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Abstract

Background: Type 2 diabetes (T2D) has an immense disease burden, affecting millions of people worldwide and costing billions
of dollars in treatment. As T2D is a multifactorial disease with both genetic and nongenetic influences, accurate risk assessments
for patients are difficult to perform. Machine learning has served as a useful tool in T2D risk prediction, as it can analyze and
detect patterns in large and complex data sets like that of RNA sequencing. However, before machine learning can be implemented,
feature selection is a necessary step to reduce the dimensionality in high-dimensional data and optimize modeling results. Different
combinations of feature selection methods and machine learning models have been used in studies reporting disease predictions
and classifications with high accuracy.

Objective: The purpose of this study was to assess the use of feature selection and classification approaches that integrate
different data types to predict weight loss for the prevention of T2D.

Methods: The data of 56 participants (ie, demographic and clinical factors, dietary scores, step counts, and transcriptomics)
were obtained from a previously completed randomized clinical trial adaptation of the Diabetes Prevention Program study. Feature
selection methods were used to select for subsets of transcripts to be used in the selected classification approaches: support vector
machine, logistic regression, decision trees, random forest, and extremely randomized decision trees (extra-trees). Data types
were included in different classification approaches in an additive manner to assess model performance for the prediction of
weight loss.

Results: Average waist and hip circumference were found to be different between those who exhibited weight loss and those
who did not exhibit weight loss (P=.02 and P=.04, respectively). The incorporation of dietary and step count data did not improve
modeling performance compared to classifiers that included only demographic and clinical data. Optimal subsets of transcripts
identified through feature selection yielded higher prediction accuracy than when all available transcripts were included. After
comparison of different feature selection methods and classifiers, DESeq2 as a feature selection method and an extra-trees classifier
with and without ensemble learning provided the most optimal results, as defined by differences in training and testing accuracy,
cross-validated area under the curve, and other factors. We identified 5 genes in two or more of the feature selection subsets (ie,
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CDP-diacylglycerol-inositol 3-phosphatidyltransferase [CDIPT], mannose receptor C type 2 [MRC2], PAT1 homolog 2 [PATL2],
regulatory factor X-associated ankyrin containing protein [RFXANK], and small ubiquitin like modifier 3 [SUMO3]).

Conclusions: Our results suggest that the inclusion of transcriptomic data in classification approaches for prediction has the
potential to improve weight loss prediction models. Identification of which individuals are likely to respond to interventions for
weight loss may help to prevent incident T2D. Out of the 5 genes identified as optimal predictors, 3 (ie, CDIPT, MRC2, and
SUMO3) have been previously shown to be associated with T2D or obesity.

Trial Registration: ClinicalTrials.gov NCT02278939; https://clinicaltrials.gov/ct2/show/NCT02278939

(JMIR Diabetes 2023;8:e44018) doi: 10.2196/44018
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Introduction

Background
Type 2 diabetes (T2D) is a metabolic disorder characterized by
high blood glucose levels due to impaired insulin secretion or
insulin resistance. T2D is one of three types of diabetes, which
also includes gestational diabetes and type 1 diabetes; however,
T2D accounts for 90%-95% of diabetes cases in the United
States [1]. According to the Centers for Disease Control and
Prevention, an estimated 88 million Americans have prediabetes
and more than 34 million Americans have T2D [2]. In 2017,
the United States spent US $327 billion on diabetes, with US
$9601 spent on each individual with T2D [3]. The number of
diabetes cases continues to increase and is expected to reach
693 million worldwide by the year 2045 [4].

A number of behavioral factors can alter the risk of developing
T2D. Obesity is one of the leading T2D risk factors, as increased
adipose tissue mass can lead to impaired insulin secretion or
insulin resistance [5]. Diets high in saturated fats, refined grains,
and sugar-sweetened beverages increase the risks of obesity
and T2D [6]. Cultural and societal influences on diet may put
certain populations and groups at higher risk of T2D. For
example, certain racial and ethnic groups, including Filipino
Americans, have been found to be more susceptible to
developing T2D, with an estimated 2.5-fold higher T2D
incidence compared to White adults [7]. Filipino American diets
include a mix of carbohydrates and proteins like rice, vegetables,
and meat [7]. These diets are associated with an overall increase
in caloric and fat intake compared to the historical diets of
Filipinos living in the Philippines [7]. In addition to the direct
impact of evolving dietary patterns and cultural and social
influences, evidence suggests there could be interactions with
underlying ancestral genetic characteristics that interact with
behavioral factors to increase risk [8].

Tools to screen for the risk of T2D have been created by the
American Diabetes Association [9-11]. These tools consider
common demographic and clinical risk factors like obesity and
family history of diabetes. Risk prediction models can
incorporate multiple variables relevant to T2D, but current
models exhibit unreliable risk prediction [12]. Accurate
assessment of behavioral data related to obesity and risk for
T2D (ie, physical activity and diet) is challenging and can result
in highly dimensional data sets that are difficult to analyze and
interpret. Genome-wide association studies have identified a

number of genes and single nucleotide polymorphisms that are
significantly associated with T2D. Polygenic risk scores that
include genetic variants known to be associated with T2D have
been developed. However, the addition of these risk scores to
models that include demographic (eg, family history) and
clinical (eg, obesity) characteristics fails to provide a sufficiently
accurate prediction of risk [13].

Interactions between the behavioral and genetic factors that
contribute to the etiology of T2D make it a difficult condition
to prevent and treat. In contrast to genetic information,
assessment of the transcriptome, or the full set of expressed
genes at a given moment in time within a specific tissue type
from an individual, may provide insights about how an
individual is responding to behavioral factors in the context of
their underlying genetic characteristics. Transcriptome profiles
change over time, including in response to changes in behavioral
patterns. Because of this dynamic activity, the transcriptome
may be a more useful means of assessing the combined impact
of behavioral and genetic risk factors. However, as with physical
activity and dietary data, transcriptomic data sets are highly
dimensional and can be challenging to analyze and interpret.

Prior Work
To address the challenge of complex and high-dimensional data
sets, methods for optimal feature selection and machine learning
algorithms have been developed [14]. Feature selection is a
method that is employed to reduce the dimensionality of large
data sets like transcriptomic data in order to capture the most
relevant variables for outcome prediction. Machine learning
algorithms include different types of classification approaches
that use automated processes to discover patterns within large
complex data sets to predict clinical outcomes [14]. Previous
studies employed different classifiers in the prediction of the
risk for T2D, using factors like BMI, blood pressure, age, and
expression of long noncoding ribonucleic acid (lncRNA) [15].
When assessing lncRNA expression, the authors found that
logistic regression and support vector machine (SVM) had the
highest accuracy for predicting T2D [15]. Moreover, some
classifiers performed better on specific data sets than others in
a study that included 58 predictor variables to predict the
outcome of fasting blood glucose [16]. The model that
performed the best was also dependent on the observed metric
score and the amount of available data [16]. The limitations of
both studies were a small sample size, which may prevent
accurate representation of the population, and limited
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generalizability, given the study sample characteristics.
Additional studies that include individuals at the greatest risk
for T2D based on social and biological characteristics are
needed.

Goal of This Study
The group of Filipino Americans is an example of an ethnic
group at high risk for T2D, which has not been previously well
represented in clinical research studies. The purpose of this
study was to evaluate weight loss in response to a behavioral
intervention tested in a previously completed clinical trial that
included Filipino Americans. We integrated demographic and
clinical data with behavioral and transcriptomic data to evaluate
whether we could optimize the prediction of weight loss. We
also identified the optimal transcriptomic features and
determined their potential for mechanistic relationships with
weight loss and the risk for T2D.

Methods

Study Participants
The data used in this secondary analysis were obtained from
the Fit and Trim (F&T) Diabetes Prevention Program (DPP)
study (ClinicalTrials.gov NCT02278939). This randomized,
waitlisted, controlled trial was designed to assess the feasibility
and acceptability of a DPP-based intervention in overweight
Filipino Americans at risk for T2D. The goal of the intervention
was to achieve 5% weight loss over 3 months. A total of 67
participants were recruited in the San Francisco area. The
inclusion criteria were as follows: (1) self-identifying as Filipino

American, (2) BMI >23 kg/m2, (3) age >24 years, (4) diabetes
risk test score >5 points [17], (5) fasting plasma glucose level
of 100-125 mg/dL, (6) hemoglobin A1c (HbA1c) >5.6% or oral
glucose tolerance test (OGTT) result of 140-200 mg/dL, (7)
considered physically inactive based on the Brief Physical
Activity Recall Questionnaire [18], (8) no cognitive impairment
based on the Mini-Cog test [19], and (9) able to speak English.
The exclusion criteria were as follows: (1) fasting blood glucose
level >126 mg/dL, (2) OGTT result >200 mg/dL, (3) HbA1c

>7.0%, (4) glucose metabolism–associated disease, (5) thyroid
disease that has been suboptimally treated, (6) special exercise
program requirements, (7) current participation in a lifestyle
modification program, (8) traveling outside the United States
during the study period, (9) known eating disorders, (10) plans
to have a gastric bypass surgery, (11) current pregnancy or
delivery 6 months prior, (12) severe hearing or speech problems,
and (13) use of antibiotics, antituberculosis agents (except
tuberculosis prophylaxis), or prescription weight-loss drugs.

Demographic data were collected using a standardized
questionnaire by trained study personnel. Blood pressure, waist
and hip circumference, height, and weight were also collected
by trained study personnel at each study visit. Blood was
collected by venipuncture by trained study personnel at the
enrollment visit following a 12-hour fast.

Ethics Approval
This study was approved by the University of California, San
Francisco Institutional Review Board (approval number:

19-29707), and participant consent was obtained before the start
of the study.

Behavioral Data
At enrollment, the Beverage Intake Questionnaire (BEVQ-15)
and Fat-Related Diet Habit Questionnaire were used to assess
dietary habits [20,21]. Participants were asked to wear a Fitbit
Zip activity tracker for at least 10 hours per day to measure step
count. The average daily step count over the last 4 weeks of the
intervention period was used to characterize physical activity
in prediction models.

Study Design
Participants were randomized into one of two groups, which
determined when they received the intervention. Regardless of
which group they were placed in, all participants wore a Fitbit
Zip device for the entire 6-month duration of the study to track
and record daily step count. Those in the immediate group
received a culturally tailored intervention and had access to a
Facebook support group during the first 3 months (months 0-3)
of the study. Those in the waitlist group received the intervention
and had access to the support group during the last 3 months
(months 3-6) of the study. For the study described in this
manuscript, the 2 groups were “stacked” such that all data were
analyzed simultaneously, with month 0 considered as baseline
for the immediate group and month 3 considered as baseline
for the waitlist group. Month 3 was considered as the final
timepoint for weight loss in the immediate group, and month 6
was considered as the final timepoint for weight loss in the
waitlist group.

Molecular Data Collection
Blood was collected in PAXgene vacutainers (Qiagen)
containing reagents to lyse cells and stabilize RNA molecules
according to the standard protocol. Vacutainers were stored at
−80 °C until RNA isolation was completed using the PAXgene
blood RNAeasy kit (Qiagen) according to the standard protocol.

Library preparation and sequencing were performed by the
University of California, Davis DNA Technologies and
Expression Analysis Core Laboratory. Barcoded 3′-Tag-Seq
libraries were prepared using the QuantSeq FWD kit (Lexogen)
for multiplexed sequencing according to the recommendations
of the manufacturer. The fragment size distribution of the
libraries was verified via microcapillary gel electrophoresis on
a Bioanalyzer 2100 system (Agilent). The libraries were
quantified by fluorometry on a Qubit instrument
(LifeTechnologies) and pooled in equimolar ratios. A total of
48 libraries were sequenced per lane on a HiSeq 4000 sequencer
(Illumina) with single-end 100 base-pair reads.

Data Preprocessing
Of the 67 participants in the parent trial, 11 were excluded for
this analysis due to missing transcriptomic or step count data.
Two of the remaining 56 participants had missing clinical data
(ie, glucose, total cholesterol, triglycerides, low-density
lipoprotein cholesterol, and high-density lipoprotein cholesterol),
which were imputed using the mice package from R [22]. The
parameter “pmm” or predictive mean matching was
recommended and selected for imputation of continuous data.
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Sugar-sweetened beverage scores (calories and grams) were
calculated based on a scoring guide, which included totaling up
scores from sweetened fruit beverages, soft drinks, sweetened
tea, tea or coffee with cream or sugar, and energy drinks [21].
The calculated fat score was the average of 5 factors
(substitution, modify meat, avoid frying, replacement, and avoid
fat) [20]. Changes in fat scores and sugar-sweetened beverage
scores were then calculated between baseline and the end of the
intervention for all participants. The average step count of the
4 weeks prior to completion of the intervention for each
participant was used as a predictor variable. Due to the small
sample size, 1 participant who had missing step count data for
the previous 4 weeks was imputed with a mean of means
involving all participants’ average step counts for the previous
4 weeks. Weight loss was defined as having a change in weight
over 3 months of ≥5% of the baseline weight. Weight loss was
then coded as “1” if there was ≥5% weight change and “0”
otherwise for the outcome variable. The gene transcripts from
the RNA-seq data were first filtered so that only those that
appeared in 90% (51/56) of the samples and had ≥10 counts
were retained. EdgeR was used to normalize the read counts
for use in the feature selection methods, except the DESeq2
method [23,24].

Statistical Analysis
Descriptive statistics were calculated for demographic and
clinical characteristics overall and stratified by weight loss
group, using the tableone package in Python [25]. The mean
and SD were reported for continuous variables when the
normality assumption held. Counts and percentages were
reported for categorical variables. Two-group t tests were used
to compare continuous variables between weight loss groups
when the normality assumption held; otherwise, Wilcoxon rank
sum tests were used. Chi-square tests were used for categorical
variables. In addition to age, gender, and baseline weight,
clinical and demographic variables with a P value <.05 based
on a 2-sample t test were included in models that predicted
weight loss. Statistical significance was declared based on a P
value <.05. Through tableone default, Bonferroni correction
was computed to account for multiple testing in Python.

Feature Selection
For the transcriptomic data, the following 4 feature selection
methods were evaluated: (1) Kolmogorov-Smirnov (K-S) test
and correlation feature selection (CFS) [26], (2)
correlation-based feature subset selection (CfsSubsetEval and
BestFirst) [27], (3) differential gene expression using DESeq2
[23], and (4) modified Linear Forward Search & Maximum
Relevance-Minimum Redundancy [28]. GreedyStepwise was
applied as the search method for the K-S test and CFS method
[26]. In addition, Maximum Relevance-Minimum Redundancy
was modified to CfsSubsetEval, SubsetSizeForwardSelection,
and Mutual Information and evaluated [28]. A combination of
R, Python [29], and Waikato Environment for Knowledge
Analysis (WEKA) [30], a data mining tool, was used to
implement the feature selection methods.

The SVM classifier was used to determine the accuracy of the
top 10, 9, 8, etc transcripts of each feature-selected subset. The
accuracy of each size subset was compared for all the feature

selection methods, and the top 5 transcripts had an optimal
accuracy score. The top 5 transcripts of each feature selection
method were then selected as predictors for the classifiers in
the prediction of weight loss.

Classifiers for Prediction
The Python library scikit-learn was used to run the following
5 supervised learning classification algorithms: (1) SVM, (2)
logistic regression, (3) decision trees, (4) random forest, and
(5) extremely randomized decision trees (extra-trees) [31].
Stratified 5-fold cross-validation was performed. Models were
run with increasing complexity, starting with demographic and
clinical characteristics and then adding behavioral
characteristics, with the final addition of transcriptomic
variables. After every model, parameter tuning was carried out.
Parameter tuning was performed to select the optimal parameters
for each algorithm, and then, each model was run again with
the new set of parameters. Training and testing accuracy,
cross-validated (CV) accuracy, area under the curve (AUC),
CV AUC, precision, recall, and F1-scores were applied to assess
and compare model performance.

Final risk models were run after incorporating all of the selected
and statistically significant features from the different types of
data available (ie, demographic, clinical, behavioral, and
transcriptomic). These models were based on an ensemble
method that used a bagging classifier to reduce variance by
fitting classifiers on randomly generated subsets from the
original data set and aggregating their individual predictions to
form a final prediction [31]. SVM, logistic regression, decision
trees, random forest, and extra-trees were all run with and
without the bagging classifier. The same model performance
metrics were applied to these final models.

Results

Among the 56 participants, hip and waist circumference were
found to be significantly different between the >5% weight loss
and no weight loss groups, using a 2-sample t test (P=.02 and
P=.04, respectively) (Table 1). The group that exhibited weight
loss at the end of the intervention (n=25) had a smaller hip and
waist circumference at baseline (Table 1). There was no
difference between the immediate and waitlist groups at baseline
(Table 1). More than half of the sample (31/56, 55%) identified
as female (Table 1). The overall sample had a mean age of 43

(SD 13) years and was obese (mean BMI 30.1, SD 4.2 kg/m2)
(Table 1).

The inclusion of all available transcripts that were normalized
using edgeR (n=6088) in the SVM classifier resulted in
overfitting, with a training accuracy and testing accuracy of
100% and 71%, respectively (Multimedia Appendix 1).
Identification of the optimal subsets of transcripts using the
4-feature selection methods and filter criteria yielded varying
numbers of transcripts and metric scores Multimedia Appendices
1-3). Overall, CV accuracy was higher when a feature selection
method was applied than when using all 6088 transcripts. Using
SVM, we determined that 5 was the optimal number of transcript
features (Multimedia Appendix 1 and 2). On evaluating each
of the subsets of 5 transcripts derived by different feature
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selection methods, DESeq2 had the smallest difference between
the training and testing accuracy of 3%, with both an average
CV accuracy and CV AUC of 83% (Multimedia Appendix 3).
CfsSubsetEval, BestFirst, and Random Forest Ranker, and K-S
test, CfsSubsetEval, and GreedyStepwise reported both an
average CV accuracy and CV AUC of ≥90% and a training and
testing accuracy difference of ≥21% (Multimedia Appendix 1
and 2). CfsSubsetEval, SubsetForwardSelection, and Mutual
Information also had an average CV accuracy and CV AUC of
>80%, while there was a 14% difference between the training
and testing accuracy (Multimedia Appendix 1).

To assess how different types of data perform in different
classifiers, SVM, logistic regression, decision trees, random
forest, and extra-trees were run with data types in an additive
manner (Multimedia Appendix 4). When using the extra-trees
algorithm, demographic and clinical data only (ie, age, gender,
baseline weight [pounds], and waist and hip circumference [cm])
yielded model scores of 50%-60% for testing accuracy, average
cross-validation, AUC, and CV AUC (Table 2). Testing
accuracy did not improve with the addition of the dietary
behavior scores, while the average CV accuracy and CV AUC
scores increased slightly (Table 2). When step count data were

included, the testing accuracy and AUC scores dropped to 41%,
while the average CV accuracy and CV AUC scores rose to
approximately 80% (Table 2).

The final risk prediction models included the demographic and
clinical data, dietary scores, step counts, and transcript subsets
selected by feature selection methods with and without an
ensemble approach (Table 3; Multimedia Appendices 5-7).
Feature selection using DESeq2 and an extra-trees model yielded
the best results (Table 3). When considering all the model metric
scores collectively, the extra-trees model both with and without
an ensemble approach had the smallest difference between the
training and testing accuracy of 14% and 3%, respectively
(Table 3). The CV AUC scores for both approaches were greater
than 90% (Table 3).

Five transcripts were selected as the optimal predictors using
each feature selection approach (Figure 1). Five transcripts were
found to overlap in at least two of the feature selection
approaches (Figure 1), including mannose receptor C type 2
(MRC2), CDP-diacylglycerol-inositol 3-phosphatidyltransferase
(CDIPT), regulatory factor X-associated ankyrin containing
protein (RFXANK), small ubiquitin like modifier 3 (SUMO3),
and PAT1 homolog 2 (PATL2).

Table 1. Demographic and clinical characteristics.

P value>5% weight loss
group (n=25) 

No weight loss group
(n=31) 

Overall (N=56) Variable

.40   Group, n (%) 

10 (40.0) 17 (54.8) 27 (48.2) Immediate (0-3 months) 

 15 (60.0) 14 (45.2) 29 (51.8) Waitlist (3-6 months) 

.85   Gender, n (%) 

12 (48.0) 13 (41.9) 25 (44.6) Male 

 13 (52.0) 18 (58.1) 31 (55.4) Female 

.5844 (13) 42 (12) 43 (13)Age (years), mean (SD)

.0629.0 (2.6) 31.0 (5.0) 30.1 (4.2) BMI (kg/m2), mean (SD)

.1790 (9) 94 (10) 92 (10) Glucose level (mg/dL), mean (SD)

.25−3 (9) −1 (8) −2 (8) Glucose change (mg/dL), mean (SD) 

.52191 (30) 196 (33) 194 (31) Total cholesterol level (mg/dL), mean (SD)

.18−8 (28) 1 (22) −3 (25) Total cholesterol change (mg/dL), mean (SD) 

.36112 (28) 118 (25) 115 (26) LDLa cholesterol level (mg/dL), mean (SD)

.5754 (14) 52 (16) 52 (14) HDLb cholesterol level (mg/dL), mean (SD)

.0775.7 (12.2) 82.6 (17.2) 79.4 (15.4)Weight (kg), mean (SD) 

.0495 (7) 100 (11) 98 (10) Waist circumference (cm), mean (SD)

.02101 (5) 106 (11) 104 (9) Hip circumference (cm), mean (SD)

.34125 (13) 128 (11) 126 (12) Systolic blood pressure (mmHg), mean (SD) 

.3376 (10) 79 (11) 78 (11) Diastolic blood pressure (mmHg), mean (SD) 

aLDL: low-density lipoprotein.
bHDL: high-density lipoprotein.
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Table 2. Evaluation of extra-trees models.

Model 4d Model 3c Model 2b Model 1a Scoring metric

Ensemble No ensemble     

0.90 0.85 0.97 0.97 0.85 Training accuracy 

0.76 0.82 0.41 0.53 0.59 Testing accuracy 

0.77 0.83 0.85 0.61 0.56 Average CVe 

0.76 0.75 0.43 0.57 0.65 AUCf 

0.91 0.90 0.82 0.60 0.55 CV AUC 

0.73 0.80 0.44 0.60 0.75 Precision 

0.89 0.89 0.44 0.33 0.33 Recall 

0.80 0.84 0.44 0.43 0.46 F1-score 

aModel 1 included demographic (age and gender) and clinical (average waist and hip circumference, and baseline weight) characteristics. 
bModel 2 included variables in Model 1 and dietary factors (fat-related diet habits summary score, and sugar-sweetened beverage average daily calorie
and gram scores). 
cModel 3 included variables in Model 2 and step count (average over the last 4 weeks). 
dModel 4 included variables in Model 3 and the 5 most optimal transcripts selected by DESeq2.
eCV: cross-validated.
fAUC: area under the curve. 

Table 3. Comparison of classifier results using all selected features.

F1-

scored
RecalldPrecisiondCV AUCAUCcAverage

CVb
Testing accura-
cy

Training accu-
racy

Classifier and ensemblea

SVMe

0.53 0.56 0.50 0.92 0.50 0.80 0.47 0.79 Ensemble

0.60 0.67 0.55 0.81 0.61 0.77 0.53 0.79 No ensemble 

Logistic regression

0.44 0.44 0.44 0.85 0.46 0.85 0.41 0.90 Ensemble 

0.44 0.44 0.44 0.86 0.47 0.90 0.41 0.90 No ensemble

Decision trees

0.63 0.67 0.60 0.85 0.70 0.80 0.59 0.95 Ensemble

0.43 0.33 0.60 0.84 0.65 0.85 0.53 0.95 No ensemble

Random forest

0.74 0.78 0.70 0.90 0.74 0.82 0.71 0.92 Ensemble 

0.74 0.78 0.70 0.87 0.72 0.82 0.71 0.95 No ensemble 

Extra-trees

0.80 0.89 0.73 0.91 0.76 0.77 0.76 0.90 Ensemble

0.84 0.89 0.80 0.90 0.75 0.83 0.82 0.85 No ensemble 

aAll models included demographic (age and gender), clinical (baseline weight, and waist and hip circumference), behavioral (dietary factors and step
count), and transcript (5 most optimal predictors identified by DESeq2) features. An ensemble approach using a bagging classifier was assessed for
each classifier. 
bCV: cross-validated.
cAUC: area under the curve.
dPrecision, recall, and F1-score for no weight loss (weight loss band=0).
eSVM: support vector machine.
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Figure 1. Venn diagram of overlapping and unique transcripts identified using 4 different feature selection methods. APOBEC3G: Apolipoprotein B
MRNA Editing Enzyme Catalytic Subunit 3G; CBX4: Chromobox 4; CDIPT: CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase; CFS: correlation
feature selection; DR1: Down-Regulator Of Transcription 1; IDH1: Isocitrate Dehydrogenase (NADP(+)) 1; MRC2: Mannose Receptor C Type 2;
NFIX: Nuclear Factor I X; PATL2: PAT1 Homolog 2; RFXANK: Regulatory Factor X Associated Ankyrin Containing Protein; ST6GALNAC4: ST6
N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 4; SUMO3: Small Ubiquitin Like Modifier 3; TFG: Trafficking From ER To Golgi Regulator;
TMEM86B: Transmembrane Protein 86B.

Discussion

Summary of the Results
Analytic methods that incorporate both genetic and
environmental factors to describe the risk for complex diseases
like T2D may improve risk prediction. In this study, the use of
demographic, clinical, and behavioral data did not result in
highly accurate prediction of weight loss for the prevention of
T2D. Although there are well known associations of dietary
components and physical activity with weight and risk for T2D,
in our models, these variables did not improve risk prediction
(Table 2). The F&T trial was a feasibility study, and it is
possible that the dose of the intervention was not sufficient to
achieve a significant association with weight loss or that the
specific measures of dietary factors and physical activity were
not optimal for the weight loss outcome. Another explanation
could be that in this study sample of people who identified as
Filipino, the impact of genetic risk was greater than the impact
of behavioral factors. The addition of gene transcripts into the
models improved the prediction accuracy, but only when a
subset of transcripts identified by feature selection was applied.
Feature selection using DESeq2 reported the most optimal
results when applied to an extra-trees model. A bagging
classifier, the selected ensemble learning approach, also
improved the AUC and CV AUC scores.

DESeq2 Applied to Studies of T2D
Based on metrics for model performance, DESeq2 was found
to be the best feature selection method for the data set in this
study when the features were analyzed using an extra-trees

model [23]. The training and testing accuracy had the smallest
difference compared to all models, suggesting overfitting of the
data was minimized. In contrast, a perfect (100%) training
accuracy or a large difference in training and testing accuracy
indicated possible overfitting in some of the observed models.
DESeq2 is a popular R package available for differential gene
expression that considers fold changes and dispersion rates by
estimating shrinkage and is a conservative approach to control
for false positives [23]. Most studies that focused on associations
between the transcriptome and T2D used DESeq2 to identify
differentially expressed genes that may be dysregulated or
potentially involved in the pathogenesis of T2D and related
complications [32,33]. Saxena et al [33] applied DESeq2 to
identify 2752 differentially expressed genes (P<.01; log fold
change ±2) using RNA expression data obtained from femoral
subcutaneous adipose tissue in Asian Indians with and without
diabetes. Another study identified 184 differentially expressed
genes (adjusted P<.05; fold change ±2) from a total of 58,037
transcribed genes from the skin of individuals with and without
T2D [23]. As a feature selection method, DESeq2 has been used
to identify genes associated with small-cell lung cancer and
integrated with other feature selection methods like EdgeR and
Limma + voom to identify a smaller subset of overlapping genes
[34]. Although DESeq2 has not appeared in studies as a feature
selection method on its own, it offers the potential to select for
a smaller more relevant subset of genes for risk predictions.

Ensemble Learning in Studies of T2D
The 2 best approaches in this analysis included a model that
used a bagging classifier for the ensemble learning approach
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and a model that did not. In addition to bagging, other ensemble
learning approaches have been used to predict the risk for T2D
[35], including stacking and boosting, which have the goal to
improve modeling and make more accurate predictions [35].
Kumari et al [36] found that the soft voting classifier produced
the highest scores with a prediction accuracy of 79.05% in a
study of diabetes in Pima Indians. In the same sample, another
study reported the highest prediction accuracy of 93.1% using
a stacking classifier [35]. Within the same data set, the stacking
classifier outperformed the soft voting classifier in not only
accuracy but also precision, recall, and F1-scores [35,36].
However, both studies had relatively higher scores when using
ensemble learning algorithms compared to models without these
[35,36]. Similarly, in another study focused on the prediction
of diabetic retinopathy, high accuracy was observed when a
previously developed feature selection method and an original
stacking-based ensemble learning technique (XGBIBS and
Sel-Stacking, respectively) were used [37]. Jian et al [38] also
compared different classification approaches and ensemble
methods to predict the risk factors for T2D. Although XGBoost
had the best performance, other models like logistic regression
and random forest had higher metric scores when classifying
metabolic syndrome and hypertension, respectively [38]. In the
study described in this paper, the ensemble learning approach
had higher AUC and CV AUC scores, but the model without
the ensemble approach had higher testing and average CV
accuracy. Although studies that focused on the prediction of
the risk for T2D reported improved results with the inclusion
of ensemble learning methods, our results suggest that ensemble
learning will not always yield higher metric scores [39].

Gene Functions/Pathways
Feature selection methods identified several genes that were
found to be relevant to the weight loss outcome. In the subsets
of 5 genes identified by feature selection, CDIPT, MRC2,
PATL2, RFXANK, and SUMO3 were found to overlap in at least
two subsets. Some of these genes have known associations with
the risk for T2D or obesity, while the function of others is less
clear. Below is a review of evidence for associations between
these genes and obesity or related risk factors.

Located on chromosome 16, CDIPT encodes for an enzyme
that produces phospholipid phosphatidylinositol, which is a
signaling molecule in lipid synthesis [40]. Previous studies
linked abnormal CDIPT function to diseases like oral cancer or
hepatic steatosis in zebrafish [40,41]. A CDIPT variant (hi559)
was identified in zebrafish liver with upregulated endoplasmic
reticulum stress markers [41]. This stress may be associated
with insulin resistance in metabolic disorders like T2D and
obesity [41]. Copy number variations (CNVs) in CDIPT have
also been described in individuals with obesity or neurological
disorders [42].

MRC2 encodes for a receptor involved in extracellular matrix
remodeling, cell migration, and invasion [43]. Upregulated
MRC2 expression has been detected in cancer tissues as well
as in the peripheral blood of patients with diabetic nephropathy
[43]. A simulation conducted to mimic glucose levels in T2D
detected MRC2 at high levels in mouse mesangial cells with
high levels of glucose [43]. The study also found that knocking

down MRC2 using short interfering RNA (siRNA) affected the
cell cycle and proliferation of mouse mesangial cells [43].

PATL2 encodes for proteins that are predominantly expressed
in oocytes and is responsible for inhibiting processes after
transcription and translation [44]. PATL2 mutations have mainly
been associated with oocyte maturation and female infertility
[45,46]. However, a study that looked at whole-genome
expression found PATL2 to be differentially expressed in obese
and normal weight individuals with asthma compared to controls
[47].

RFXANK encodes for a protein subunit of a larger complex that
binds to major histocompatibility complex class II (MHCII)
genes [48,49]. MHCII components are required for the adaptive
immune response in which dysfunctions are associated with
immunodeficiency disorders [49]. RFXANK mutations are
prevalent in bare lymphocyte syndrome (BLS) group B, an
immunodeficiency disorder affecting CD4+ T and B cells [50].
However, RFXANK has not been associated with obesity or
T2D in previous studies, though MHCII has been found to play
a role in obesity [51], and our own prior studies have identified
pathways related to inflammation and immunity as common
themes in individuals at risk for T2D [52]. Deng et al [51]
analyzed RFXANK between 7 obese women and 7 lean
postmenopausal women but did not find the expression to be
significantly different.

SUMO3 is involved in the posttranslation modification of target
proteins known as sumoylation [53]. SUMO3 has been found
to be involved in disorders like obesity and neurodegenerative
disorders like Parkinson disease and amyotrophic lateral
sclerosis [53-55]. In a study that looked at obese and normal
weight participants, proteomic analysis identified SUMO3 to
be one of the top 10 differentially expressed genes between the
2 groups [55]. Using microarray-based comparative genomic
hybridization, another study found deleted SUMO3 in an
identified CNV in a child with syndromic obesity [56].

Additional studies are needed to determine the potential
functional implications of the identified genes for T2D and
obesity. CDIPT and SUMO3 have been found to be differentially
expressed in obese individuals; however, the exact mechanisms
are not known. Upregulation of MRC2 has been observed in
people with T2D, and further studies are needed to determine
whether these genes may be potential therapeutic targets.

Limitations
Some limitations of this study were the modest sample size and
missing data for some of the participants, requiring imputation.
We were not able to exactly replicate feature selection methods
from previous studies that required specific software and coding
packages. We did not identify an external data set for validation
that contained the necessary combination of variables (ie,
dietary, step count, and transcriptomic). Future studies with
larger sample sizes may also need to implement recent
technological advances in methods for the collection of dietary
and physical activity data. Some of the genes identified in this
study are not known to be associated with obesity or the risk
for T2D, and further assessment of potential functional
relationships is needed.
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Conclusion
This study assessed multiple domains of individual
characteristics for the prediction of weight loss in Filipinos at
risk for T2D. This is one of the only studies to integrate
transcriptomic data with behavioral data, and to our knowledge,
this is the only study to apply this approach in the high-risk

Filipino population. We identified optimal tools for feature
selection and classification approaches for risk prediction, with
an accuracy as high as 90% in the prediction of weight loss.
Five genes were identified by multiple feature selection methods,
including those known to be associated with conditions related
to the risk for T2D and T2D complications.
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