data points from the 171 participants were
extracted. To coincide with the outcome measurements, the data
were analyzed at 2 separate periods from baseline to 3 months
and baseline to 6 months.

App engagement was defined as actively using the individual
app features. For example, actively using the app features such
as entering a body weight value was considered an app
engagement while browsing or scrolling through the app was
not. With the exception of videos watched, engagement data of
all app features were tracked daily and the weekly mean days
were derived for baseline to 3 months and baseline to 6 months.
Videos watched, on the other hand, were calculated out of 22
videos that were uploaded via the app across 6 months. The
exact definitions and derivations of the respective app
engagements are presented in Table 1. The app engagement
data were categorized into quartiles for comparison and analysis
purposes.
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Table 1. App engagement definitions.

DefinitionsApp engagement

Considered complete if breakfast, lunch, and dinner were logged for the day. However, during Ramadan
(Muslim fasting month), breakfast and dinner logged were considered the complete meal log for Muslim partic-
ipants. The result is presented as the number of days participants had a complete meal log per week.

Complete meal log

Number of days participants keyed in at least 1 food entry per week.Any meal log (include incomplete
meal log)

Number of days participants kept within their carbohydrate limit as set by the app (only among the participants
who had complete meal log) per week.

Within carbohydrate limit

Number of days participants kept within their calorie limit as set by the app per week (only among the participants
who had complete meal log).

Within calorie limit

Number of days participants consistently selected food choices labeled as healthier choices by the app per week.Choosing healthier food options

Number of days fasting blood glucose readings were recorded per week.Fasting blood glucose measurement

Number of days random blood glucose readings were recorded per week.Random blood glucose measure-
ment

Number of days weight was charted per week.Weight charting

Number of days participants achieved their step count goal per week.Achieving step count goal

Number of days participants messaged the dietitian in the app per week.Communication with dietitian

Total number of videos watched during the 6 months.Videos watched

Number of days participants actively use ≥1 features of the app per week.Overall app use

App features (any meal log, within carbohydrate limit, within calorie limit, consistent healthier food choices,
fasting blood glucose measurement, random blood glucose measurement, weight charting, achieving step count
goal, communication with dietitian, and videos watched) with ≥75% uptake across 6 months.

App features with ≥75% uptake

The number of app engagement features with ≥75% uptake was
also calculated. With 75% being considered a common and
realistic uptake as reiterated by similar mobile health (mHealth)
studies in the literature, it was used as a cut-off for more
meaningful comparison of data with pre-existing literature [15].
On the basis of the cross-tabulation analysis, the results from 5
features and beyond rendered no additional effect and was taken
as the minimal cut-off point for the test of significance.

Statistical Methods
All analyses were performed using SPSS for Windows (version
26.0; SPSS Inc). Descriptive data for continuous variables were
presented as median (IQR) or frequencies and percentages for
categorical variables. Differences in continuous variables were
assessed using the 2-sample t test when normality and
homogeneity assumptions were satisfied; otherwise, the
Mann-Whitney U test was used. The chi-square or Fisher exact
test was used for categorical variables. The primary unit of
analyses was the percentage change in weight and absolute
HbA1c levels at months 3 and 6 from baseline. Associations
among app engagement behaviors, overall app use rate, and app
features with ≥75% uptake on the outcomes were assessed using
the Linear Mixed Model analysis to account for the clustering
effect of recruitment sources as a random factor, adjusting for
demographic and relevant covariates. Subgroup analyses of
participants with diabetes and prediabetes were performed to

investigate the associations. The app engagement data were
categorized into quartiles for comparison and analysis purposes.
The lowest quartile of app engagement was used as the reference
category. Statistical significance was set at P<.05 (2-sided).
Data were analyzed using the on-treatment approach, with
missing data assumed as noncompliance to the intervention.

Ethics Approval
The study was approved by the National Health care Group
Domain Specific Review Board in Singapore (2017/00397),
conducted in accordance with the Declaration of Helsinki and
aligned with the Strengthening the Reporting of Observational
Studies in Epidemiology guidelines [16].

Results

Participants’ Descriptive Data
Table 2 describes the baseline characteristics of the participants.
A total of 171 participants were assigned to the mobile app
group. Of the 171 participants, there were 99 (57.9%)
participants with diabetes and 72 (42.1%) participants with
prediabetes. At 6 months, 5 participants from the prediabetes
group, 5 from the diabetes group, and an additional participant
from the diabetes group who missed his 6-month outcome
measurements were considered lost to follow up. Of 171, there
were 109 (63.7%) males.
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Table 2. Demographics of study participants at baseline (N=171).

Participants with PreDMb (n=72)Participants with DMa (n=99)All participantsCharacteristics

52 (46-59)52 (44-59)52 (44-59)Age (years), median (IQR)

Sex, n (%)

43 (59.7)66 (66.7)109 (63.7)Male

29 (40.3)33 (33.3)62 (36.3)Female

Ethnicity, n (%)

57 (79.2)66 (66.7)123 (71.9)Chinese

7 (9.7)18 (18.2)25 (14.6)Malay

7 (9.7)11 (11.1)18 (10.5)Indian

1 (1.4)4 (4)5 (2.9)Others

Clinical variables, median (IQR)

82.0 (73.0-89.4)82.6 (75.6-90.8)82.6 (74.2-90.3)Weight (kg)

28.9 (26.9-32.4)29.8 (27.4-32.4)29.3 (27.1-32.4)BMI (kg/m2)

5.9 (5.7-6.2)7.3 (6.6-8.0)6.5 (5.9-7.5)HbA1c
c (%)

6.0 (5.7-6.6)7.8 (6.6-8.7)6.8 (5.9-7.9)Fasting blood glucose (mmol/L)

Comorbidity, n (%)

57 (79.2)62 (62.6)119 (69.6)Hypertension

58 (80.6)62 (62.6)120 (70.2)Hyperlipidemia

2.3 (2.5)5.2 (4.1)N/AdYears of diagnosis, mean (SD)

aDM: diabetes.
bPreDM: prediabetes.
cHbA1c: glycated hemoglobin.
dN/A: not applicable.

Engagement Rates of nBuddy Diabetes App Features
The overall app use was high for the first 3 months and
maintained throughout the 6 months (Table 3). Median overall
app engagement rate remained high at above 90% over the
course of the intervention. The most used features included step
tracking (95.6%), meal logging (76.6%), and communication

with the dietitian within the app’s chat system (50%). The least
used features were RBG monitoring (18%), fasting blood
glucose monitoring (19%), and weight charting (26%). This
was anticipated owing to prior instructions given to the
participants on the frequency (twice a week) of weight charting
and SMBG. The trends in the app engagement were similar at
baseline to 3 months and 6 months.
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Table 3. Engagement rates of the nBuddya Diabetes app features (N=171).

Baseline to 6 months (%)Baseline to 3 months (%)App features engagement

Overall app use

91.7 (60.0-100.0)97.8 (78.9-100.0)Values, median (IQR)

9.4-100.08.9-100.0Value, range

Meal logging

71.0 (30.0-94.0)76.6 (54.0-98.0)Value, median (IQR)

6.0-100.010.0-100.0Value, range

Step tracking

90.0 (59.4-98.9)95.6 (77.8-100.0)Values, median (IQR)

8.3-100.014.4-100.0Value, range

FBGb monitoring

12.0 (4.0-19.0)19.0 (8.0-30.0)Values, median (IQR)

0-69.00-86.0Value, range

RBGc monitoring

11.0 (3.0-17.0)18.0 (7.0-30.0)Values, median (IQR)

0-79.00-96.0Value, range

Weight charting

18.0 (11.0-54.0)26.0 (16.0-68.0)Values, median (IQR)

2.0-98.03.0-97.0Value, range

Communication with dietitian

43.0 (23.0-63.0)50.0 (29.0-67.0)Values, median (IQR)

4.0-105.08.0-123.0Value, range

Videos watched

32.0 (5.0-64.0)N/AdValues, median (IQR)

0-100.0N/AValue, range

anBuddy: nutritionist buddy.
bFBG: fasting blood glucose.
cRBG: random blood glucose.
dN/A: not applicable.

Associations Between App Engagement and Weight
Change
Figure 1 shows the association between app engagement and
weight reduction among all participants at 6 months. The top
quartiles of all app engagements achieved significantly greater
weight loss at 6 months. The same weight loss trend was
observed at 3 months, with the exception of RBG measurements
(Figure 2). Among all the app features, the highest quartiles of
within CHO limits and choosing healthier food options were

associated with the greatest weight reductions of 9.1% and 8.8%,
respectively (mean difference −5.2, 95% CI −8.2 to −2.2;
P=.001; mean difference −4.2, 95% CI −7.1 to −1.3; P=.005;
Figure 1). The overall use of the app for >6.4 days per week
could elicit a weight loss of 6.7% (mean difference −4.8, 95%
CI −6.7 to −2.9; P<.001), as compared with using the app for
≤4.2 days per week. Similarly, engaging in ≥5 app features with
≥75% uptake was significantly associated with a weight loss of
10.6% from baseline (mean difference −6; 95% CI −8.9 to −3.2;
P<.001).
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Figure 1. Association between app engagement and percentage weight change from baseline for all participants at 6 months (n=171). *P<.05. **P<.01.
***P<.001.
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Figure 2. Association between app engagement and percentage weight change from baseline for all participants at 3 months (n=171). *P<.05. **P<.01.
***P<.001.

Among participants with prediabetes or diabetes, the highest
quartiles of app engagement for all the app features led to ≥5%
weight loss at 6 months (Multimedia Appendix 1). This trend
was observed as early as 3 months whereby the highest quartile
engagement levels of almost all the app features led to ≥5%
weight loss (Multimedia Appendix 2). Complete meal log,
keeping within CAL and CHO limits and choosing healthier
food options, elicited the greatest weight loss of ≥8% when

these app features were used most frequently (Multimedia
Appendix 1).

In addition, overall use of the app for >6.4 days per week led
to a greater weight loss of 6.8% compared with 2.1% weight
loss for app use of ≤4.2 days per week (P=.009) among the
prediabetes group at 6 months (Multimedia Appendix 1). A
similar trend was observed in the diabetes group. Engaging in
≥5 app features with ≥75% uptake elicited an overall weight
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loss of 9.8% and 11.9% among the participants with diabetes
and prediabetes, respectively.

Upon examining the app engagements efficiency, the app
features that stood out for weight loss among the participants
with prediabetes were complete meal log, within the CHO limit,
RBG measurement, achieving step count goal, and
communication with the dietitian (P<.05; Multimedia Appendix
1). Meanwhile, among the participants with diabetes, to attain
both weight loss and HbA1c reduction, the features that stood
out were complete or any meal log, RBG measurement, weight
charting, communication with dietitian, and videos watched
(P<.01; Multimedia Appendices 1 and 3).

Associations Between App Engagement and HbA1c

Change
Multimedia Appendices 3 and 4 illustrate that the higher the
app engagement quartiles, the greater the HbA1c reduction. As
expected, HbA1c reduction was more pronounced among
participants with diabetes (P<.05) than participants with
prediabetes among all app engagement. Among the participants
with diabetes, all app engagements at the highest quartiles had
clinically meaningful HbA1c reduction of between 0.9% and
1.4% at 3 months and 6 months (P<.05 for all; Multimedia
Appendices 3 and 4). Among the app features, meal logging,
keeping within CAL and CHO limits, choosing healthier food
options, fasting blood glucose and RBG measurements, weight
charting, and achieving step count goal elicited the greatest
impact on HbA1c reduction of ≥1.2%, when used most frequently
(Multimedia Appendix 3).

Participants with diabetes who had a complete meal log for >5.1
days per week or kept within their CHO limit of >5.9 days per
week each achieved greater HbA1c reductions of 1.2% (SD
1.5%) versus 0.2% (SD 0.6%) in those who logged their meals
≤1.1 days or kept within CHO ≤2.5 days per week (Multimedia
Appendix 3). Overall app use of >6.4 days was associated with
greater HbA1c reduction (1.1% vs 0.3%) when compared with
using the app for ≤4.2 days per week.

Discussion

Principal Findings
Our prospective study is significant in reporting the association
between a diabetes app engagement and weight loss and HbA1c

change in adults with diabetes and prediabetes. Engaging with
≥5 app features with ≥75% uptake was associated with a
substantial weight loss of 10.6% from baseline. Among
participants with diabetes, greater app engagements led to higher
improvement in glycemic control with HbA1c reduction of
between 1.0% and 1.4%. Our study results demonstrated that
diabetes self-management through mobile phone app
engagement was effective and sustainable at 6 months.

Past weight loss studies have reported better health outcomes
with higher app engagement [17], emphasizing that higher app
engagement is the primary determinant in successful weight
loss [10]. Our findings are consistent with Painter et al [17] who
found that a higher frequency of food log days, self-weighing
entry days, or higher step counts per week was significantly
associated with greater weight loss among participants with
overweight and obesity. Our study revealed that the higher
frequency of app use, the higher likelihood of achieving weight
loss and HbA1c reduction at 6 months. Moreover, the top
quartiles of overall app use among all participants were
significantly associated with a greater weight loss and HbA1c

reduction. We postulate that the more time spent on the app,
the participants are more likely to engage with learning,
self-monitoring, and health improvement behaviors that in turn
lead to better self-management capability and commitment [18].
The self-regulation theory also states that self-monitoring and
evaluation of one’s behaviors will lead to self-reinforcements,
which in turn support behavior change toward attaining better
health outcomes [17]. As the nBuddy Diabetes app was
conceptualized based on a theoretical behavioral model [11],
the results of this study provide evidence of the degree of app
engagement for achieving clinically meaningful weight and
HbA1c reduction within 6 months. Figure 3 describes how our
study findings align with the self-regulation theory to bring
positive changes in behavior and health outcomes.
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Figure 3. Effective behavioral treatment strategies in the nBuddy Diabetes App to optimize blood glucose control and weight loss (adapted from Lim
et al [11]).

Meal logging has been identified as a commonly used feature
among diabetes mHealth apps [19]. It is well-known that meal
logging and tracking facilitate healthy dietary modifications
[20]. Similarly, meal logging is one of the most used features
in this study. Our study findings further strengthened the
evidence of the link between meal logging via the app and
improvements in weight and glycemic control [21]. Finally,
Ingels et al [20] emphasized the importance of frequent and

consistent dietary tracking for successful long-term weight loss.
Taken together, meal logging should be made part of routine
monitoring, similar to SMBG, not just to guide management
for patients with diabetes during clinic visits but also as an
important behavioral intervention.

It is also important to note that participants communicated with
the dietitian through the app every other day. This feature
provides an avenue for the user to clarify and ask questions
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pertaining to diabetes or weight control. It has been shown that
SMBG with education and proper feedback improves diabetes
control [22]. The 2-way communication with a dietitian could
empower participants to make immediate changes based on the
SMBG readings, meal log, and physical activity. Indeed, the
engagement with the dietitian through the app was associated
with a significant reduction in body weight and HbA1c levels.

Apart from being one of the most used features, step counting
was associated with clinically meaningful and statistically
significant weight and HbA1c reductions. Step counters with
predetermined goals have been effective in forming good
walking habits [5,23]. Our study findings agree with a
meta-analysis that highlighted the benefits of pedometer use on
weight loss among adults with overweight and obesity with
diabetes [23]. Contrary to our findings, a meta-analysis and
systematic review reported inconclusive glycemic effect and
relationship around step count goals among patients with
diabetes [24].

A study on diabetes apps found that inclusion of approximately
6 features led to both short- and long-term weight loss [25]. The
use of a combination of features is also akin to the concepts of
health care bundles consisting of 3 to 5 evidence-based practices
to manage health care conditions [26]. Moreover, this study
showed a greater HbA1c reduction with ≥75% uptake of ≥5 app
features at 3 and 6 months compared with using ≤5 features. In
addition, our study emphasized complete meal log, within CHO
limit, RBG measurement, achieving step count goal, and
communication with dietitian for attaining weight loss among
participants with prediabetes. On the other hand, complete meal
log or any meal log, RBG measurement, weight charting,
communication with the dietitian, and videos watched were
crucial for participants with diabetes. Furthermore, Painter et
al [17] highlighted the importance of self-monitoring features
for better outcomes, and Van Rhoon et al [27] recommended a
mixture of passive and interactive features. A recently published
meta-analysis and systematic review echoed a similar conclusion
as the authors concluded that the inclusion of an app to
multicomponent usual care leads to greater weight loss [28].

The decline in app use over time was expected and has been
commonly cited in mHealth app interventions [27]. However,
the overall high app use was sustainable in our study at 3 months
and 6 months. This could be attributed to the design features of
the app, such as prompts that served as reminders for participants

to use the app, and the chat function that was among the most
used features in this study. The presence of a dietitian or health
coach support could have assisted in optimal health information
acquisition, learning, and application [29]. Moreover, the chat
function has the potential to address patient lapses through
reminders and deliver real-time tailored and dynamic behavioral
interventions to support patient compliance with dietary and
exercise recommendations [30]. This is also supported by past
studies that reported significant associations between
physician-patient communication and weight loss and HbA1c

reduction [29]. Several diabetes apps have not only echoed the
importance of the 2-way chat communication but also
highlighted its effectiveness in influencing behavior change
[25].

Strengths and Limitations
With the COVID-19 pandemic, the adoption of this locally
contextualized app-based intervention, such as the nBuddy
Diabetes app, could help practitioners facilitate better care and
improve patients’ self-management in diabetes at the population
level. The strengths of this study are the prospective tracking
of health outcomes and the large number of app engagement
data sets that enabled us to study the individual effect of specific
app features on achieving desirable weight loss and blood
glucose control. Similar to findings from the literature [28,31],
our low attrition rate also illustrated that facilitating
communication with a dietitian in the app could lead to greater
and sustained engagement in diabetes self-management.

A limitation of this study is that participants who were willing
to participate in this study displayed some degree of readiness
for change with digital health literacy, and hence, the effect on
unmotivated participants without digital health literacy remains
unexamined. Participants may have also sought external input
such as engaging in other health interventions or using other
health apps, making it difficult to attribute success in weight
loss and glycemic control solely to the app.

Conclusions
In conclusion, engagement with the nBuddy Diabetes
self-management app could elicit meaningful weight loss and
HbA1c reduction among individuals with overweight or obesity
with prediabetes or diabetes. The greater the engagement with
the app, the greater the weight loss and HbA1c reduction.
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Abstract

Background: Although the use of electronic order sets has become standard practice for inpatient diabetes management, there
is limited decision support at discharge.

Objective: In this study, we assessed whether an electronic discharge order set (DOS) plus nurse follow-up calls improve
discharge orders and postdischarge outcomes among hospitalized patients with type 2 diabetes mellitus.

Methods: This was a randomized, open-label, single center study that compared an electronic DOS and nurse phone calls to
enhanced standard care (ESC) in hospitalized insulin-requiring patients with type 2 diabetes mellitus. The primary outcome was
change in glycated hemoglobin (HbA1c) level at 24 weeks after discharge. The secondary outcomes included the completeness
and accuracy of discharge prescriptions related to diabetes.

Results: This study was stopped early because of feasibility concerns related to the long-term follow-up. However, 158 participants
were enrolled (DOS: n=82; ESC: n=76), of whom 155 had discharge data. The DOS group had a greater frequency of prescriptions
for bolus insulin (78% vs 44%; P=.01), needles or syringes (95% vs 63%; P=.03), and glucometers (86% vs 36%; P<.001). The
clarity of the orders was similar. HbA1c data were available for 54 participants in each arm at 12 weeks and for 44 and 45
participants in the DOS and ESC arms, respectively, at 24 weeks. The unadjusted difference in change in HbA1c level (DOS –
ESC) was −0.6% (SD 0.4%; P=.18) at 12 weeks and −1.1% (SD 0.4%; P=.01) at 24 weeks. The adjusted difference in change
in HbA1c level was −0.5% (SD 0.4%; P=.20) at 12 weeks and −0.7% (SD 0.4%; P=.09) at 24 weeks. The achievement of the
individualized HbA1c target was greater in the DOS group at 12 weeks but not at 24 weeks.

Conclusions: An intervention that included a DOS plus a postdischarge nurse phone call resulted in more complete discharge
prescriptions. The assessment of postdischarge outcomes was limited, owing to the loss of the long-term follow-up, but it suggested
a possible benefit in glucose control.

Trial Registration: ClinicalTrials.gov NCT03455985; https://clinicaltrials.gov/ct2/show/NCT03455985

(JMIR Diabetes 2022;7(3):e33401)   doi:10.2196/33401
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Introduction

Scope and Impact of Diabetes
Type 2 diabetes mellitus (T2D) is a major public health problem
that is prevalent in 37.3 million US adults and has been steadily
increasing [1]. Diabetes is known to lead to considerable
morbidity and mortality, with 39% developing chronic kidney
disease, 12% reporting severe vision loss, and nearly 290,000
deaths annually [1]. As the prevalence of diabetes increases,
complications can occur and hospitalizations are expected to
follow. Diabetes is present in at least 25% of hospitalized
patients [2], and hospitalizations for hyperglycemic crises have
increased over time [3].

Many complications of diabetes are preventable with
comprehensive care, including glycemic control [4]. However,
despite the increasing availability of numerous therapeutic
classes of medications, the proportion of individuals achieving
a glycated hemoglobin (HbA1c) level of <7% has declined over
time [5]. The reasons for this finding are complex and
multifactorial, including changes in demographics, practice
patterns, health care policy, and the social and economic context
[6].

Challenges With Hospital Transitions of Care
Hospitalization presents an opportunity to identify potentially
vulnerable patients with diabetes and to impact their glucose
control, but additional system-based barriers may also occur.
During hospitalization, expert guidelines generally recommend
the discontinuation of preadmission therapies in favor of an
insulin regimen that contains basal, prandial, and correction
components [7,8]. In addition, patients receiving insulin before
admission often undergo an adjustment in dose owing to changes
in oral intake or illness-related factors, and the type of insulin
may differ owing to restrictions in hospital formularies. In
patients on non–insulin-based regimens who do not achieve
glycemic goals, intensification of insulin therapy at discharge
may be required. These changes in therapy that occur during
hospitalization can magnify the treatment gaps during the
transition from hospital to home.

Consequences of Ineffective Diabetes Discharge
Procedures
Unfortunately, effective hospital discharge programs for patients
with diabetes are understudied [9-11]. In particular, patients
who initiate or intensify insulin therapy have the greatest benefit
in glycemic control [10,12]. However, these patients are also
particularly vulnerable to transitions in care for a variety of
reasons, including the complexity of therapy, differences in
dosing and administration in the hospital compared with home,
inconsistent or inadequate education in the hospital setting,
differences in patient and provider expectations, and insufficient
resources and access to care [13,14]. Disruption of insulin
therapy following hospitalization is associated with higher
HbA1c levels after discharge, shorter survival, and increased
frequency of readmission and medical costs [15]. Insulin therapy

could be interrupted intentionally or more likely via
unintentional means, including missing prescriptions or
associated supplies, unclear instructions for use, or other
barriers, such as cost and coverage issues, medication
complexity, low health literacy, and limited access to care.

Role of Discharge Order Sets
In a Society of Hospital Medicine Survey, only one-fourth of
hospitals were supported by written protocols to standardize
medication, education, equipment, and follow-up instructions
for hospitalized patients with diabetes [16]. Despite being the
most frequently used task-specific order set during
hospitalization [17], order sets have not been used to guide
insulin use at hospital discharge [18]. Preliminary studies at our
institution demonstrated that a switch to a new electronic
medical record (EMR) platform resulted in an increase in unclear
prescriptions for insulin at the time of discharge, in part owing
to the use of a free text field in insulin prescriptions [19]. This
study assessed whether a diabetes-focused inpatient discharge
order set (DOS) with nurse follow-up calls can improve
postdischarge outcomes compared with enhanced standard care
(ESC) among hospitalized patients with insulin-requiring T2D.

Methods

Design and Participants
This was a single center, 24-week randomized open-label
parallel group controlled trial. The inclusion criteria were
hospitalized patients aged 25 to 75 years with T2D for at least
a 3-month duration, an HbA1c level of >8.5% (69 mmol/mol)
within 3 months before enrollment, requiring at least 10 units
of basal insulin per day while in the hospital, and able to provide
informed consent. The age 25 years was chosen to minimize
the possibility of inadvertently including type 1 diabetes [20,21],
while the age 75 years was chosen to minimize the inclusion of
patients who were less likely to discharge home [22].
Participants were required to have access to a phone or
electronic messaging post discharge. Exclusion criteria included
inmates, pregnancy, inability to consent, or patients with an
expected need for skilled nursing facility stay greater than 2
weeks.

Participants were identified through daily screening of inpatient
medical and surgical services throughout the institution and
were enrolled between January 5, 2018, and April 3, 2020.
Permission was obtained from the attending physician of the
inpatient service by the study coordinator before approaching
the patient in person.

Sample Size
We estimated a sample size of 111 individuals per group to
achieve 80% power to detect a treatment difference of 0.8% in
HbA1c levels, adjusting for baseline clinical factors (age, insulin
dose at discharge, and whether the patient was new to insulin),
assuming 20% attrition, σ=2.2% (SD of HbA1c levels), ρ=.25
(correlation between HbA1c levels at baseline and at 24 weeks),
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and R2=0. 5 (squared correlation between baseline factors and
the outcome) [23]. However, study enrollment was halted in
March 2020 owing to the COVID-19 pandemic crisis and
concerns about the feasibility of continuing to enroll and conduct
study visits.

Intervention
Randomization to the DOS or ESC was performed in a 1:1 ratio
using a random number generator program within an electronic
data capture system (REDCap [Research Electronic Data
Capture; Vanderbilt University]) and was stratified by admission
insulin therapy.

The DOS was developed with the consultation of a
multidisciplinary team that included feedback from Hospital
Medicine and diabetes specialists of the hospital. Before the
development of the DOS, discharge orders were not specifically
tailored to the patient with diabetes. In the DOS, the following
orders are accompanied by preselected options with additional
cascading options to enhance decision support (Table S1 in
Multimedia Appendix 1):

• Diet: there are multiple choices from regular to enteral
feeding. The DOS presents 2 separate choices, one for a
consistent carbohydrate diet and the other for a flexible
carbohydrate diet intended for the patient with carbohydrate
counting skills. The goal is to help link the patient’s insulin
regimen to their diet.

• Follow-up appointments or referrals: prepopulated choices
for primary care, endocrinology, and diabetes education,
with prompts to consider outside referrals for patients living
outside the catchment area to increase the likelihood of
follow-up.

• Medications: for hospitalized patients, neither the
preadmission order nor the hospital order for insulin is
typically appropriate for a patient at discharge. Moreover,
such orders are often complex, and ancillary orders such
as pen needles or syringes may be omitted. Thus, insulin
options in the DOS are presented via a pick list with linked
panels containing a prefilled quantity of pen needles or
syringes as appropriate, and default text with decision
support that assists the prescriber in choosing the
appropriate dose adjustments (eg, basal insulin titration or
short or rapid acting correction scale) if indicated.

• Glucose monitoring: these supplies are rarely addressed in
admission or discharge orders. The testing supplies in the
DOS are bundled (monitor, test strips, and lancets) with
default instructions and prefilled quantities, according to
the frequency of glucose monitoring.

• Additional supplies: glucagon orders and ketone strips are
presented as options with default prescribing instructions.

• Education: additional instructions, including glucose targets
and insulin administration, are provided as preselected
options.

No modifications were made to the DOS during the study period.
The DOS is embedded within the discharge navigator of the
EMR (Epic). The DOS also provided instructions to the patients
for basal insulin dose self-titration. Default instructions advised
patients to increase the dose of insulin glargine 300 U/mL

(Gla-300) by 2 units every 4 days for fasting glucose greater
than 130 mg/dL, provided no values were less than 80 mg/dL.
These instructions could be amended by the discharge team or
the primary care provider. Other than Gla-300, no additional
prescriptions were pended. In the DOS arm, the primary team
was instructed to verify and complete the DOS launched by the
study team.

All participants in both treatment groups received a phone call
at 2 and 6 weeks following discharge, in which data related to
ambulatory and inpatient encounters, glucose monitoring, and
insulin use were collected. Basal insulin adherence was defined
as >80% of the doses taken in the previous week, and the
participants in the DOS received follow-up telephone calls by
the study nurse to facilitate ongoing basal insulin dose titration
and hospital follow-up. The nurse had a basic understanding of
diabetes but was not a certified diabetes care and education
specialist. In the ESC group, follow-up telephone calls and visits
were conducted on the same schedule as in the ESC group but
were conducted by the study coordinator for the purposes of
information gathering only. In-person visits at 12 and 24 weeks
were conducted by the coordinator in the ESC group and by the
nurse with or without the coordinator in the DOS group. During
in-person visits, HbA1c and point-of-care glucose levels were
collected, in addition to data collected during telephone visits.
Patient retention efforts included face-to-face visits with a study
investigator before all enrollments to confirm the willingness
to complete all study visits, identifying multiple methods of
contacting the patient, identifying emergency contacts, and
performing study visits during hospitalization when a patient
was readmitted.

Background Therapy and Procedures
All participants received Gla-300 (provided at no cost to the
participant) plus additional background therapy (noninsulin and
prandial insulin therapies) as part of standard care, as determined
by the hospital discharge team. A basic description of Gla-300
was provided to hospital teams using a standard template,
recommending that Gla-300 be administered in 1 or 2 injections
per day at the same time of day (only pens with 1 unit dosing
increments were available). A 1:1 initial dosing conversion from
in-hospital administration of glargine 100 U/mL or detemir to
outpatient Gla-300 was recommended. The Diabetes Consult
Service provided input only when requested by the primary
service.

All patients received standard discharge instructions using the
EMR, which features medication reconciliation, prescription
generation, disease-specific instructions, and follow-up
appointments. Hospital discharge was coordinated by the
primary team and case manager, who arranged follow-up and
any additional needs, such as transportation before discharge.
A discharge summary is sent to the primary care provider of
the records per routine practice. All patients were instructed to
maintain a standardized study diary that recorded glucose levels
and insulin dose by the time of day, as well as any hypoglycemic
events and associated symptoms.
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Analysis
The primary outcome was the change in HbA1c levels from
baseline to 24 weeks post discharge.

Secondary outcomes related to hospital discharge included the
proportion of patients with prescriptions for insulin and related
supplies, and clear patient instructions (including correct
frequency, no jargon or technical terms, correct quantity
dispensed, and refills) using the following definitions:

• Jargon: any medical abbreviation or terms (introduced via
use of free text fields for bolus insulins during medication
reconciliation or prescription generation) that
inappropriately appear in patient discharge instructions.
Examples include “CIR,” “ICR,” “CF,” “ISF,” “QAC,”
“HS,” “SQ,” “Q,” “TID,” “1:50>150,” “SS,” “SSI,” and
“subcutaneous.”

• Quantity: the appropriate quantity was determined from the
dose or number required for at least a 30-day supply. The
frequency of glucose testing was assumed to be 3 or more
times per day, because all patients required insulin.

• Refills: present if any refill was provided.
• Bolus error: this refers to omission or incorrect frequency

or quantity, lack of refill for a given bolus prescription, or
use of jargon or technical terms or abbreviations in the
discharge instructions.

• Any error: this refers to any error (such as use of jargon,
incorrect frequency, or quantity) in, or omission of any
insulin, syringes, pen needles, or testing equipment.

• Carbohydrate counting refers to the adjustment of the bolus
insulin dose based on the carbohydrate to insulin ratio.

The study investigator (KD) confirmed after the study
coordinators (JL and AS) collected these data. All study staff
received training using a standardized slide set and in-person
instructions.

Data collection was conducted using REDCap, which features
branching logic relative to each discharge order as relevant.
Each patient was interviewed at enrollment to determine the
supplies needed at the time of discharge. Post discharge,
self-reported insulin dosing and hypoglycemia were solicited
by the study coordinator.

Secondary outcomes also included HbA1c at 12 weeks; fasting
glucose at 12 and 24 weeks; and the proportion of participants
achieving an HbA1c level of <7% (53 mmol/mol), an HbA1c

level of <6.5% (48 mmol/mol), or an individualized HbA1c

target, defined using the Health Care Effectiveness Data and
Information Set (HEDIS) criteria [24]. HbA1c levels and health
care use data were collected at study visits or extracted from
the EMR (when available) for participants with missing data.

All secondary outcomes were prespecified, except for hospital
readmission, which was considered an exploratory outcome.

All outcomes were assessed according to the group originally
assigned. Follow-up data, including primary and secondary
outcomes, were analyzed using generalized linear mixed models.
Continuous outcomes were analyzed using linear mixed models,
assuming an unstructured covariance matrix for residual errors,
and binary outcomes were analyzed using logistic regression
models containing random subject-specific intercepts. For some
binary outcomes, we could not fit mixed models because of
small cell counts. In these cases, data were analyzed
cross-sectionally using separate logistic regression models fitted
to the data at each time point or Fisher’s exact test, depending
on the number of events. All models were adjusted for potential
confounders, which we defined as any factors measured at
baseline related to the outcome (P<.10) that differed by a
meaningful amount across treatment arms (difference in
proportions of 10% or more, difference in means of 0.5 SDs or
more) at any follow-up visit (Table S2 in Multimedia Appendix
1). In the primary analysis (change in HbA1c), we also adjusted
for risk factors identified a priori (age, insulin dose at discharge,
and whether the patient was new to insulin) to increase the
precision of our treatment effect estimate. In secondary analyses,
the Holm method [24] was used to account for multiple
comparisons performed at 2, 6, 12, and 24 weeks [25].
Differences in the components ordered at discharge were
analyzed using the Fisher Exact Test. Analyses were performed
using SAS (version 9.4) and JMP 13.1 (SAS Inc).

Ethics Approval
This study was approved by the Ohio State University
Institutional Review Board (2017H0354), and all patients
provided informed consent.

Results

Overview
A total of 158 patients signed a consent form (Multimedia
Appendix 2). Three patients did not receive the study
intervention owing to a withdrawal of consent (2 patients, 1 in
each study arm) or no longer qualified owing to a switch to
U500 insulin before discharge (1 patient who was randomized
to the DOS arm did not receive the intervention (Gla-300)
because the patient was treated with U500 insulin, a regimen
that does not require basal insulin). The participants had a mean
age of 52 (SD 10.2) years, a median duration of diabetes of 11
years, and 81.9% (127/155) were on insulin therapy before
hospital admission. Baseline characteristics of each group are
presented in Table 1. The treatment groups were similar except
for an imbalance in diabetes duration, marital status, and
neuropathy.
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Table 1. Patient characteristics (number of patients overall: N=158; patients in the enhanced standard care [ESC] arm: n=76; patients in the discharge
order set [DOS] arm: n=82).

DOSESCOverall

52 (10.1)51.4 (10.5)51.7 (10.2)Age (years), mean (SD)

35 (42.7)33 (43.3)68 (43)Male, n (%)

40 (48.8)34 (44.7)74 (46.8)White,a,b n (%)

2 (2.4)1 (1.3)3 (1.9)Hispanic, n (%)

10 (6-15)14 (7-20)11 (7-20)Diabetes duration (years), median (IQR)

38.4 (10.1)38.1 (8.7)38.2 (9.5)BMI (kg/m2), mean (SD)

Past medical history, n (%)

70 (85.4)64 (84.2)134 (84.8)Hypertension

53 (64.6)45 (59.2)98 (62)Hyperlipidemia

26 (31.7)18 (23.7)44 (27.9)Coronary artery disease

20 (24.4)17 (22.4)37 (23.4)Heart failure

9 (11)12 (15.8)21 (13.3)Cerebrovascular disease

9 (11)5 (6.6)14 (8.9)Peripheral vascular disease

12 (14.6)16 (21.1)28 (17.7)Retinopathy

20 (24.4)19 (25)39 (24.7)Nephropathy

36 (43.9)45 (59.2)81 (51.3)Neuropathy

Estimated glomerular filtration rate (mL/min/1.73 m2), mean (SD)

58 (70.7)51 (67.1)109 (69)>60

18 (22)21 (27.6)39 (24.7)30-60

6 (7.43)4 (5.3)107 (6.3)<30

3 (2-5)3 (2-4.75)3 (2-5)Charlson Comorbidity Index (total score), median (IQR)

Education, n (%)

5 (6.1)10 (13.2)15 (9.5)Less than high school

63 (76.8)55 (72.4)118 (74.7)High school or equivalent

14 (17.1)11 (14.5)25 (15.8)Bachelor’s degree

Marital status, n (%)

24 (29.3)22 (30)46 (29.1)Single, never married

41 (50)25 (32.9)66 (41.8)Married or domestic partnership

17 (20.7)29 (38.2)46 (29.1)Divorced, separated, or widowed

Work status, n (%)

30 (36.6)33 (43.4)63 (39.9)Employed

12 (14.6)11 (14.5)23 (14.6)Unemployed

11 (13.4)10 (13.2)21 (13.3)Retired

29 (35.4)22 (29)51 (32.3)Unable to work

Home ownership, n (%)

30 (36.6)28 (36.8)58 (36.7)Own

52 (63.4)48 (63.1)100 (63.3)Other

Insurance, n (%)

4 (4.9)7 (9.2)11 (7)None

30 (36.7)22 (29.0)52 (32.9)Private

17 (20.7)18 (23.7)35 (22.1)Medicare
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DOSESCOverall

31 (37.8)29 (38.2)60 (38)Medicaid

Primary reason for admission, n (%)

19 (23.2)21 (27.6)40 (25.3)Cardiovascular

8 (9.8)8 (10.5)16 (10.1)Gastrointestinal

16 (19.5)12 (15.8)28 (17.7)Infectious disease

39 (47.6)35 (46.1)74 (46.8)Other

Admission service, n (%)

17 (20.7)16 (21.1)33 (20.9)General medicine

2 (2.4)3 (4)5 (3.2)Family medicine

8 (9.8)15 (19.7)23 (14.5)Cardiology

4 (4.9)2 (2.6)6 (3.8)Surgery

11 (13.6)8 (10.5)19 (12.1)Admission severe hyperglycemia,c n (%)

5 (3-8)5 (3-8)5 (3-8)Hospital length of stay (days), median (IQR)

36 (43.9)26 (34.2)62 (39.2)Diabetes consult, n (%)

18 (22)11 (14.5)29 (18.4)Education consult, n (%)

Admission diabetes medications, n (%)

64 (79)63 (82.9)127 (80.9)Any insulin

62 (76.5)64 (84.2)126 (80)Basal insulin

0 (0)1 (1.3)1 (0.64)Premix insulin

42 (51.9)40 (52.6)82 (52.2)Bolus insulin

28 (34.2)25 (32.9)53 (33.5)Metformin

5 (6.1)7 (9.2)12 (7.6)Sulfonylurea or glinide

7 (8.5)4 (5.3)11 (7)SGLT2d inhibitor

2 (2.4)4 (5.3)6 (3.8)DPP-4e inhibitor

12 (14.6)14 (18.4)26 (16.5)GLP-1f receptor agonist

1 (1.2)0 (0)1 (0.63)Other

Other admission medications, n (%)

63 (76.8)57 (75)120 (76)Statin

39 (47.6)41 (54)80 (50.6)ACEIg or ARBh

36 (43.9)37 (46.7)73 (46.2)β-blocker

4 (4.9)1 (1.3)5 (3.2)Glucocorticoids

42 (51.2)42 (55.3)84 (53.2)Aspirin

Discharge diabetes medications

68 (37.8-112.5)74 (43-116)68 (42-115)Total insulin dose (unit), median (IQR)

0.69 (0.39-1.03)0.59 (0.39-1.03)0.61 (0.38-1.03)Total insulin dose (unit/kg/day), median (IQR)

41 (30, 78.7)50 (30, 74)41 (30, 75)Basal insulin

60 (80)63 (79)123 (79)Bolus insulin

30 (37.5)26 (34.7)56 (36.1)Metformin, n (%)

3 (3.8)3 (4)6 (3.8)Sulfonylurea or glinide, n (%)

0 (0)5 (6.7)5 (3.2)SGLT2-inhibitor, n (%)

4 (5)6 (8)10 (6.5)DPP-4 inhibitor, n (%)

10 (12.5)14 (18.7)24 (15.5)GLP-1 receptor agonist, n (%)
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DOSESCOverall

4.3 (3.9-4.8)4.4 (4-4.8)4.4 (4-4.8)Diabetes empowerment scale [26], median (IQR)

5 (3-6)4 (2-6)4 (2-6)Functional health literacy [27], median (IQR)

5.9 (4.7-6.8)6.1 (5-6.8)6 (4.9-6.8)Multidimensional scale of perceived social support [28], median (IQR)

aRace was categorized as White (46.5%), Black (52.3%), Asian (0.65%), or other (0.65%).
bChi-square analysis could not be performed owing to insufficient cell count.
cAdmission for diabetic ketoacidosis, nonketotic hyperglycemic hyperosmolar state, or diabetes as the primary indication for admission.
dSGLT2: sodium-glucose cotransporter-2.
eDPP-4: dipeptidyl peptidase-4.
fGLP-1: glucagon-like peptide-1.
gACEI: angiotensin-converting enzyme inhibitor-1.
hARB: angiotensin receptor blocker.

Discharge Orders
Discharge data were available in 75 participants in the ESC arm
and 80 participants in the DOS arm. Analysis of discharge orders
is shown in Table 2. Among patients reporting an insufficient
supply, those in the DOS arm were more likely to receive
prescriptions for bolus insulin (21/27, 78%, vs 12/27, 44%;
P=.01), needles and syringes (18/19, 95%, vs 15/24, 63%;
P=.03), and glucometers (24/28, 86%, vs 9/25, 36%; P<.001).
During hospitalization, most participants reported sufficient
home supplies of bolus insulin (78/119, 66%), lancets (80/155,
52%), and a glucometer (102/155, 66%). However, needles and
syringes were sufficient in only 7% (3/46) of patients, and test
strips were sufficient in only 43% (66/155). No continuous or
intermittently scanned glucose monitors were used. Overall,

the errors in discharge orders were similar between the arms
(44/80, 55%, in DOS vs 51/75, 68%, in ESC). Among patients
in need of a bolus insulin prescription, errors occurred in 53%
(9/17) of the DOS group and 79% (19/24) of the ESC group
(P=.10). Medical jargon was present in 29% (5/17) of the DOS
group and 38% (9/24) of the ESC group (P=.74). Patients in
the DOS arm were more likely to receive needles or syringes
in the correct quantity (17/19, 89%, vs 14/24, 58%; P=.04). The
number of participants reporting a need for test strips or lancets
who received both was 79% (27/34) in the DOS group and 59%
(23/46) in the standard of care group (P=.08). For those who
were prescribed bolus insulin and who reported needing supplies
at baseline, 94.1% (16/17) in the DOS and 57.1% (12/21) in the
standard of care received both prescriptions (P=.01).
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Table 2. Discharge order set.

P valueaDischarge order setEnhanced standard careOverall

Nn (%)Nn (%)Nn (%)

Bolus insulin

.998063 (78)7560 (80)155123 (79.4)Bolus insulin at discharge

.136245 (73)5733 (58)11978 (65.6)Home supply sufficient

.012721 (78)2712 (44)5433 (61.1)Prescription providedb

.74175 (29)249 (38)4114 (34.1)Jargon presentb

.10249 (53)2419 (79)4128 (68.3)Any bolus error presentb,c

.48793 (4)735 (7)1528 (5.3)Carbohydrate countingd

Basal insulin

.138056 (71)7544 (59)155100 (64.9)Correct basal insulin ordered

Needles and syringes

.99201 (5)262 (8)463 (6.5)Home supply sufficient

.031918 (95)2415 (63)4333 (76.7)Prescription providedb

.041917 (89)2414 (58)4331 (72.1)Correct quantityb

Glucometer

.878052 (65)7550 (67)155102 (65.8)Glucometer at home

<.0012824 (86)259 (36)5333 (62.3)Prescription providedb

Test strips

.998034 (43)7532 (43)15566 (42.6)Home supply sufficient

.124634 (74)4325 (58)8959 (66.3)Prescription providedb

.124634 (74)4325 (58)8959 (66.3)Correct quantityb

Lancets

.268045 (56)7535 (47)15580 (51.6)Home supply sufficient

.053527 (77)3921 (54)7448 (64.9)Prescription providedb

.053527 (77)3921 (54)7448 (64.9)Correct quantityb

.108044 (55)7551 (68)15595 (61.3)Any error

aP values with statistical significance are italicized.
bAmong patients with insufficient supply and in need of a prescription.
cBolus error refers to any error in frequency or quantity or the use of jargon, technical terms, or abbreviations in the discharge instructions.
dAdjusting bolus insulin dose based on the carbohydrate to insulin ratio.

HbA1c and Glucose

HbA1c and glucose measurements are shown in Table 3. HbA1c

was available in 54 participants in each arm at 12 weeks, and
44 and 45 participants in the DOS and ESC arms, respectively,
at 24 weeks. The remaining participants were lost to follow-up.
There was no difference in baseline characteristics according
to HbA1c availability at weeks 12 or 24 (Table S3 in Multimedia
Appendix 1). The change in HbA1c at 12 weeks was −2% (SD
0.3%; 22, SD 3.3 mmol/mol) vs −1.4% (SD 0.3%; 15, SD 3.3
mmol/mol) at 12 weeks and −2.1% (SD 0.3%; 23, SD 3.3
mmol/mol) vs −1.0% (SD 0.3%; 11, SD 3.3 mmol/mol) at 24

weeks in the DOS and ESC arms, respectively. The differences
between the groups were not significant after adjustment for
age, neuropathy, total daily insulin dose, and reason for
hospitalization. The proportions of participants achieving a
target HbA1c level of <7% (53 mmol/mol) or <6.5% (48
mmol/mol) were similar. Participants in the DOS arm were
more likely to achieve an HbA1c level below their HEDIS target
at 12 weeks (22/54, 41%, vs 9/54, 17%; odds ratio [OR] 3.29,
95% CI 1.32-8.13; P=.01); although this association did not
persist for 24 weeks (16/45, 36%, vs 9/45, 20%; OR 2.10, 95%
CI 0.80-5.55; P=.13). Fasting glucose levels were similar
between the groups at the 12- and 24-week study visits.
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Table 3. Follow-up glucose and glycated hemoglobin (HbA1c) data.

24 weeks12 weeks

P valueaDischarge order
set

Enhanced stan-
dard care

P valueaDischarge order
set

Enhanced stan-
dard care

HbA1c
b

N/AN/AN/AN/Acn=79n=73Number at discharge

N/AN/AN/AN/A10.7 (9.5-11.9)10.9 (9.8-12)Discharge HbA1c (%), median (IQR)

N/AN/AN/AN/A93 (80-107)96 (67-108)Discharge HbA1c (mmol/mol), median (IQR)

N/An=44n=45N/An=54n=54Number at follow-up

N/A8.3 (7.5-10)9.5 (7.8-12.2)N/A8.7 (7.2-10.1)8.9 (8.1-11.3)Observed data (%), median (IQR)

N/A67 (58-86)80 (62-110)N/A72 (55-87)74 (65-100)Observed data (mmol/mol), median (IQR)

N/A−2.1 (0.3)−1.0 (0.3)N/A−2 (0.3)−1.4 (0.3)Change from baseline (%),d mean (SE)

N/A23 (3)11 (3)N/A22 (3)15 (3)Change from baseline (mmol/mol),d mean (SE)

.01−1.1 (0.4)Reference.18−0.6 (0.4)ReferenceDifference in change,d,e mean (SE)

.09−0.7 (0.4)Reference.20−0.5 (0.4)ReferenceAdjusted difference in change,d,e,f mean (SE)

.683 (6.8)2 (4.4).167 (13.0)2 (3.7)HbA1c <7% (53 mmol/mol),g n (%)

.123 (6.8)0 (0).364 (7.4)1 (1.9)HbA1c <6.5% (48 mmol/mol),g n (%)

16 (36.4)9 (20)22 (40.7)9 (16.7)HbA1c <HEDISh target, n (%)

.132.1 (0.8-5.55)Reference.013.29 (1.32-8.13)ReferenceHbA1c <HEDIS target,i ORj (95% CI)

Point-of-care glucose

N/An=20n=21N/An=27n=27Fasting only

N/A152.5 (127.3-
247.3)

209 (129.5-234)N/A166 (142-239)212 (149-258)Observed data, median (IQR)

.39−26.5 (30.3)Reference.44−18 (23)ReferenceAdjusted difference,e mean (SE)

N/An=33n=33N/An=45n=40Any

N/A161 (134-230)209 (136.5-295)N/A179 (150.5-
144.5)

209.5 (133.8-
258)

Observed data, median (IQR)

.17−30.4 (21.9)Reference.25−23.9 (20.8)ReferenceAdjusted differencek

aEstimated using a linear mixed model.
bData for follow-up HbA1c levels were collected at study visits and, when possible, extracted from the electronic medical records. All other data were
obtained during the study visits. One death occurred at 24 weeks in the DOS group.
cN/A: not applicable.
dChange from baseline in discharge order set; change from baseline in enhanced standard care.
eAdjusted for age, work status, insurance, and functional health literacy scores. Two participants were excluded from the analysis because of missing
functional health literacy scores.
fAdjusted for age, neuropathy, total daily insulin dose, insulin before admission, reason for hospitalization, and metformin use at discharge.
gMixed models could not be fit owing to small cell sizes; Fisher Exact Tests were performed instead.
hHEDIS: Health Care Effectiveness Data and Information Set (target is <8% if age ≥65 years or known history of ischemic vascular disease, heart

failure, advanced kidney disease [estimated glomerular filtration rate of <30 mL/min/1.73 m2], dementia, proliferative retinopathy or blindness, advanced
neuropathy [history of ulcer or amputation], or history of severe hypoglycemia; otherwise, goal is <7%).
iEstimate (95% CI). From separate logistic regression models fitted to data at each time point, odds ratios adjusted for baseline HbA1c but not for
confounders, owing to small cell counts.
jOR: odds ratio.
kAdjusted for marital status, insurance, and bolus insulin use at admission.
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Health Care Use
Readmissions within 30 days (exploratory outcome) occurred
in 17 (13%) of the participants. Among all participants, primary
care follow-up was 55%, 74%, and 87% at 2, 6, and 12 weeks
while endocrinology visits occurred in 23%, 27%, and 52% of
participants at 2, 6, and 12 weeks, respectively. Emergency
department visits, readmission rates, primary care, and
endocrinology follow-up visits were similar between the groups
(Table S4 in Multimedia Appendix 1).

Diabetes Medications and Hypoglycemia
The basal insulin dose and initiation of glucose-lowering
medications were similar between the groups at follow-up
(Tables S4 and S5 in Multimedia Appendix 1). At the 2- and
24-week follow-ups, changes in basal insulin dose were similar.
However, patients in the DOS arm were significantly more
likely to have an increase in basal insulin dose at 12 weeks
(25/45, 53%, vs 8/38, 21%; OR 4.70, 95% CI 1.63-13.52), and
the difference at 6 weeks was marginally significant (16/34,
49%, vs 8/9, 23%; OR 3.53, 95% CI 1.18-10.62). Patients in
the DOS group were also more likely to have a decrease in basal
insulin dose at 12 weeks (13/45, 28%, vs 1/38, 3%; P=.009),
but not at other time points (Table S4 in Multimedia Appendix
1). Basal insulin adherence was similar at all follow-up time
points (Table S4 in Multimedia Appendix 1). Hypoglycemic
events were similar between the groups (Table S4 in Multimedia
Appendix 1).

Discussion

Principal Findings
In this study, an insulin-specific DOS was developed to address
barriers to prescribing insulin and to improve hospital transition
of care among persons with T2D. The DOS resulted in
improvements in prescriptions for bolus insulin, needles, and
testing supplies, but did not improve order clarity. Follow-up
data were available for a subset of patients for whom there were
favorable trends in adjusted HbA1c levels, despite early
discontinuation of study recruitment. These data from the first
study to implement a dedicated DOS among hospitalized
patients with T2D requiring insulin provide important insights
for optimizing hospital diabetes discharge programs.

Discharge Orders
Medication reconciliation is a cognitively demanding task,
particularly when insulin is involved. Despite the readily
available electronic medication reconciliation functionality,
there is still an opportunity to improve discharge orders for
insulin. In this study, a DOS improved the frequency of missing
prescriptions for insulin and glucose monitoring supplies. This
is of critical importance, because disruption of insulin therapy
is a known predictor of hospital readmission, higher HbA1c

levels, and increased costs [15]. Moreover, the omission of
preadmission diabetes therapies at discharge is associated with
higher readmission and mortality rates [15,29,30]. These
findings are novel in that proposed interventions to date have
included individual provider education, traditional quality
improvement initiatives, or hiring pharmacists rather than
enhancing electronic decision support [31-34]. Although not

an integral component of the DOS studied here, we observed
no significant change in the proportion of patients who were
prescribed metformin and other noninsulin therapies from
admission to discharge. Future iterations should also consider
the optimization of noninsulin therapies, particularly to reduce
cardiorenal risk [34].

However, there are opportunities to improve the clarity of insulin
instructions in the EMR. Dosing fields are typically inadequate,
resulting in the need to use free text fields or provide discharge
instructions via a separate workflow that is external to the
electronic medication reconciliation process [11]. Additional
customization could include fields that account for oral intake,
glucose level, or time of day, guide patient self-titration, or
calculate the quantity dispensed. In particular, decision support
could provide guidance for converting flexible meal dosing (the
standard practice at the study institution) to fixed meal dosing,
which is more appropriate for many patients. Additional benefits
could be achieved by implementing a remote monitoring
program postdischarge and device integration (smart insulin
pen and glucose monitor) within the EMR. Ironically, one
artifact may have been introduced by the multifaceted
intervention itself, which required a switch in basal insulin at
discharge, often late in hospitalization and possibly after other
discharge orders were populated. Following the closure of the
study and after obtaining feedback from the institution’s
multidisciplinary inpatient Glucose Management Committee,
additional revisions to the DOS were made, including presenting
pens as the preferred choice and adding concentrated and
premixed insulin orders.

Follow-up Data
In this study, HbA1c reduction was evident in both groups, likely
owing to the provision of insulin therapy (at least, in part). The
individualized HEDIS goal was reached by more patients in the
DOS group at 3 months, but there was a waning of effect from
3 to 6 months as the intervention intensity decreased. This
phenomenon has been previously described and underscores
the need for ongoing high frequency care [10]. The HbA1c

reduction was similar to or somewhat smaller in magnitude
compared with other prospective nonrandomized studies of
recently hospitalized patients [35,36].

A greater proportion of participants had an increase in the basal
insulin dose in the DOS group at 6 and 12 weeks but not at 2
weeks, compared with the ESC group. This emphasizes the
utility of early hospital follow-ups to review any prescription
needs, assess the patient’s understanding of the diabetes
regimen, obtain a history of hyperglycemia or hypoglycemia,
and remind patients to perform self-titration where relevant.
Moreover, early visits could address the need for prandial insulin
(to avoid overreliance on basal insulin) if not already prescribed
and noninsulin therapies. At the 12-week time point, it is
important to establish a plan for continued frequent contact
(such as monthly visits by a pharmacist or nurse) to maintain
early success.

Despite a favorable trend in HbA1c levels, hypoglycemia was
similar in both the groups. While the total daily dose of insulin
was reasonable at 0.61 unit/kg, patients tended to have
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basal-heavy regimens and might have benefited from a dose
reduction at discharge to further reduce the frequency of
hypoglycemia [36].

While the study population was generalizable owing to the broad
inclusion criteria, the limited follow-up data greatly impacted
the ability to assess the external validity of the postdischarge
component of the intervention. This study was not designed to
address many barriers to successful transitions of care, including
clinical inertia, as well as patient-specific factors such as mental
health, physical disability, literacy, financial hardship, social
factors, and lack of transportation [14,37]. While formal diabetes
education is of tremendous value in helping prepare patients
for hospital discharge [12,38], it is not widely available or
reimbursable in the hospital setting. Comprehensive models
that incorporate bedside nurses, dietitians, care managers, and
pharmacists, possibly in combination with video or web-based
education resources with timely feedback may help to bridge
the gap in education [12,38,39]. Specially trained navigators,
caseworkers, or community health workers can help address
other barriers. Finally, multilevel interventions should
incorporate frequent contact, target the highest-risk patients,
and span multiple domains of care [40,41]. Access to and quality
of care should improve as telehealth visits and remote glucose
monitoring become mainstream.

Limitations
As noted in the previous paragraph, the limitations of the study
relate to loss to follow-up, even within the context of specifically
dedicated study staff and other enhancements. The COVID-19

pandemic presented the largest barrier to carrying out study
procedures, as dropout was more common among patients who
were enrolled in the 6 months before the start of the pandemic.
Unfortunately, we were able to address this issue only partially
with telehealth or minimal contact strategies; this highlights the
overall vulnerability of our patient population. Furthermore, it
is unknown whether similar results would be achieved in other
populations (type 1 diabetes, noninsulin requiring, and broader
age range). As with other multicomponent interventions, it is
difficult to discern which components of the discharge
instruction or nursing support were the primary determinants
of success. Finally, while the DOS increased the completeness
of diabetes medications at discharge, it was launched by the
study team to understand its utility under optimal use. Thus, an
additional study of the usability, acceptability, and
implementation of the DOS is needed. For example, it would
have been useful to quantify the time saved through the use of
the order set owing to the presence of prefilled fields and
decision support.

Conclusions
An intervention that included electronic DOS plus postdischarge
nurse phone calls resulted in more complete discharge
prescriptions for insulin and related supplies. However, there
is an opportunity to improve the clarity of the instructions. Post
discharge HbA1c levels showed favorable trends, but
interpretation of data is limited owing to loss of follow-up amid
COVID-19 pandemic restrictions. More intensive interventions
are needed to optimize postdischarge care.
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Gla-300: insulin glargine 300 U/mL
HbA1c: glycated hemoglobin
HEDIS: Health Care Effectiveness Data and Information Set
OR: odds ratio
REDCap: Research Electronic Data Capture
T2D: type 2 diabetes mellitus
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Abstract

Background: Diabetes is a chronic condition that necessitates regular monitoring and self-management of the patient’s blood
glucose levels. People with type 1 diabetes (T1D) can live a productive life if they receive proper diabetes care. Nonetheless, a
loose glycemic control might increase the risk of developing hypoglycemia. This incident can occur because of a variety of causes,
such as taking additional doses of insulin, skipping meals, or overexercising. Mainly, the symptoms of hypoglycemia range from
mild dysphoria to more severe conditions, if not detected in a timely manner.

Objective: In this review, we aimed to report on innovative detection techniques and tactics for identifying and preventing
hypoglycemic episodes, focusing on T1D.

Methods: A systematic literature search following the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines was performed focusing on the PubMed, GoogleScholar, IEEEXplore, and ACM Digital Library to
find articles on technologies related to hypoglycemia detection in patients with T1D.

Results: The presented approaches have been used or devised to enhance blood glucose monitoring and boost its efficacy in
forecasting future glucose levels, which could aid the prediction of future episodes of hypoglycemia. We detected 19 predictive
models for hypoglycemia, specifically on T1D, using a wide range of algorithmic methodologies, spanning from statistics (1.9/19,
10%) to machine learning (9.88/19, 52%) and deep learning (7.22/19, 38%). The algorithms used most were the Kalman filtering
and classification models (support vector machine, k-nearest neighbors, and random forests). The performance of the predictive
models was found to be satisfactory overall, reaching accuracies between 70% and 99%, which proves that such technologies
are capable of facilitating the prediction of T1D hypoglycemia.

Conclusions: It is evident that continuous glucose monitoring can improve glucose control in diabetes; however, predictive
models for hypo- and hyperglycemia using only mainstream noninvasive sensors such as wristbands and smartwatches are foreseen
to be the next step for mobile health in T1D. Prospective studies are required to demonstrate the value of such models in real-life
mobile health interventions.

(JMIR Diabetes 2022;7(3):e34699)   doi:10.2196/34699

KEYWORDS

type 1 diabetes; hypoglycemia; predictive models; continuous glucose monitoring; heart rate variability; artificial intelligence

Introduction

Diabetes is a recurrent condition that involves constant control
and self-management of the patient’s blood glucose. Improper
regulation of blood glucose levels in patients with type 1

diabetes (T1D) can lead to severe problems, such as kidney and
heart failure, stroke, and blindness [1]. In contrast, through
appropriate care for diabetes, a patient can live a prosperous
life. Nevertheless, an overly strict glycemic control can raise
the likelihood of developing hypoglycemia, a rapid decrease in
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blood glucose levels, which may lead to coma and potentially
death if proper care is not taken immediately.

The concern of hypoglycemia is a barrier to successful
hyperglycemic control, as it encourages insulin underdoing.
Methods of reducing hypoglycemia occurrences include
instruction and counseling to increase hypoglycemia recognition
in time, as well as the development of predictive technological
approaches that could reduce the occurrences of hypoglycemia.
Blood glucose self-monitoring requires a blood sample to be
collected on many occasions throughout the day. Currently, the
use of continuous glucose monitoring (CGM) systems allows
the collection of blood glucose level information in real time.
In contrast, modern wearables can produce and analyze great
amounts of data, which is the reason why modern technologies
are frequently used in conjunction with these products to process
and retrieve valuable information from the collected data. They
also have several different monitoring capabilities, such as GPS,
heart rate, electrocardiogram (ECG), and skin temperature,
which are all important for the assessment of diabetes-related
indicators [2]. Furthermore, several key indicators for the
physical and mental health state of patients with T1D, such as
blood glucose levels, calories, physical activity, and stress level,
can be monitored by evaluating the data obtained from
wearables. The main advantage of these devices is their ability
to keep track of the patient’s daily routine in a continuous and
discreet manner without affecting their normal everyday
activities.

Artificial intelligence algorithms have been widely used to
predict diabetes or as diagnostic tools, especially for type 2
diabetes [3]. Machine learning models have been used to predict
the near future blood glucose levels and inform patients to take
appropriate actions in advance to avoid a hypo- or
hyperglycemic episode [4]. An accurate predictor could improve
the quality of life of patients with T1D.

The aim of this paper was to review the emerging detection
methods and approaches for the identification of hypoglycemia
episodes. Specifically, we investigated the methods used or
invented to improve blood glucose monitoring and increase its
effectiveness to estimate future glucose levels; this could
contribute to the prediction process of future episodes of
hypoglycemia. Overall, these methods are highly valuable based
on whether they can aid the prediction process, which is critical
in avoiding a potentially dangerous hypoglycemic episode that
could lead to major health consequences. Finally, we discuss
prediction approaches aimed at the early identification and
prevention of nocturnal hypoglycemia episodes, which could
lead to “dead-in-bed” syndrome if not identified early. These
approaches are categorized as mentioned previously, and their
proposed techniques are discussed.

Methods

Article Identification
A systematic literature search following the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)

guidelines [5] was performed. For this research, we used
PubMed, GoogleScholar, IEEEXplore, and ACM Digital Library
to find articles about technologies related to hypoglycemia
detection in patients with T1D. After exploring and combining
many search terms to ensure having the broadest results, we
used the following terms: “hypoglycemia,” “prediction,”
“detection,” “continuous glucose monitoring,” “CGM,” “type
1 diabetes,” “T1D,” “HRV,” “heart rate variability,” “machine
learning,” and “deep learning.”

Inclusion and Exclusion Criteria
The search was performed in June 2021 and was restricted to
articles from 2005 onward. In parallel, an alert was set to avoid
missing articles. References of selected articles were analyzed
to extract other related articles, and a complementary search in
Google Scholar was used to find further information when
necessary and complete the review with original works on each
subtopic identified. All the authors deliberated and agreed on
the inclusion and exclusion criteria. In case of disagreements,
these were resolved through discussion among the authors to
reach a consensus. In the first step of the screening process,
journal articles and conference papers were deemed suitable for
inclusion, whereas letters, correspondence, and review articles
were excluded from this systematic review. Articles reporting
on new glucose sensors that exhibit a linear detection range
wide enough for blood or interstitial measurement were eligible.
For prediction algorithms, the eligible articles had to report
methods for glucose prediction and present details on the data
sets used, methodology, and performance metrics. We included
algorithms that predicted glucose values in a defined prediction
horizon, as well as those that specifically predicted
hypoglycemic events up to a maximum of 24 hours in the future.
To be eligible, a study had to focus on hypoglycemia or include
hypoglycemia prediction or detection techniques based on
patient data. The patient group had to have T1D, whereas the
trials had to have a control group. Studies that described the
same methodology and technology as an already included study
without significant distinction were excluded. We excluded
trials that focused on the primary prevention of diabetes, those
targeting gestational diabetes, those pertaining to a closed-loop
or artificial pancreas system, and those that primarily focused
on type 2 diabetes.

Results

Study Selection
In total, the aforementioned literature search gave 397 results.
Of the 397 records, 382 (96.2%) were screened after the removal
of 15 (3.8%) duplicates, and 348 (87.7%) articles were excluded
as they did not meet our eligibility criteria. After reading the
full text of the remaining 34 articles, complimentary alerts
helped to add 3 more articles that were also evaluated based on
the aforementioned screening process, resulting in the inclusion
of 19 eligible articles in total. Figure 1 presents the PRISMA
flow diagram [5], illustrating the search and screening procedure
of this review.
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Figure 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram presenting the search and screening
strategy followed in this systematic review.

Study Characteristics
Prediction algorithms aid in further enhancement of the quality
of life of patients with T1D and their ability to avoid
hypoglycemia. They enable patients to intervene early and
successfully for the prevention of hypoglycemia episodes.
Several of the approaches introduce novel algorithms for

predicting hypoglycemia. However, only a few of them sought
to assess their clinical efficacy and advantages in real-life
settings. The details of each reviewed study are presented in
Table 1, where we report the publication, the data set used, the
technique on which the predictive model is based, and the
resulting accuracy of the model.
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Table 1. Summary of the reviewed hypoglycemia prediction approaches.

ResultTechniqueAge
(years)

Data setDurationStudy

K-nearest neighbors>1811 computer-generated
adults through UVA-Padova

T1Da Simulator

500 simulated
days

Mordvanyuk et al
[6], 2017

• Accuracy 83.64%

Autoregressive models of
higher and lower orders;
state space model

Mean 7
(SD 3)

6 patients from diabetes re-
search in children network
(DirecNet)

6 weeksPaul et al [7], 2015 • Relative error (higher autore-
gressive) –7%

• Relative error (lower autore-
gressive) –24%

• Relative error (state space)
–12%

SVMbMean 44
(SD 15)

10 male patients with T1D2 experimental
sessions for each
participant

Jensen et al [8],
2013

• AUCc-ROCd 0.962

• Sample-based sensitivity
81%

• Sample-based specificity
93%

• Event-based sensitivity 100%

Classification treeN/AMultiparameter Intelligent
Monitoring in Intensive
Care Database II

N/AeZhang et al [9],
2008

• Accuracy 86%
• Sensitivity 89.87%

LRf and RFgMean 11
(SD 10)

112 patients with T1D90 daysDave et al [10],
2020

• Sensitivity (LR) 91.85%
• Specificity (LR) 96.25%
• Sensitivity (RF) 94.20%
• Specificity (RF) 96.67%

Absolute predicted glucose
values; cumulative sum; ex-

Mean 12.5
(SD 5.5)

54 patients with T1D24 hoursEren-Oruklu et al
[11], 2010

• Sensitivity 89%, 87.5%, and
89%

ponentially weighted mov-
ing average

• Specificity 67%, 74%, and
78%

Linear projection; Kalman
filtering; hybrid infinite im-

Mean 21
(SD 7.5)

40 patients with T1DOvernightChase et al [12],
2010

• Sensitivity 84%

pulse; statistical prediction;
numerical logical algorithm

Kalman Filtering≥1819 patients with T1D 21 nightsBuckingham et al
[13], 2013

• AUC algorithm 1 71%
• AUC algorithm 2 90%
• AUC algorithm 3 89%

Support vector for regres-
sion

Mean 42
(SD 23)

15 patients with T1DFrom 5 to 22
days

Georga et al [14],
2013

• Sensitivity (30-minute hori-
zon) 92%

• Sensitivity (60-minute hori-
zon) 96%

SVM>1810 patients with T1D12 weeksBertachi et al [15],
2018

• Sensitivity 78.75%
• Specificity 82.15%

MLPh neural networks re-
gressor

Mean 46
(SD 38)

93 patients with T1D4 monthsVahedi et al [16],
2018

• Mean absolute percentage er-
ror RF regressor 27.9%

• Mean absolute percentage er-
ror MLP regressor 29.6%

Gradient boosting decision
tree

N/A1 patient with T1D1 weekMaritsch et al [17],
2020

• Accuracy 82.7%
• Sensitivity 76.7%
• Specificity 84.2%

Deep belief neural network
and restricted Boltzmann
machines

<1815 children with T1D10 hours
overnight

San et al [18],
2016

• Sensitivity 80%
• Specificity 50%
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ResultTechniqueAge
(years)

Data setDurationStudy

• 30-minute prediction horizon

(mg/dL) RMSEk 19.10;

MAEl 13.59; glucose RMSE
22.08

• 60-minute prediction Horizon
(mg/dL) RMSE 32.61; MAE
24.25; glucose RMSE 38.04

Deep neural networks;

LSTMi; artificial RNNj
Mean 50
(SD 30)

12 patients with T1D from
the OhioT1DM data set

8 weeksKuang et al [19],
2021

• RMSE 20.1 mg/dLDilated RNN and transfer
learning

Mean 49
(SD 31)

10 computer-generated
adults through the UVA-
Padova T1D Simulator and
6 patients with T1D from
the OhioT1DM data set

360 days (simula-
tion) and 8 weeks
(clinical trial)

Zhu et al [20],
2020

• Adults: glucose TIRm 93%
• Children: glucose TIR 83%

Deep reinforcement learn-
ing; double dilated RNN

>18 and
<18

10 computer-generated
adults and 10 computer-
generated children through
the UVA-Padova T1D Sim-
ulator

6 monthsLi, K, unpublished
data, October 2019

• Computer-generated patients:
RMSE <5 mg/dL

• Real patients: RMSE <10
mg/dL

LSTM and RNNN/A40 computer-generated
adults through the AIDA
Diabetes software and 9 pa-
tients with T1D from the
D1NAMO Open data set

10 days (simula-
tion) and 4 days
(clinical trial)

Munoz-Organero
et al [21], 2020

• Model validation is in
progress because of the lack
of patient data variety

Decision treeN/A1 patient with T1D5 daysRanvier et al [22],
2016

• Accuracy 99%
• Sensitivity 79%

Forward selection and linear
LR

Mean 44
(SD 15)

10 patients with T1D2 daysCichosz et al [23],
2014

aT1D: type 1 diabetes.
bSVM: support vector machine.
cAUC: area under the curve.
dROC: receiver operating characteristic.
eN/A: not applicable.
fLR: logistic regression.
gRF: random forest.
hMLP: multilayer perceptron.
iLSTM: long short-term memory.
jRNN: recurrent neural network.
kRMSE: root mean square error.
lMAE: mean absolute error.
mTIR: time in target range.

Hypoglycemia Prediction Algorithms
In a study by Mordvanyuk et al [6], authors examined 11 profiles
of patients with T1D using the UVA-Padova T1D Simulator,
which is a system developed at the Universities of Virginia and
Padova, through research purposes. In their method, they
presented the use of k-nearest neighbor on patient data, along
with details relevant to a sequence of meals, to forecast a
possible hypoglycemic or hyperglycemic episode. Their findings
indicate that the use of consecutive data can dramatically
improve the results of the prediction, especially when estimates
determine the type of meal (ie, breakfast, snack, and lunch).
Their approach obtained a sensitivity of 88% when taking into

account only carbohydrate intake, fast-acting insulin dose, and
premeal blood glucose.

In terms of blood glucose prediction, the algorithms used in
these studies include linear autoregressive and state space time
series models, classification algorithms such as the support
vector machine (SVM), classification trees, logistic regression,
and random forest [7-10]. Paul et al [7] studied the use of
generalized autoregressive conditional heteroscedasticity
(GARCHs) models on CGM profiles of young children with
T1D. They aimed to analyze glucose time series and variability,
as well as the feasibility of credible blood glucose level
prediction. The forecasting capabilities of the GARCH
methodology were compared with those of other existing
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modeling techniques, such as lower- and higher-order
autoregressive models and state space models, where the
GARCH method proved to be efficient in recognizing the
variability of the glucose profiles and in providing a more
credible prediction of short-term future blood glucose levels.

Our research was conducted specifically on patients with T1D,
who have the greatest need for this type of prediction algorithm,
as they are more complex because of their high sensitivity to
exogenous factors and their increased blood glucose variability.
In an experiment by Jensen et al [8], the authors established a
pattern classification approach to enhance real-time
hypoglycemia identification. They examined data from 10
patients with T1D, who experienced 17 insulin-induced
hypoglycemic episodes. These episodes were then analyzed to
extract characteristics, including the recent insulin intake time
and the linear regression of the CGM signal, along with other
measures (kurtosis and skewness), at different periods. The
various combinations of features were used in an SVM model,
and its performance was measured, resulting in the detection of
all 17 hypoglycemic incidents, with 1 false positive and a lead
time of 14 minutes.

Zhang et al [9] used a classification learning technique to
forecast hypoglycemic events during a 1-hour time span. A
classification tree was created using a data mining tool, and the
input data comprised blood glucose measurements and insulin
injection frequency. The accuracy and specificity of
hypoglycemia prediction for the classification tree were 86%
and 89%, respectively.

Dave et al [10] investigated 2 different approaches to effectively
detect hypoglycemic episodes. These approaches comprised
logistic regression and random forest. In their machine
learning–based hypoglycemia detection method, they used data
from 112 patients with T1D and relied on an extensive feature
extraction process to identify any possible glucose patterns.
Their final model was developed by considering linear and
nonlinear models and combining the collected features. The
proposed method correctly forecasted hypoglycemic episodes
and achieved high sensitivities close to 95% and 94% and
specificities of approximately 97% and 95% for prediction
horizons of 0 to 15 and 15 to 30 minutes, respectively.

A few studies [11,12] incorporated different algorithms to
improve the performance of their models and take advantage
of the unique qualities of each algorithm. The different
algorithms used in the included approaches were grouped based
on their similarity and are presented in Multimedia Appendix
1.

Eren-Oruklu et al [11] examined 3 different time series–based
methodologies for hypoglycemia forecasting on a data set of
54 patients with T1D. Their approach involved an exponentially
weighted moving average and cumulative sum control chart, as
well as the absolute values of the forecasted blood glucose
levels. Each patient was fitted with a Medtronic CGM device
that obtained blood glucose readings every 5 minutes. They
merged the CGM’s integrated alert with the estimated
hypoglycemia alert, through each of the 3 aforementioned
methodologies. They used a 30-minute prediction horizon,

where the methodologies scored sensitivities of 89%, 87.5%,
and 89%, respectively.

Some of the prediction algorithms used in these studies used
linear regressions or Kalman filters, which are computational
approaches that use prior data to make short-term predictions
and can also be integrated into monitoring equipment. According
to the Diabetes Control and Complications Trial [24], 55% of
hypoglycemic events occur during sleep; hence, some studies
[12,13] addressed the issue of nocturnal hypoglycemia in T1D
and argued that CGM alerts may be ineffective while the patient
is sleeping [12,13].

Chase et al [12] tracked 40 patients who wore GlucoWatch
CGM during the night, and they discovered that 71% of the
patients did not react to the alert throughout the night. They
proposed that when hypoglycemia is expected, the CGM sensor
sends a signal to the pump to cease injecting insulin. To
anticipate hypoglycemia, they used a mathematical model that
used a system that included specific prediction algorithms. These
algorithms were linear projection, Kalman filtering, hybrid
infinite impulse, statistical prediction, and numerical logical
algorithm. Through the use of current and prior glucose levels,
these algorithms forecasted hypoglycemic events. When the
number of algorithms used to forecast a hypoglycemic event
exceeded the specified voting threshold, the alert was activated.
Specifically, when 3 algorithms were used to prompt insulin
pump suspension, nocturnal hypoglycemia was avoided, with
a sensitivity of 60%. Nevertheless, using only 2 of the
algorithms, nocturnal hypoglycemia occurrences were prevented
with a sensitivity of 84%. Finally, this study discovered that
when the voting threshold increases, the prediction rate drops,
although the purpose of their proposed system was to create a
balanced ratio between nocturnal hypoglycemia forecasting and
the probability of false alarms.

A total of 3 prediction algorithm variants were examined in a
21-night randomized study conducted by Buckingham et al [13]
using a Kalman filter–based model. The experiment comprised
19 adult patients with T1D, who were already using the
MiniMed Paradigm REAL-Time insulin pump and Medtronic
Sof-sensor blood glucose sensor. Pump suspension events
occurred on 53% of the intervention nights using the final
algorithm. Preliminary effectiveness results indicated that their
final algorithm reduced nighttime hypoglycemia by
approximately 50%.

Algorithmic Inputs, Process, and Outputs
Through the increasing availability of equipment such as CGMs,
insulin pumps, and physical activity trackers, along with the
counting of carbohydrates by patients with T1D, a wide variety
of data can be collected that can be used to predict blood
glucose. Depending on the data gathered, their complexities,
and the ultimate objective of the algorithm, a variety of
methodologies were used in some of the studies, with 1 or 2
supplementary data inputs, which were typically the insulin
doses, carbohydrates, or even both. The prementioned input
data are conveniently available, as they are usually captured in
sensor-enhanced pump trials and offer sufficient precision for
modeling purposes. These 2 additional data inputs were
processed by physiological models in many of the evaluated
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studies [14,15,22,23] to derive additional characteristics to
determine the effects and dynamics of insulin action or meals
for a better interpretation by the prediction algorithms.

There is evidence that the inclusion of insulin and carbohydrate
data in prediction models often increases the performance of
the algorithm, even by a very small amount. However, apart
from clinical trials, in which patients are deliberately selected

based on their compliance with instructions and their ability
(eg, to count carbohydrates), such an input into a real-life
environment seems unlikely. Table 2 presents the features that
were considered and analyzed in each of the reviewed studies,
and Multimedia Appendix 2 presents the number of the
hypoglycemia prediction references based on the year of their
considered question; it is worth noting that for 2021, we have
data for the first 6 months.

Table 2. Features or characteristics considered in the predictive models.

HbA1c
d

Diabetes
durationHRVcECGbActivityMealsCarbohydratesBMI

Insulin
dosage

Glucose meter
measurements

CGMa

readingsStudy

✓✓✓✓Mordvanyuk et al
[6]

✓Paul et al [7]

✓✓✓✓Jensen et al [8]

✓✓Zhang et al [9]

✓✓✓✓✓Dave et al [10]

✓✓Eren-Oruklu et al
[11]

✓✓✓✓✓Chase et al [12]

✓✓Buckingham et al
[13]

✓✓✓✓✓Georga et al [14]

✓✓✓Bertachi et al
[15]

✓✓✓✓Vahedi et al [16]

✓✓Maritsch et al
[17]

✓✓San et al [18]

✓Kuang et al [19]

✓✓✓Zhu et al [20]

✓✓✓Li, K, unpub-
lished data, Octo-
ber 2019

✓✓✓Munoz-Organero
et al [21]

✓✓✓Ranvier et al [22]

✓✓✓✓✓✓✓Cichosz et al [23]

aCGM: continuous glucose monitoring.
bECG: electrocardiogram.
cHRV: heart rate variability.
dHbA1c: hemoglobin A1c.

In a study by Georga et al [14], the authors used data from a
recent patient profile to provide their support vector regression
model for predicting hypoglycemia incidents during sleep, as
well as in the daytime, over 30- and 60-minute time spans. With
a hypoglycemia threshold of 70 mg/dL, the patient profile
included glucose readings, meals, insulin dosage, and physical
activity along with additional elements to account for recurrent
nocturnal hypoglycemia caused by previous hypoglycemia,
exercise, and sleep. Their model was developed based on a data

set of 15 patients with T1D in an unrestricted environment.
Nocturnal hypoglycemia predictions had a sensitivity of 94%
and time delays of 5.43 and 4.57 minutes, respectively. When
physical activities were not considered, the sensitivities for
nonnocturnal events were 92% and 96% for the 30- and
60-minute horizons, respectively, with both time delays being
<5 minutes. Nevertheless, when physical activities were
considered, diurnal sensitivity was reduced by 8% and 3% in
each time span. In conclusion, they suggested that their method
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was reliable and that both nocturnal and daytime predictions
had high precision, exceeding 90%.

Activity Wearables
Another important factor influencing blood glucose levels is
physical exercise. Bertachi et al [15] examined the use of
physical activity monitors to gather data on heart rate, energy
expenditure, and the number of steps taken to improve the
prediction ability of their model. In particular, the authors
investigated the prediction of nocturnal hypoglycemia in adults
with T1D through a FreeStyle Libre CGM device and a physical
activity monitor (Fitbit Alta HR, Fitbit). In their 12-week study,
10 adults with T1D were examined under free-living conditions
at home; details about the management of T1D, CGM, and the
physical activity tracker were obtained. Supervised machine
learning algorithms were applied to the data, and prediction
models were developed to predict the occurrence of nocturnal
hypoglycemia. The authors concluded that >70% of the
nocturnal hypoglycemia could be predicted using their approach.
Specifically, the prediction of the SVM model produced the
highest scores, with a sensitivity of 78.75% and a specificity of
82.15%.

Overall, the inclusion of a patient activity signal as an input to
the algorithm can improve its predictability, which in practice
indicates that many widely available activity monitoring systems
are accurate enough to be used for this task. The potential issue
might be more technical in terms of merging different models
and examining the variability of data formats in each system
during the hypoglycemia prediction process. Other relevant
information, such as stress, medical treatment, and daily events
in the patient’s life, can be considered as potential inputs, which
could be useful in differentiating these prediction models.

Vahedi et al [16] investigated the adaption of a machine
learning–based model that predicts continuous glucose levels
and aims to prevent hypoglycemia through using physiological
and physical exercise data. They used the Medtronic MiniMed
530G insulin delivery device, along with the Enlite sensor, to
collect 4 months of physiological measures, physical activity,
and nutrition data from 93 individuals with T1D. Overall, their
findings indicated that the model’s projected glucose levels
were very close to the glucose values measured with the Enlite
sensor.

Another machine learning model was developed in an ongoing
study by Maritsch et al [17], whose objective was to identify
hypoglycemia using physiological data collected from a
wearable sensor. Specifically, 1 patient with T1D participated
in a 1-week study, wearing an Empatica E4 smartwatch to
collect physiological data and a FreeStyle Libre CGM to gather
the patient’s glucose data. The reported results indicate that
physiological data can indeed be used to infer hypoglycemic
phases; however, frequent false-positive results were observed
because of the model’s high sensitivity. However, they intend
to use artificial intelligence–based techniques to make the
classification output comprehensible for patients and incorporate
their model into wearables to alert them about impending
hypoglycemic episodes.

The ability to connect CGM, insulin pumps, and activity trackers
to a mobile device can allow for the application of multiple
variant algorithms and complex cloud-based estimations. One
of the primary aspects in common among a few of the
aforementioned prediction algorithms [6,10] is that using
carbohydrate consumption, insulin dosages, and activity tracking
data can improve accuracy over a forecast period. Finally,
integrating several models could allow for different kinds of
hypoglycemia alerts, each one designed for a certain context
(activity, sleep, and type of meal).

ECG‐Based Hypoglycemia Detection
In recent years, researchers have examined the effect of low
blood glucose levels on the electrical activity of the heart.
During hypoglycemia, studies revealed a lengthening of the QT
interval (the time elapsed between the onset of the Q wave and
the conclusion of the T wave), a rise in heart rate variability
(HRV), and alterations in cardiac repolarization. Thus,
monitoring ECG alterations can provide a noninvasive method
for detecting the beginning of hypoglycemia. The emergence
of novel ECG wearables permitted the effortless collection of
cardiac signals and paved the path for hypoglycemia
identification through ECG data and using deep learning
techniques.

In a study by San et al [18], a deep belief network (DBN) was
used to build a deep learning system for detecting the initiation
of hypoglycemia based on a patient’s ECG signal. According
to the authors, the probability of hypoglycemia in individuals
with T1D is most affected by QT interval prolongation, although
an increase in heart rate can also influence the status of the
hypoglycemic event. Specifically, their suggested DBN delivers
a high classification performance with feature transformation.
Through the efficiency testing of the system, 15 children with
T1D participated and were monitored overnight, and the findings
revealed that the suggested DBN excelled and produced higher
classification performance than other current methods, with a
sensitivity and specificity score of 80% and 50%, respectively.

Another deep learning framework for predicting blood glucose
levels was recently developed [19], which used edge inference
on a microcontroller unit. The performance of the models was
evaluated based on a clinical data set acquired from 12 patients
with T1D whose glucose was measured with a CGM, as well
as through a long short-term memory artificial recurrent neural
network. Such a system could significantly aid in T1D care and
eventually be used in various diabetes management wearables,
such as insulin pumps and CGMs.

Generally, machine learning and deep learning approaches
demonstrate significant possibilities in terms of data analysis
and prediction, and they concentrate on automatically learning
behaviors and extracting characteristics from large-scale data.
A deep learning model was developed [20] based on a dilated
recurrent neural network (DRNN) that can anticipate future
glucose levels for 30 minutes. Their DRNN model acquired a
considerably wider receptive field of neurons when dilation was
used, with the goal of capturing long-term relationships, and
they also used a transfer learning approach to take advantage
of data from various patients.

JMIR Diabetes 2022 | vol. 7 | iss. 3 |e34699 | p.57https://diabetes.jmir.org/2022/3/e34699
(page number not for citation purposes)

Tsichlaki et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


A study (Li, K, unpublished data, October 2019) suggested a
dual-hormone delivery approach for patients with T1D using
deep reinforcement learning and based on data from the
UVA-Padova T1D Simulator [25]. In terms of the hormone
delivery strategy, they used double DRNNs; input data were
blood glucose and carbohydrates, and output was insulin and
glucagon distribution. Overall, their findings revealed that deep
reinforcement learning appeared to be helpful in developing
customized hormone delivery strategies for patients with T1D.

In another deep learning–based hybrid model [21], the authors
attempted to imitate the metabolic behavior of physiological
blood glucose techniques based on both computer-generated
and actual patient data. Furthermore, they simulated a set of
differential equations for insulin and carbohydrate intake through
a long short-term memory recurrent neural network. Results
demonstrated that their model performs better for simulated
patients because of the intricacy of the insulin and carbohydrate
intake dependence on blood glucose levels, which is restricted
to a specific cluster of parameters.

In a noninvasive approach, Ranvier et al [22] aimed to detect
hypoglycemic events based on the continuous collection of
sensed data from an off-the-shelf sensor belt; the authors based
their method on 2 distinct models. The first one leveraged a
physiological consequence of hypoglycemia, namely, an
alteration of the user ECG’s features. They additionally used
the accelerometer and breathing sensor of the belt to infer the
energy expenditure of the patient with T1D and correlated it
with the food intake to estimate the blood glucose level. They
then combined these 2 models to improve the accuracy of their
prediction.

Cichosz et al [23] proposed a novel algorithm for hypoglycemia
prediction, where they obtained data from 10 patients with T1D,
who were observed during insulin-induced hypoglycemia, and
the collected blood glucose samples were used as a reference.
Their equipment involved the calculation of ECG, lead II, and
a Minimed Guardian RT CGM, which generated a reading every
5 minutes. The extracted HRV patterns were incorporated into
a mathematical prediction algorithm along with the CGM data.
Cichosz et al [23] treated early prediction as a pattern
recognition problem based on a fixed hypoglycemia level (3.9
mmol/L). Thus, measuring blood glucose from each patient was
used as a reference to categorize each 5-minute reading into 2
groups: in healthy range blood glucose (Cn) or hypoglycemia
(Chy). Features obtained from HRV and CGM before each
blood glucose measurement were used to assess if that time
point was below the hypoglycemic threshold of 3.9 mmol/L.
As a result, a total of 903 samples were evaluated using the
proposed algorithm, with a sensitivity of 79% and an accuracy
of 99%. The algorithm was able to predict all 16 hypoglycemic
events with no false positives and had a lead time of 22 minutes
relative to the CGM device.

These studies indicate that ECG could be used in a free-living
environment to assist patients in detecting hypoglycemic
episodes. Upgraded equipment and optimized algorithms could
make certain methods more precise and simpler to deploy in
practice. Although patients with T1D might not be the first to
benefit from these technological approaches, other non-T1D

patients experiencing hypoglycemic episodes arising from other
conditions, such as endocrine, hepatic, or cardiac disorders,
could be positively affected by these ECG-based algorithms.

Discussion

Principal Findings
In the context of T1D hypoglycemia risk management, several
hypoglycemia or blood glucose level prediction approaches
were assessed in this review. Each of these approaches included
different techniques and tools that were used for blood glucose
level prediction. In general, hypoglycemia prediction algorithms
can offer a valuable alternative to patients with T1D to prevent
possible episodes, as there are many patients that experience
asymptomatic hypoglycemic episodes.

Several of the approaches reviewed have already been
incorporated into commercially available systems; that is, the
approach proposed by Bertachi et al [15] using a FreeStyle Libre
CGM device and a Fitbit Alta HR physical activity monitor,
which has been shown to effectively decrease hypoglycemic
episodes. A common key aspect of several of the evaluated
studies is that the inclusion of carbohydrate consumption data,
insulin dosages, or exercise data can enhance the accuracy of
the algorithm in the context of a defined (medium- or long-term)
forecast horizon. Furthermore, integrating various models could
allow for several stages of hypoglycemia alerts, each of which
could be tailored to a unique scenario, such as a postmeal,
postactivity, or during sleep prediction [26].

Unfortunately, there can be significant variations in accuracy
when predicting blood glucose levels. Data collection in these
types of studies can be affected by a variety of limiting factors,
including inefficient hardware, constrained health care settings,
patient noncompliance with research procedures, and barriers
because of extensive biomedical data records. These
impediments force machine learning researchers to cope with
flawed data and seek workarounds for their prediction models
[27]. Furthermore, the prediction accuracy highly depends on
the type of diabetes, the patient’s lifestyle [28], and the existence
of any other chronic disease. Some underlying mechanisms,
such as age, gender, intestinal microbiota, psychological factors,
and genetic traits, may also contribute to variations in outcomes
[29]. In addition, we noticed that many of the previously
mentioned methodologies were trained on computer-generated
patients from simulators (Li, K, unpublished data, October 2019)
[6,20,21] or on relatively restricted data sets involving strongly
competent patients [7,17,22]. These patients strictly follow the
given research guidelines or are in a monitoring environment,
which abstains from everyday life where patients mostly do not
monitor events, such as heart rate, regularly, which are usually
essential for these methodologies. We also noticed that several
methodologies used a limited number of features
[7,9,11,13,18,19]. This can have a significant impact on the
final results, as several factors can affect blood glucose levels,
each with different severity. In contrast, some studies used a
wide variety of data, such as the approach proposed by Cichosz
et al [23], in which 7 different types of features were included.
Specifically, they used CGM readings, glucose meter
measurements, insulin dosage, ECG, HRV, diabetes duration,
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and hemoglobin A1c levels and achieved an accuracy of 99%
and a sensitivity of 79%. In our opinion, to improve the overall
efficiency of these approaches, it is necessary for researchers
to obtain larger data sets and take into consideration a higher
number of features in their approaches. A gold standard data
set for glucose level prediction in patients with T1D would
assist data analysts in experimenting, comparing, and fine-tuning
their models accordingly.

CGM sensors are considered a revolution in diabetes treatment
[30], are expected to enhance data-driven strategies for
personalized diabetes therapy, and can provide real-time data
for the creation of predictive models [31]. Clinical studies of
such algorithms are projected to increase in the future as
prediction approaches are integrated into CGM systems and
other devices. Furthermore, the evolution of deep learning
algorithms trained using streaming data provides promising
results for glucose prediction [20]. The first priority for a
hypoglycemia prediction model is to alert the patient before
hypoglycemia occurs. Researchers attempted to predict
hypoglycemic episodes at various prediction horizons in the
cited studies, varying from 0 to 60 minutes. Altogether, the
advantages for patients with T1D are evident, as they are
empowered to make preventive decisions before their blood
glucose levels reach critical points [32]. As with any new
equipment, education is required to avoid the negative side
effects of overreactions.

Nevertheless, the current CGM technology has drawbacks such
as limited life span, skin irritation, adhesive problems, and
consumable expenses, which may make it unaffordable for
lifelong tracking and prediction. The challenge is to use
mainstream noninvasive sensors such as wristbands and
smartwatches to build reliable predictive models for hypo- and
hyperglycemia following the paradigm of ECG and HR sensors

available in mainstream devices and used to assist people with
cardiac conditions [33].

Limitations
This review should be interpreted within the context of its
limitations. We used a limited set of terms for the search of the
literature. Keywords for specific algorithms were not used and
we might have inadvertently omitted studies that could have
contributed to the progress made in algorithms for T1D
hypoglycemia prediction. We searched for articles in a limited
number of databases (ie, PubMed, Google Scholar, IEEE Xplore,
and ACM Digital Library), which represent the most widely
used databases internationally. We did not hand search any
studies reported in other reviews or the included studies, and
we did not assess the interrater reliability. On the basis of our
inclusion and exclusion criteria, a small number of eligible
studies was included and examined in this review, which limits
the generalizability of the findings.

Conclusions
In this systematic review, we included a wide range of
hypoglycemia prediction algorithms and systems, some of which
used specific medical or activity devices, such as CGMs and
activity trackers. Nevertheless, these approaches cannot be
recommended to patients on their own; they must be supported
by a comprehensive plan to be effective in supporting medical
care. Specifically, before deploying the right equipment or
technology to aid a patient with T1D, education and medication
management are required to decrease the probability of
developing hypoglycemia. Overall, we conclude that other
approaches to hypoglycemia prediction will be challenged
compared with the commonly used CGMs in the following
years, as they are restricted to event detection, and CGMs also
have the potential to notify patients about their blood glucose
variability.
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Abstract

Background: The increasing prevalence of gestational diabetes mellitus (GDM) is concerning as women with GDM are at high
risk of type 2 diabetes (T2D) later in life. The magnitude of this risk highlights the importance of early intervention to prevent
the progression of GDM to T2D. Rates of postpartum screening are suboptimal, often as low as 13% in Asian countries. The lack
of preventive care through structured postpartum screening in several health care systems and low public awareness are key
barriers to postpartum diabetes screening.

Objective: In this study, we developed a machine learning model for early prediction of postpartum T2D following routine
antenatal GDM screening. The early prediction of postpartum T2D during prenatal care would enable the implementation of
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effective strategies for diabetes prevention interventions. To our best knowledge, this is the first study that uses machine learning
for postpartum T2D risk assessment in antenatal populations of Asian origin.

Methods: Prospective multiethnic data (Chinese, Malay, and Indian ethnicities) from 561 pregnancies in Singapore’s most
deeply phenotyped mother-offspring cohort study—Growing Up in Singapore Towards healthy Outcomes—were used for
predictive modeling. The feature variables included were demographics, medical or obstetric history, physical measures, lifestyle
information, and GDM diagnosis. Shapley values were combined with CatBoost tree ensembles to perform feature selection. Our
game theoretical approach for predictive analytics enables population subtyping and pattern discovery for data-driven precision
care. The predictive models were trained using 4 machine learning algorithms: logistic regression, support vector machine,
CatBoost gradient boosting, and artificial neural network. We used 5-fold stratified cross-validation to preserve the same proportion
of T2D cases in each fold. Grid search pipelines were built to evaluate the best performing hyperparameters.

Results: A high performance prediction model for postpartum T2D comprising of 2 midgestation features—midpregnancy BMI
after gestational weight gain and diagnosis of GDM—was developed (BMI_GDM CatBoost model: AUC=0.86, 95% CI 0.72-0.99).
Prepregnancy BMI alone was inadequate in predicting postpartum T2D risk (ppBMI CatBoost model: AUC=0.62, 95% CI
0.39-0.86). A 2-hour postprandial glucose test (BMI_2hour CatBoost model: AUC=0.86, 95% CI 0.76-0.96) showed a stronger
postpartum T2D risk prediction effect compared to fasting glucose test (BMI_Fasting CatBoost model: AUC=0.76, 95% CI
0.61-0.91). The BMI_GDM model was also robust when using a modified 2-point International Association of the Diabetes and
Pregnancy Study Groups (IADPSG) 2018 criteria for GDM diagnosis (BMI_GDM2 CatBoost model: AUC=0.84, 95% CI
0.72-0.97). Total gestational weight gain was inversely associated with postpartum T2D outcome, independent of prepregnancy
BMI and diagnosis of GDM (P=.02; OR 0.88, 95% CI 0.79-0.98).

Conclusions: Midgestation weight gain effects, combined with the metabolic derangements underlying GDM during pregnancy,
signal future T2D risk in Singaporean women. Further studies will be required to examine the influence of metabolic adaptations
in pregnancy on postpartum maternal metabolic health outcomes. The state-of-the-art machine learning model can be leveraged
as a rapid risk stratification tool during prenatal care.

Trial Registration: ClinicalTrials.gov NCT01174875; https://clinicaltrials.gov/ct2/show/NCT01174875

(JMIR Diabetes 2022;7(3):e32366)   doi:10.2196/32366

KEYWORDS

Asian populations; diabetes management; digital health; gestational diabetes mellitus; machine learning; prediction models;
prenatal care; public health; risk factors; type 2 diabetes

Introduction

The prevalence of gestational diabetes mellitus (GDM) is
increasing globally, with 1 in 6 pregnancies being affected [1].
GDM has long-term implications as women with a history of
GDM have a 10-fold higher risk of developing type 2 diabetes
(T2D) compared to those with a normoglycemic pregnancy [2].
In the Growing Up in Singapore Towards healthy Outcomes
(GUSTO) study, women with GDM had a 12-fold higher risk
of developing T2D 4-6 years after delivery compared with
women who did not have GDM [3]. From a public health
perspective, early intervention in women with GDM could
contribute to tackling the rising global health burden of T2D.
The T2D epidemic is of particular concern in Southeast Asia;
88 million adults are currently living with diabetes, but this is
expected to increase to 153 million by 2045 [1]. Moreover, 57%
of the population with diabetes in Southeast Asia are
undiagnosed, increasing the risk of complications such as heart
disease and stroke [1].

The American Diabetes Association guidelines recommend that
women with GDM are tested 4-12 weeks postpartum using a
75 g oral glucose tolerance test (OGTT) [4]. Further testing is
recommended in those with normal postpartum OGTT every
1-3 years using fasting plasma glucose, hemoglobin A1c or
HbA1c, or an OGTT [4]. However, as GDM resolves post
pregnancy, postpartum surveillance of glycemia remains low

across health care systems globally. The rate of postpartum
diabetes screening can be as low as 13% in Asian countries [5].
Barriers to postpartum diabetes screening include lack of
structured postpartum preventive care in health care systems,
lack of patient awareness of future T2D risk, and time
restrictions due to maternal commitments [5,6].

Machine learning models enable predictive population risk
stratification. In a prospective metabolomics study by Allalou
et al [7], 21 metabolites were identified at 6-9 weeks post partum
to predict the transition from GDM to T2D in women. The
metabolite model using decision trees performed well with an
area under the receiver operating characteristic curve (AUC) of
0.77. In another GDM to T2D transition study by Joglekar et
al [8], the inclusion of circulating microRNA (miR-369-3p) at
12 weeks post partum enhanced the prediction of a clinical
model (age, BMI, pregnancy fasting glucose, postpartum fasting
glucose, cholesterol, and triacylglycerols) from an AUC of 0.83
to an AUC of 0.92 (logistic regression algorithm). In addition
to low compliance of postpartum testing in women with GDM,
the other barriers to the real-world implementation of these 2
machine learning models include the cost and access to
metabolomics assay and microRNA polymerase chain reaction
during routine clinical visits.

The early prediction of postpartum T2D during prenatal care
would enable the implementation of effective strategies for
diabetes prevention interventions. To date, there have been no
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studies on using machine learning for postpartum T2D risk
assessment in antenatal populations of Asian origin. In this
study from Singapore, we developed a machine learning model
for early prediction of postpartum T2D during routine antenatal
GDM screening. Our machine learning model was implemented
using the prospective GUSTO cohort study data
(NCT01174875).

Methods

Ethics Approval
This study has been reviewed by the National Healthcare Group
Domain Specific Review Board for ethics approval and
SingHealth Centralized Institutional Review Board
(CIRB/E/2019/2655).

Study Design
GUSTO is a prospective multiethnic (Chinese, Malay, and
Indian ethnicities) mother-offspring cohort study. Mothers were
recruited during early pregnancy from Singapore’s 2 major
public maternity hospitals, National University Hospital and
KK Women’s and Children’s Hospital, between June 2009 and
October 2010.

Participants of mixed ethnicity or with self-reported T2D at
recruitment were excluded from model training. A total of 561
mothers had complete data on demographics, medical or
obstetric history, physical measures, lifestyle information,
antenatal OGTT, and postpartum OGTT 4-8 years after delivery.
The World Health Organization (WHO) 1999 criteria [9] were
used to diagnose GDM, and the WHO 2006 criteria [10] were
used to diagnose postpartum impaired glucose tolerance (IGT),
impaired fasting glucose (IFG), and T2D. The abnormal glucose
metabolism (AGM) outcome comprises of IGT, IFG, and T2D
diagnoses.

Feature Variables
Information on demographics (maternal age, maternal ethnicity)
and medical or obstetric history (self-reported prepregnancy
weight, family history of diabetes mellitus, family history of
high blood pressure, family history of cardiovascular disease,
previous history of GDM, previous history of gestational
hypertension, and parity) were derived from first trimester
questionnaires. Systolic and diastolic blood pressure were
recorded at midgestation (median 26.7, IQR 26.1-27.6 weeks)
and obtained from hospital case notes. Mean arterial blood
pressure was derived by doubling the diastolic blood pressure
and adding to the systolic blood pressure, with the composite
sum divided by 3. Maternal anthropometry was measured at
midgestation (median 26.9, IQR 26.4-27.6 weeks). Maternal
midupper arm circumference was measured to the nearest 0.1
cm, midway between acromion process and olecranon process
(using Seca 212). Maternal height was measured to the nearest
0.1 cm (using Seca 213). Maternal weight at midpregnancy was
measured to the nearest 0.1 kg (using Seca 803), and BMI was

derived using weight divided by height squared (kg/m2). Total
gestational weight gain was derived by subtracting first antenatal
visit weight (median 9.0, IQR 7.3-11.0 weeks) from the last
antenatal visit weight (median 38.1, IQR 37.3-39.1 weeks).

Lifestyle information on self-reported smoking, environmental
tobacco smoke exposures, and alcohol consumption were
collected using questionnaires. GDM diagnosis was based on
antenatal OGTT assessment (median 26.9, IQR 26.4-27.7
weeks).

Machine Learning Methodology and Statistical
Analyses
Our methodological novelty lies in combining coalitional game
theory concepts with machine learning. SHapley Additive
exPlanations (SHAP) framework was combined with CatBoost
tree ensembles for feature selection and model explainability
[11,12]. The SHAP framework connects optimal credit
allocation with local explanations using the classic Shapley
values from cooperative game theory. Lundberg and Lee [11]
have proposed SHAP as the only additive feature attribution
method that satisfies 2 important properties of game
theory—additivity (local accuracy) and monotonicity
(consistency). In game theory, Shapley value is the average
expected marginal contribution of 1 player across all possible
permutation of players (ie, the average effects of team member
composition and team size). Shapley value helps determine a
payoff for all the game players when each player might have
contributed more or less than the others when working in
coalition. In machine learning, the game players are the features,
and the collective payout is the model prediction. SHAP
framework provides local explanations based on exact Shapley
values to understand the global model structure. For each
possible feature ordering, features are introduced one at a time
into a conditional expectation function of the model’s output,
and changes in expectation are attributed to the introduced
feature, averaged over all possible feature orderings in a fair
manner. SHAP values represent a change in log odds ratio. Our
game theoretical approach for predictive analytics enables
population subtyping and pattern discovery for data-driven
precision care.

The supervised machine learning models were built using
Anaconda distribution of Python programming language
(version 3.7.9) in JupyterLab computational environment. The
predictive models were trained using the following 4 machine
learning algorithms to address algorithm bias: logistic regression
(generalized linear model), support vector machine (linear
support vector classification), CatBoost gradient boosting
(tree-based), and artificial neural network (multilayer
perceptron). We used 5-fold stratified cross-validation to
preserve the same proportion of AGM/T2D cases in each fold.
Maximum absolute scaler was used as a preprocessor to scale
each feature without destroying the sparsity. A grid search
pipeline was built to evaluate the best performing
hyperparameters for each machine learning model. Model
performances were evaluated using the AUC with 95% CI.
Implementation details of the machine learning algorithms are
included in Multimedia Appendix 1.

The feature selection model using clinical features at
midgestation was trained on the AGM outcome, and top
predictors with SHAP value magnitudes more than zero were
included in the AGM/T2D prediction models. Sensitivity
analyses were performed to explore the prediction effects of
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diagnosing GDM using modified 2-point International
Association of the Diabetes and Pregnancy Study Groups
(IADPSG) 2018 criteria [9] rather than WHO 1999 criteria
(GUSTO study did not include a 1-hour glucose measurement),
and the prediction effects of continuous fasting or 2-hour glucose
measures and prepregnancy BMI. We also assessed the
associations between total gestational weight gain and
postpartum AGM and T2D outcomes. All association analyses
were performed using Stata/MP software (version 16.1;
StataCorp LP).

Results

The Features Significantly Associated With T2D
Aligned With the Top Features From the SHAP
Feature Selection Model
The relationship between all feature variables and postpartum
AGM and T2D outcomes is presented in a Pearson correlation

heatmap (Figures 1 and 2). Diagnosis of GDM, midupper arm
circumference, and BMI are the best features for postpartum
AGM/T2D machine learning model building.

Table 1 presents the univariate associations between
midpregnancy features and postpartum AGM and T2D
outcomes. Previous history of GDM, mean arterial blood
pressure, midupper arm circumference, BMI, and diagnosis of
GDM were associated with later risk of T2D. The top 4 features
impacting the SHAP model outputs were midupper arm
circumference, mean arterial blood pressure, BMI and diagnosis
of GDM (Figure 3). The negative SHAP value for height implies
that maternal height did not contribute to the prediction of AGM.

Figure 1. Pearson Correlation heatmap for abnormal glucose metabolism (AGM). GDM: gestational diabetes mellitus.
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Figure 2. Pearson Correlation heatmap for type 2 diabetes (T2D). GDM: gestational diabetes mellitus.
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Table 1. Associations between midpregnancy characteristics and postpartum abnormal glucose metabolism (AGM) or type 2 diabetes (T2D) outcomes
(4-8 years after delivery).

T2D (n=32)AGM (n=139)Characteristics

P valueOR (95% CI)P valueORa (95% CI)

.101.06 (0.99-1.14).02b1.05 (1.01-1.09)Maternal age (years)

.340.71 (0.34-1.44).280.81 (0.55-1.19)Chinese vs Malay and Indian ethnicity

.191.64 (0.78-3.43).401.20 (0.79-1.83)Malay vs Chinese and Indian ethnicity

.780.87 (0.33-2.31).661.12 (0.68-1.84)Indian vs Chinese and Malay ethnicity

.241.55 (0.75-3.21).008b1.72 (1.15-2.56)Family history of diabetes mellitus

.370.70 (0.33-1.51).550.88 (0.60-1.32)Family history of high blood pressure

.370.51 (0.12-2.19).901.04 (0.57-1.90)Family history of cardiovascular disease

<.001b7.98 (2.62-24.27).001b5.96 (2.16-16.43)Previous history of gestational diabetes mellitus

.252.45 (0.53-11.29).241.86 (0.66-5.21)Previous history of gestational hypertension

.391.38 (0.66-2.89).931.02 (0.69-1.50)Parity

<.001b1.07 (1.03-1.11)<.001b1.05 (1.03-1.07)Mean arterial blood pressure (mm Hg)

<.001b1.23 (1.13-1.33)<.001b1.18 (1.12-1.25)Midupper arm circumference (cm)

.100.96 (0.90-1.02).01b0.96 (0.92-0.99)Maternal height (cm)

<.001b1.16 (1.09-1.24)<.001b1.14 (1.09-1.18)BMI (kg/m2)

N/AN/Ac.851.14 (0.30-4.36)Smoking during pregnancy

.960.98 (0.46-2.08).731.07 (0.72-1.60)Environmental tobacco smoke exposure at home

.571.37 (0.46-4.06).430.76 (0.38-1.51)Environmental tobacco smoke exposure at workplace

.631.67 (0.21-13.50).851.14 (0.30-4.36)Alcohol consumption during pregnancy

<.001b9.57 (4.45-20.55)<.001b5.49 (3.51-8.58)Diagnosis of GDMd (WHOe 1999 criteria)

aOR: odds ratio.
bIndicates statistically significant values.
cN/A: not applicable; fixed-effect regression estimates were not obtained as the variable did not contribute to the likelihood estimation.
dGDM: gestational diabetes mellitus.
eWHO: World Health Organization.
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Figure 3. SHapley Additive exPlanations (SHAP) summery plot of feature selection model. WHO: World Health Organization.

Maternal Adiposity During Pregnancy and Metabolic
Derangements Underlying GDM Signaling Future T2D
Risk
Although the detailed training parameters and results for all
machine learning models are shown in Tables S1-S6
(Multimedia Appendix 2), we focus on describing the results
of CatBoost machine learning models as this algorithm had the
best overall performance. The results for each data set of the
5-fold stratified cross-validation and the average of the
cross-validation are also provided in Tables S1-S6 in Multimedia
Appendix 2. Midupper arm circumference at midgestation
(AUC=0.78, 95% CI 0.71-0.86) and BMI at midgestation
(AUC=0.74, 95% CI 0.53-0.96) had stronger predictive
performances than GDM diagnosis (AUC=0.73, 95% CI
0.51-0.95; Table S2 in Multimedia Appendix 2). The addition
of GDM diagnosis improved the performance of baseline models
(MUAC_GDM model: AUC=0.88, 95% CI 0.79-0.96 and
BMI_GDM model: AUC=0.86, 95% CI 0.72-0.99; Table S4 in
Multimedia Appendix 2). Prepregnancy BMI alone was
inadequate in predicting postpartum T2D risk (AUC=0.62, 95%
CI 0.39-0.86; Table S6 in Multimedia Appendix 2).

Although there is a high correlation between midupper arm
circumference and BMI (r=0.91), BMI is more reliably and
commonly assessed in clinical settings, and therefore, a

BMI-based pregnancy model is our proposed solution (Figure
4). Table 2 summarizes the detailed training parameters of
logistic regression, support vector machine, artificial neural
network, and CatBoost gradient boosting algorithms, as well
as the results of the proposed postpartum T2D predictive model
(comprising of midpregnancy BMI after gestational weight gain
and diagnosis of GDM features). Total gestational weight gain
was inversely associated with postpartum AGM and T2D
outcomes, independent of prepregnancy BMI and diagnosis of
GDM (Table 3).

Figures 5-7 present the validation curves obtained during the
training of BMI_GDM CatBoost model. The hyperparameter
candidates for CatBoost model were as follows:

• Learning rate: [‘0’ - 0.00001, ‘1’- 0.0001, ‘2’ - 0.001, ‘3’
- 0.01, ‘4’ - 0.03, ‘5’ - 0.05, ‘6’ - 0.1, ‘7’ - 0.2, ‘8’ - 0.3]

• L2 leaf regularization: [‘0’ - 1.0, ‘1’ - 2.0, ‘2’ - 3.0, ‘3’ -
4.0, ‘4’ - 5.0, ‘5’ - 6.0]

• Random strength: [‘0’ - 1.0, ‘1’ - 2.0, ‘2’ - 3.0, ‘3’ - 4.0,
‘4’ - 5.0, ‘5’ - 6.0]

The CatBoost model was specified with 1000 iterations,
maximum depth of 6 trees, and symmetric tree growing policy.
The hyperparameters tuned using grid search were learning rate
of 0.0001, L2 leaf regularization of 5.0, and random strength
of 5.0. The BMI_GDM CatBoost classifier is performing well
under this optimal configuration.
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Figure 4. SHapley Additive exPlanations (SHAP) summary plot of BMI_GDM model. WHO: World Health Organization.

Table 2. Proposed postpartum type 2 diabetes predictive model comprising of midpregnancy BMI after gestational weight gain and diagnosis of
gestational diabetes mellitus (GDM) features (based on the World Health Organization 1999 criteria).

Average AUCa (95% CI)Hyperparameters tuned using grid searchModel specifications (BMI_GDM)

0.85 (0.72-0.98)Logistic regression (L2 regularization penalty, stochastic average gradient
descent solver)

• Inverse of regularization strength=1.0

0.85 (0.72-0.98)Support vector machine (linear kernel, L2 regularization penalty) • L2 regularization penalty=1.0
• Loss function=‘squared hinge’

0.85 (0.73-0.97)Neural network (3 hidden layers with 10 neurons each, ReLU activation
function, Adam solver, 200 iterations)

• L2 regularization penalty=0.01
• Initial learning rate=0.1

0.86 (0.72-0.99)bCatBoostb (1000 iterations, maximum depth of 6 trees, symmetric tree
growing policy)

• L2 leaf regularization=5.0
• Learning rate=0.0001
• Random Strength=5.0

aAUC: area under the receiver operating characteristic curve.
bIndicates the main predictive model developed in this study.

Table 3. Association between total gestational weight gain and postpartum abnormal glucose metabolism (AGM) or type 2 diabetes (T2D) outcomes
(4-8 years after delivery).

T2D (n=31)AGM (n=128)Analysis

P valueOR (95% CI)P valueORa (95% CI)

Unadjusted analysis

<.001b0.79 (0.72-0.87)<.001b0.87 (0.82-0.91)Total gestational weight gain (kg)

Adjusted analysisc

.02b0.88 (0.79-0.98).01b0.93 (0.87-0.98)Total gestational weight gain (kg)

aOR: odds ratio.
bIndicates statistically significant values.
cAdjusted based on maternal ethnicity, age, parity, family history of diabetes mellitus, prepregnancy BMI, and diagnosis of gestational diabetes mellitus.
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Figure 5. Validation curve with CatBoost algorithm–Varying learning rate. AUC: area under the receiver operating characteristic curve.

Figure 6. Validation curve with CatBoost algorithm–Varying L2 leaf regularization. AUC: area under the receiver operating characteristic curve.

Figure 7. Validation curve with CatBoost algorithm–Varying random strength. AUC: area under the receiver operating characteristic curve.
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Two-Hour Postprandial Glucose as a Stronger
Predictor of Postpartum T2D Risk Compared With
Fasting Glucose
When modeling antenatal glucose measures as continuous
features, a 2-hour postprandial glucose (AUC=0.86, 95% CI
0.76-0.96) showed a stronger postpartum T2D risk prediction
effect compared to fasting glucose (AUC=0.76, 95% CI
0.61-0.91; Table S6 in Multimedia Appendix 2). In the
sensitivity analysis, predictive performance of BMI_GDM
model was also robust when using the modified 2-point IADPSG
2018 criteria (AUC=0.84, 95% CI 0.72-0.97; Table S6 in
Multimedia Appendix 2).

Discussion

Principal Results
We have built an effective postpartum T2D predictive model
by combining game theory–based feature selection with machine
learning. SHAP values recovered predictive modeling features
for optimal performance, aligning model interpretability with
human intuition. Our BMI_GDM model achieved an excellent
AUC of 0.86 with 2 midgestation features (BMI at midgestation
and diagnosis of GDM by the WHO 1999 criteria) for an early
prediction of postpartum T2D risk in a Singapore population.
The model was also robust when using a modified 2-point
IADPSG 2018 criteria for GDM diagnosis (AUC=0.84). The
BMI_GDM machine learning model can be leveraged as a risk
stratification tool during routine GDM screening to identify
Asian women at high risk of developing T2D, enabling early
intervention. The BMI_2hour model (AUC=0.86) can be an
alternative design during clinical implementation if GDM
diagnosis feature is unavailable for the patient. The trained
classifier can be deployed using a web application that can allow
clinicians to identify women at T2D risk and develop a
postpartum management plan.

The 2-feature midpregnancy BMI model (AUC=0.86) performed
better in postpartum T2D prediction than a preconception BMI
model (AUC=0.62), implying that midgestational weight gain
effects combined with the metabolic derangements underlying
GDM and fetoplacental unit signal future T2D risk. As
pregnancy has a diabetogenic effect on metabolism [13], further
studies will be required to examine the metabolic adaptations
in pregnancy and postpartum maternal metabolic health
outcomes.

In our BMI_GDM model sensitivity analysis, we observed that
the 2-hour antenatal OGTT glucose peak was associated with
a stronger prediction of postpartum T2D (AUC=0.86) compared
with the fasting glucose (AUC=0.76) in Singaporean women.
Future studies with greater statistical power will be needed to
confirm whether the postpartum T2D risk is heterogenous across
different thresholds of glucose tolerance for GDM diagnostic
criteria.

Limitations
This study has some limitations due to the scarcity of
longitudinal data. Postpartum OGTT at 4-12 weeks, and further
testing in those with normal postpartum OGTT every 1-3 years
were not administered in the GUSTO study, possibly
underestimating the development of postdelivery dysglycemia
to a certain extent and inducing bias. However, the mothers
participating in GUSTO self-reported T2D status 2 years after
delivery, and there were no self-reported T2D cases. Our
prediction models were trained on a limited cohort of 561
pregnancies and require further validation using larger cohorts
such as Electronic Health Record databases. A subcohort
analyses by individual ethnic groups can be trained with larger
data sets.

Comparison With Prior Work
Our early implementation of T2D risk prediction algorithm
during prenatal care enables early engagement of patients and
remote monitoring, compared to existing molecular
biomarker-based T2D risk prediction algorithms [7,8] developed
for postpartum care. The 2 midgestation clinical features
(midpregnancy BMI after gestational weight gain and diagnosis
of GDM) discovered from our machine learning workflow are
of low cost and easily accessible during routine antenatal GDM
screening. The digital biomarkers identified from our work will
guide antenatal research in preventing the progression of GDM
to T2D.

Conclusions
The key strength of our study lies in applying machine
learning–based predictive analytics during prenatal care in the
early prediction of postpartum T2D. This machine learning
model can be leveraged as a risk stratification tool for preventive
intervention.
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