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Abstract

Background: Although prior research has identified multiple risk factors for diabetic ketoacidosis (DKA), clinicians continue
to lack clinic-ready models to predict dangerous and costly episodes of DKA. We asked whether we could apply deep learning,
specifically the use of a long short-term memory (LSTM) model, to accurately predict the 180-day risk of DKA-related
hospitalization for youth with type 1 diabetes (T1D).

Objective: We aimed to describe the development of an LSTM model to predict the 180-day risk of DKA-related hospitalization
for youth with T1D.

Methods: We used 17 consecutive calendar quarters of clinical data (January 10, 2016, to March 18, 2020) for 1745 youths
aged 8 to 18 years with T1D from a pediatric diabetes clinic network in the Midwestern United States. The input data included
demographics, discrete clinical observations (laboratory results, vital signs, anthropometric measures, diagnosis, and procedure
codes), medications, visit counts by type of encounter, number of historic DKA episodes, number of days since last DKA admission,
patient-reported outcomes (answers to clinic intake questions), and data features derived from diabetes- and nondiabetes-related
clinical notes via natural language processing. We trained the model using input data from quarters 1 to 7 (n=1377), validated it
using input from quarters 3 to 9 in a partial out-of-sample (OOS-P; n=1505) cohort, and further validated it in a full out-of-sample
(OOS-F; n=354) cohort with input from quarters 10 to 15.

Results: DKA admissions occurred at a rate of 5% per 180-days in both out-of-sample cohorts. In the OOS-P and OOS-F
cohorts, the median age was 13.7 (IQR 11.3-15.8) years and 13.1 (IQR 10.7-15.5) years; median glycated hemoglobin levels at
enrollment were 8.6% (IQR 7.6%-9.8%) and 8.1% (IQR 6.9%-9.5%); recall was 33% (26/80) and 50% (9/18) for the top-ranked
5% of youth with T1D; and 14.15% (213/1505) and 12.7% (45/354) had prior DKA admissions (after the T1D diagnosis),
respectively. For lists rank ordered by the probability of hospitalization, precision increased from 33% to 56% to 100% for
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positions 1 to 80, 1 to 25, and 1 to 10 in the OOS-P cohort and from 50% to 60% to 80% for positions 1 to 18, 1 to 10, and 1 to
5 in the OOS-F cohort, respectively.

Conclusions: The proposed LSTM model for predicting 180-day DKA-related hospitalization was valid in this sample. Future
research should evaluate model validity in multiple populations and settings to account for health inequities that may be present
in different segments of the population (eg, racially or socioeconomically diverse cohorts). Rank ordering youth by probability
of DKA-related hospitalization will allow clinics to identify the most at-risk youth. The clinical implication of this is that clinics
may then create and evaluate novel preventive interventions based on available resources.

(JMIR Diabetes 2023;8:e47592) doi: 10.2196/47592
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Introduction

Background
Despite advances in technologies and insulin analogs used to
treat type 1 diabetes (T1D), 7% to 10% of youth and young
adults with preexisting T1D in the United States still experience
preventable hospital admissions for diabetic ketoacidosis (DKA)
annually; this rate is increasing [1-3]. DKA is a severe metabolic
decompensation caused by absolute insulin deficiency. DKA
is also a leading cause of morbidity and mortality in youth with
T1D, accounting for approximately 50% of all deaths in this
population. Episodes can lead to dangerous complications such
as long-term neurocognitive impairment, cerebral edema, coma,
or even death [4-6]. In 2014, the mean hospital charge was US
$26,566 per DKA admission, with the aggregate US national
charges for DKA being US $5.1 billion [3]. Most studies
pertaining to DKA risk prediction in youth have relied on a
limited number of discrete variables available in the electronic
health record (EHR) and on conventional statistical models,
such as logistic regression, which do not consider changes in
predictors or recurrence of discrete events over time [7-9].

Prior research has applied machine learning and deep learning
to EHR data to forecast health outcomes but not yet to predict
DKA among children with T1D [10]. The ability to accurately
predict and effectively intervene to prevent hospital admissions
for DKA would support the achievement of the quadruple aim
of improving population health, reducing the cost of care,
improving patient experience, and improving the work-life
balance of health providers [11]. Many clinics providing care
for individuals with T1D seek to improve the quality of health
of their clinic populations by using population data housed in
EHRs, enterprise data warehouses, or data repositories governed
by learning health networks. Forecasting with such data may
allow for earlier intervention before an adverse health outcome
occurs [12].

Objective
We constructed a predictive model using a recurrent neural
network–based approach suited to processing time series and
other sequential data [13]. We specifically developed and
evaluated the performance characteristics of a long short-term
memory (LSTM) model to predict the 180-day risk of
DKA-related hospitalization among youth with T1D [14].

Methods

Study Design
We developed a model to predict DKA-related hospitalizations
within the T1D population of diabetes centers. We considered
youth with the appropriate International Classification of
Diseases, Ninth and Tenth Revisions, codes to have T1D.
Autoantibody and C-peptide laboratory results and expert chart
review were used to confirm the diagnosis. We chose to develop
the model for youth aged 8 to 18 years, as this age range
represents most of the hospital admissions for DKA at the
institution.

Source Data
The source data were derived from the Cerner Millennium
Electronic Medical Record System. Data used for model
development and validation included demographic data, discrete
clinical observations (laboratory results, vital signs,
anthropometric measures, diagnosis, and procedure codes),
medications, visit counts by type of encounter, number of
historic DKA episodes, number of days since last DKA
admission, patient-reported outcomes (answers to clinic intake
questions), and data features derived from diabetes- and
nondiabetes-related clinical notes via natural language
processing (NLP). Demographic data included sex (female or
male), age (in years), ethnicity (non-Hispanic or Hispanic), race
(Asian, Black or African American, White, other, or unknown),
and insurance type (public=Medicaid, other, government, or
competitive medical plan and private=commercial, Blue Cross,
or self-pay). For periods leading up to the prediction period, the
counts of each clinical note type and the total words for each
note type for the 20 most common note types were recorded.
The counts for the 100 most common words and the 100 most
common 2-word phrases were recorded as data features.

Feature Generation for the LSTM Model
The handling of data features varied by feature type. Structured
clinical data, comprising Current Procedural Terminology codes,
diagnosis codes (International Classification of Diseases, Ninth
and Tenth Revisions), and Systematized Nomenclature of
Medicine Clinical Terms codes, were included in the model
development. When an individual had multiple encounters on
the same day, the corresponding Concept Unique Identifier
(CUI) codes were grouped together, with each CUI code
recorded only once. The counts per period for the 200 most
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common CUI codes were recorded. For most measures, we
calculated summary metrics for all observations quarterly (eg,
participant 1 as of April 8, 2016; July 7, 2016; and October 5,
2016).

The goal of this work was not to identify explanatory variables
for DKA risk but to develop a high-performing predictive model
that is feasible for clinical implementation. Clinical
implementation of a predictive model requires a data pipeline
and analytic approach that can manage the biased missingness
that characterizes data in EHR systems (ie, some important
observations are recorded infrequently and only on individuals
who are sick or who access care within an observation window).
We used a simple imputation approach to solve this problem.
We assumed that to meet our objective, absent observations in
the EHR for any data feature in any quarter could be adequately
represented by an individual’s most recent value carried forward
or by the population average for that feature when a particular
variable had never been measured in the individual. When a
youth did not have a certain laboratory result or vital sign
recorded during a quarter, for example, the value for that quarter
was imputed using the last recorded value carried forward. When
no prior measurement for a laboratory or vital sign was
available, we set the imputed value to the population average
for that variable. On average, results for approximately 4.28%
(58,897/1,377,000) of all available laboratory tests performed
on the cohort during the total observation period were present
during any given quarter (ie, 1,318,103/1,377,000, 95.72% of
laboratory values were imputed per quarter). A total of 10.61%
(146,053/1,377,000) of laboratory values were imputed using
an earlier value and 85.12% (1,172,050/1,377,000) were imputed
using the population average. For vital signs, on average,
approximately 44.66% (49,197/110,160) were present during
a given quarter, 15.48% (17,053/110,160) were imputed using
an earlier value, and 39.86% (43,910/110,160) were imputed
using the population average.

We used counts to represent certain data types. The counts per
quarter for the 50 most common medications, counts of all
medical visits, and counts by type of visit (daytime, ambulatory,
emergency, inpatient, outpatient, and other) were recorded. We
also included the number of previous DKA admissions and the
number of days since the last DKA admission, which was
capped at 365 days for those who did not experience DKA
during the previous year. For the training, partial out-of-sample
(OOS-P), and full out-of-sample (OOS-F) cohorts, the number
of previous DKA admissions only included DKA admissions
from quarters 1 to 7, 3 to 9, and 10 to 15, respectively.

Glycated hemoglobin (HbA1c) is an important biomarker that
is the current gold standard for estimating average glycemic
control over approximately the prior 90 days. Diagnostic and
quarterly HbA1c values were included as clinical features.
Diagnostic HbA1c was defined as the youth’s first recorded
HbA1c result, which in most cases reflected HbA1c at the time
of T1D diagnosis before the initiation of diabetes treatment. If
HbA1c was missing for a given quarter, the value was linearly
interpolated between the closest actual observations before and
after that quarter. Otherwise, the most recent HbA1c from the

prior 2 quarters was used. If no recent HbA1c was present, we
imputed missing HbA1c values using the median HbA1c. Youth
were stratified by age at encounter before imputing missing
values to account for age-specific HbA1c variation. On average,
approximately 60.69% (8357/13,770) of quarters had an
available HbA1c value, 6.81% (938/13,770) of HbA1c values
were imputed using linear interpolation, 10.16% (1399/13,770)
were imputed using the last recorded value, and 22.34%
(3076/13,770) were imputed using the population average by
age.

To mitigate the possibility of overfitting (strong performance
in the training data but poor performance in unseen data sets)
and to improve the model training process, we limited the total
number of clinical features in the trained model to the most
common values observed across the population. Threshold
numbers were chosen to determine how many CUI codes,
laboratory results, vital signs, medications, patient-reported
outcomes, patient-reported outcome surveys, and features
derived from NLP of free-text clinical notes would be included
in model development. All values were subsequently scaled to
ensure that none of them would overpower the model. The
LSTM model considered >500 features per observation period.
A random forest model with the same input features and
outcomes was trained in parallel to allow estimation of feature
importance.

Outcome Definition
The LSTM model estimated the time to DKA-related
hospitalization using the Weibull distribution, which is a
continuous probability curve often used by engineers to analyze
the time to failure for various machines and materials [15,16].
After determining the Weibull distribution for DKA-related
hospitalization, we calculated the youth’s cumulative daily
probability of DKA-related hospitalization within 180 days as
our final model output.

LSTM Model Development and Validation
Figure 1 illustrates the LSTM data structure. We created a
training set using 7 consecutive 90-day periods of input data
from quarters 1 to 7 (January 10, 2016, to September 30, 2017)
for 1377 youths, and we predicted the risk of DKA-related
hospitalization in the next 180 days (quarters 8 and 9). We first
sought to evaluate whether an OOS-P cohort could be used to
validate the model performance using input data from quarters
3 to 9 (July 8, 2016, to March 29, 2018) for 1505 youths. Our
rationale for creating an OOS-P cohort was that this approach
might be the ideal one for monitoring the model performance
in an ongoing way during clinical implementation. Moreover,
many clinics aiming to adopt this model may have limited data
available for fine-tuning, validating, and monitoring the
approach. The OOS-P cohort included the original training
cohort (n=1377); an additional 72 new, model-naive youths
who were randomly withheld from the training cohort (72/1377,
5.23% of the total); and 56 model-naive youths who entered
the cohort as those with new T1D diagnoses during quarters 8
or 9. We used the OOS-P validation data set to assess risk in a
new 180-day observation window: quarters 10 and 11 (March
3, 2018, to September 25, 2018).
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Figure 1. Long short-term memory structure used to predict diabetic ketoacidosis–related hospitalization within the subsequent 180 days in youth with
type 1 diabetes in the training, partial out-of-sample, and full out-of-sample validation cohorts.

We then performed a gold standard OOS-F validation of the
model using data from quarters 10 to 15 (March 29, 2018, to
September 20, 2019) for 354 new, model-naive individuals.
The OOS-F cohort included 114 model-naive youths who were
excluded from the training cohort, either because they were part
of the planned, randomly selected 5.23% (72/1377) who were
excluded or because they were not yet eligible for inclusion in
model training because of the T1D diagnosis date occurring
between quarters 1 and 7; an additional 240 youths entered the
cohort (as those with new diagnoses or transfers of care) in
quarters 10 to 15. We used the OOS-F validation data set to
assess risk in quarters 16 to 17 (September 29, 2019, to March
18, 2020).

Statistical Analysis
Descriptive statistics were expressed as frequencies, percentages,
medians, and IQRs. We created lists for the top 5.32% (80/1505)
and 5.1% (18/354) of youth in each validation cohort with the
highest cumulative probability of DKA-related hospitalization.
As a result, list sizes of 80 and 18 were determined to be the
most accurate approximations for the number of individuals
who experienced DKA-related hospitalization within 180 days
in the OOS-P and OOS-F validation cohorts, respectively. We
compared youth within and outside the top 80 and top 18 for
the OOS-P and OOS-F validation cohorts, respectively, using
chi-square, Fisher exact, or 2-sample Wilcoxon rank-sum
(Mann-Whitney) tests. To evaluate the proposed LSTM model’s
efficiency, we calculated precision (positive predictive value)
and recall (sensitivity). We calculated precision as the proportion
of members within a segment of the rank-ordered list (members
1 to 5, 1 to 10, etc) who experienced DKA-related
hospitalization. We calculated recall by counting the number
of youths in the rank-ordered list who actually experienced
DKA-related hospitalization and then dividing by the list size
(80 or 18, the number of admissions per 180-day period) for
the OOS-P and the OOS-F validation cohorts, respectively. We

produced the area under the receiver operating characteristic
(AUROC) curve and the area under the precision-recall curve
(AUPRC) to display the diagnostic performance of the machine
learning model. All summary statistics and analyses were
conducted using Stata/SE software (version 15.1; StataCorp
LLC). The P values ≤.05 were considered statistically
significant.

Ethics Approval
Clinical and model output data were coded and collected in an
institutional review board–approved research data repository
(IRB #11120355) that met the requirements for a waiver of
written informed consent as outlined in US Department of
Health and Human Services regulation 45 CFR 46.116.

Results

Overview
Table 1 shows the demographics and characteristics of the
training, OOS-P validation, and OOS-F validation cohorts. For
the OOS-P and OOS-F validation cohorts, the rate of
DKA-related hospitalizations within the 180-day observation
period was 5% (quarters 10 and 11) and 5% (quarters 16 and
17); the median age was 13.7 (IQR 11.3-15.8) years and 13.1
(IQR 10.7-15.5) years; 48.77% (734/1505) and 45.8% (162/354)
were female, 80.26% (1208/1505) and 75.1% (266/354) were
White; 50.56% (761/1505) and 50.3% (178/354) had private
insurance; the median duration of T1D was 4.8 (IQR 2.5-7.9)
years and 0.9 (IQR 0.6-1.6) years; 58.2% (876/1505) and 22.9%
(79/344) were on an insulin pump; 29.1% (438/1505) and 40.9%
(145/354) were documented as using a continuous glucose
monitoring (CGM) device; median HbA1c levels at enrollment
were 8.6% (IQR 7.6%-9.8%) and 8.1% (IQR 6.9%-9.5%); and
14.15% (213/1505) and 12.7% (45/354) had a prior (after the
T1D diagnosis) DKA-related hospitalization, respectively.
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Table 1. Demographics and characteristics of the long short-term memory model.

P valueaFull out-of-sample valida-
tion cohort (n=354)

Partial out-of-sample vali-
dation cohort (n=1505)

Training cohort
(n=1377)

.31162 (45.76)734 (48.77)670 (48.66)Sex (female), n (%)

.00913.1 (10.7-15.5)13.7 (11.3-15.8)13.3 (10.9-15.4)Age (years), median (IQR)

.03Ethnicity , n (%)

317 (89.55)1399 (92.96)1278 (92.81)Non-Hispanic

37 (10.45)106 (7.04)99 (7.19)Hispanic

.04Race, n (%)

4 (1.13)10 (0.66)10 (0.73)Asian

28 (7.91)132 (8.77)120 (8.71)Black or African American

266 (75.14)1208 (80.27)1104 (80.17)White

5 (1.41)16 (1.06)15 (1.09)Other race

51 (14.41)139 (9.24)128 (9.3)Unknown

.001Insurance type, n (%)

169 (47.74)742 (49.30)676 (49.09)Public

178 (50.28)761 (50.56)699 (50.76)Private

7 (1.98)2 (0.13)2 (0.15)Self-pay

Medical records

<.001167 (47.18)1010 (67.11)906 (65.8)Chronic conditionsb, n (%)

<.001Number of previous DKAsc, n (%)

309 (87.29)1292 (85.85)1212 (88.02)0

36 (10.17)82 (5.45)61 (4.43)1

3 (0.85)75 (4.98)65 (4.72)2

6 (1.69)56 (3.72)39 (2.83)≥3

.93325 (91.81)1384 (91.96)1268 (92.08)Youth without DKA in prior 365 days, n (%)

.8618 (5.08)80 (5.32)68 (4.94)DKA admission in subsequent 180 days, n (%)

<.0018.1 (6.9-9.5)8.6 (7.6-9.8)8.6 (7.6-9.7)Last glycated hemoglobin (%) measuredd, median
(IQR)

65 (52-80)70 (60-84)70 (60-83)International Federation of Clinical Chemistry
(mmol/mol)

.5163 (30-95)58 (30-98)54 (29.5-86)Days since last glycated hemoglobin measuredd, median
(IQR)

<.00111.1 (9.0-13.9)8.4 (5.6-11.0)8.2 (5.4-10.8)Age at T1De diagnosis in years, median (IQR)

<.0010.9 (0.6-1.6)4.8 (2.5-7.9)4.6 (2.3-7.6)Duration of T1D in years, median (IQR)

<.001Insulin delivery methodf, n (%)

265 (77.03)625 (41.56)608 (44.25)MDIg

79 (22.97)876 (58.24)761 (55.39)Insulin pump

0 (0)3 (0.2)5 (0.36)No insulin

<.001Glucose monitoring methodh, n (%)

145 (40.96)438 (29.10)350 (25.42)CGMi

209 (59.04)1067 (70.9)1027 (74.58)SMBGj

aP values were generated via chi-square, Fisher exact, or 2-sample Wilcoxon rank-sum (Mann-Whitney) tests comparing partial and full out-of-sample
validation cohorts.
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bChronic conditions were documented if any International Classification of Diseases codes were in the chronic condition indicator or warehouse,
excluding diabetes.
cDKA: diabetic ketoacidosis.
dFor the last glycated hemoglobin measurement and days since the last glycated hemoglobin measurement: training cohort, n=1336; partial out-of-sample
validation cohort, n=1490; and full out-of-sample validation cohort, n=347.
eT1D: type 1 diabetes.
fFor the insulin delivery method: training cohort, n=1374; partial out-of-sample validation cohort, n=1504; and full out-of-sample validation cohort,
n=344.
gMDI: multiple daily injections.
hFor continuous glucose monitoring method: training cohort, Dexcom (G4, G5 or G6): n=239 and Medtronic (Guardian): n=111; partial out-of-sample
validation cohort, Dexcom (G4, G5 or G6): n=321 and Medtronic (Guardian): n=117; and full out-of-sample validation cohort, Dexcom (G4, G5 or
G6): n=117, Medtronic (Guardian): n=13, and Freestyle Libre: n=15.
iCGM: continuous glucose monitoring.
jSMBG: self-monitoring of blood glucose.

Precision, Recall, and AUCs
To measure the performance of the LSTM model, we calculated
precision and recall across various segments of the rank-ordered
lists (Tables 2 and 3). As DKA-related hospitalization occurred
in approximately 5.62% (98/1745) of youth in our study, we
generated rank-ordered lists of the top 5.32% (80/1505) and
5.1% (18/354) of youth in the OOS-P (n=80) and OOS-F (n=18)
validation cohorts, respectively, with the highest cumulative
probability of DKA-related hospitalization. Those labeled with
the highest probability of DKA-related hospitalization were
assigned the highest ranks in each list. In the OOS-P validation
cohort, for the list segment representing positions 1 to 10,
precision was 100%, indicating that all 10 list members
experienced DKA-related hospitalization. Recall for the same
segment was 13% because the 10 members represented 10 (13%)
of the 80 members of the total population who experienced
DKA-related hospitalization in the subsequent 180 days. For
list segments 1 to 25 and 1 to 80, precision was 56% and 33%,

whereas recall was 18% and 33%, respectively. In the OOS-F
validation cohort, for the list segment representing positions 1
to 5, precision was 80%, indicating that 4 of the 5 list members
experienced DKA-related hospitalization. Recall for the same
segment was 22% because the 4 members represented of the
18 members of the total population who experienced
DKA-related hospitalization in the subsequent 180 days. For
list positions 1 to 10 and 1 to 18, precision was 60% and 50%,
whereas recall was 33% and 50%, respectively.

Next, we generated a receiver operating characteristic curve to
examine the relationship between sensitivity and specificity at
various cutoff values. Owing to data imbalance, we also
generated a precision-recall curve to examine the relationship
between the true positive rate (recall) and the positive predictive
value (precision) at different probability thresholds. The model
demonstrated an AUROC of 0.72 and 0.85 and an AUPRC of
0.29 and 0.42 for the OOS-P and OOS-F validation cohorts,
respectively (Figure 2).

Table 2. Precision and recall according to diabetic ketoacidosis (DKA) admission frequency in the long short-term memory (LSTM) model for the
partial out-of-sample validation cohort.

Recall (actual members/80), n (%)Precision (actual members/list size), n (%)Members with subsequent DKA within 180 days, nList size

5 (6)5 (100)55

10 (13)10 (100)1010

14 (18)14 (56)1425

17 (21)17 (34)1750

26 (33)26 (33)2680

Table 3. Precision and recall according to diabetic ketoacidosis (DKA) admission frequency in the long short-term memory (LSTM) model for the full
out-of-sample validation cohort.

Recall (actual members/18), n (%)Precision (actual members/list size), n (%)Members with subsequent DKA within 180 days, nList size

4 (22)4 (80)45

6 (33)6 (60)610

9 (50)9 (50)918
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Figure 2. Area under the receiver operating characteristic (AUROC) curve and area under the precision-recall (PR) curve for the prediction of diabetic
ketoacidosis–related hospitalization within the subsequent 180 days in youth with type 1 diabetes. For the partial out-of-sample validation cohort: (A)
area under the ROC curve=0.72 and (B) area under the PR curve=0.29. For the full out-of-sample validation cohort: (C) area under the ROC curve=0.85
and (D) area under the PR curve=0.42.

Next, we compared youth within the top 5% with youth outside
the top 5% for the OOS-P (youth within the top 80 vs outside
the top 80) and OOS-F (youth within the top 18 vs outside the
top 18) validation cohorts (Table 4). For the OOS-P validation
cohort, we observed significant differences in sex, age in years,
race, insurance, proportion with other chronic conditions,
proportion with any previous DKA episodes, proportion with
no DKA episodes in the previous 365 days, last HbA1c, duration
of T1D in years, and proportion using an insulin pump or a
CGM device between those in the top 5% and those not in the

top 5% by risk of DKA-related hospitalization. We also
observed a difference in the proportion of youth with
DKA-related hospitalization in the subsequent 180 days. In the
OOS-F validation cohort, we observed differences in sex, race,
proportion with other chronic conditions, proportion with any
previous DKAs, proportion with no DKA episodes in the
previous 365 days, last HbA1c, and proportion using a CGM
device. We also observed differences in the proportion of youth
with DKA-related hospitalization in the subsequent 180 days.
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Table 4. Comparison of youth outside to within top 80 and top 18 ranks, respectively, for the partial and full out-of-sample validation cohorts.

Full out-of-sample validation cohort (n=354)Partial out-of-sample validation cohort
(n=1505)

P valueaTop 18 (n=18)Outside top 18
(n=336)

P valueaTop 80 (n=80)Outside top 80
(n=1425)

.0313 (72.22)149 (44.35)<.00157 (71.25)677 (47.51)Sex (female), n (%)

.0814.4 (12.7-16.1)12.9 (10.6-15.4)<.00115.3 (13.5-16.6)13.6 (11.3-15.7)Age (years), median (IQR)

.42.65Ethnicity, n (%)

15 (83.33)302 (89.88)76 (95)1323 (92.84)Non-Hispanic

3 (16.67)34 (10.12)4 (5)102 (7.16)Hispanic

.03<.001Race, n (%)

0 (0)4 (119)0 (0)10 (0.7)Asian

4 (22.22)24 (7.14)30 (37.5)102 (7.16)Black or African American

9 (50)257 (76.49)39 (48.75)1169 (82.04)White

1 (5.56)4 (1.19)0 (0)16 (1.12)Other race

4 (22.22)47 (13.99)11 (13.75)128 (8.98)Unknown

.09<.001Insurance type, n (%)

12 (66.67)157 (46.73)70 (87.5)672 (47.16)Public

5 (27.78)173 (51.49)10 (12.5)751 (52.7)Private

1 (5.56)6 (1.79)0 (0)2 (0.14)Self-pay

Medical records

<.00116 (88.89)151 (44.94)<.00172 (90)938 (65.82)Chronic conditionsb, n (%)

<.001<.001Number of previous DKAsc, n (%)

8 (44.44)301 (89.58)11 (13.75)1281 (89.89)0

4 (22.22)32 (9.52)13 (16.25)69 (4.84)1

2 (11.11)1 (0.3)22 (27.50)53 (3.72)2

4 (22.22)2 (0.6)34 (42.5)22 (1.54)≥3

<.0018 (44.44)317 (94.35)<.00123 (28.75)1361 (95.51)Youth without DKA in prior 365 days, n (%)

<.0019 (50)9 (2.68)<.00126 (32.5)54 (3.79)DKA admission in subsequent 180 days, n (%)

<.00110.6 (8.8-11.9)8.0 (6.9-9.4)<.00111.5 (10.8-13)8.5 (7.5-9.6)Last glycated hemoglobin (%) measuredd,
median (IQR)

92 (73-107)64 (52-79)102 (95-119)69 (58-81)International Federation of Clinical Chem-
istry (mmol/mol)

.1231 (23-81)64 (30-95).4251.5 (28.5-101)59 (30-98)Days since last glycated hemoglobin measuredd,
median (IQR)

.3312.5 (9.6-14.3)11.1 (9.0-13.8).079.4 (6.5-11.7)8.3 (5.6-10.9)Age at T1De diagnosis in years, median (IQR)

.791.2 (0.4-2.5)0.9 (0.6-1.5).045.2 (3.7-7.4)4.8 (2.3-7.9)Duration of T1D in years, median (IQR)

.13.02Insulin delivery methodf, n (%)

15 (93.75)250 (76.22)45 (56.25)580 (40.73)MDIg

1 (6.25)78 (23.78)35 (43.75)841 (59.06)Insulin pump

0 (0)0 (0)0 (0)3 (0.21)No insulin

.05<.001Glucose monitoring methodh, n (%)

3 (16.67)142 (42.26)5 (6.25)433 (30.39)CGMi

15 (83.33)194 (57.74)75 (93.75)992 (69.61)SMBGj

JMIR Diabetes 2023 | vol. 8 | e47592 | p. 8https://diabetes.jmir.org/2023/1/e47592
(page number not for citation purposes)

Williams et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


aP values were generated using chi-square, Fisher exact, or 2-sample Wilcoxon rank-sum (Mann-Whitney) tests comparing outside top 80 and top 80
groups for the partial out-of-sample validation cohort and outside top 18 and top 18 groups for the full out-of-sample validation cohort.
bChronic conditions were documented if any International Classification of Diseases codes were in the chronic condition indicator or warehouse,
excluding diabetes.
cDKA: diabetic ketoacidosis.
dFor the last glycated hemoglobin measured and days since the last glycated hemoglobin measurement: partial out-of-sample validation cohort (outside
top-80), n=1410 and full out-of-sample cohort (outside top-18), n=329.
eT1D: type 1 diabetes.
fFor insulin delivery method: partial out-of-sample validation cohort (outside top 80), n=1424; full out-of-sample validation cohort (outside top 18),
n=328; and full out-of-sample validation cohort (top 18), n=16.
gMDI: multiple daily injections.
hFor continuous glucose monitoring method: partial out-of-sample validation cohort (outside top 80), Dexcom (G4, G5 or G6): n=317 and Medtronic
(Guardian): n=116; partial out-of-sample validation cohort (top 80), Dexcom (G4, G5 or G6): n=4 and Medtronic (Guardian): n=1; full out-of-sample
validation cohort (outside top 18), Dexcom (G4, G5 or G6): n=116, Medtronic (Guardian): n=13, and Freestyle Libre: n=13; and full out-of-sample
validation cohort (top 18), Dexcom (G4, G5 or G6): n=1, Medtronic (Guardian): n=0, and Freestyle Libre: n=2.
iCGM: continuous glucose monitoring.
jSMBG: self-monitoring of blood glucose.

Feature Weights
To determine the features that most impacted the predictions,
we applied a random forest model using the same input features
that were used in the LSTM model. The 10 top-weighted
features were diagnostic HbA1c, HbA1c in the past year, HbA1c

from the last 90 days, age at prediction, heart rate, number of
previous DKA admissions, days since DKA, BMI,
Immunoglobulin A test in the past year, and median household
income (additional data are provided in Multimedia Appendix
1).

Discussion

Principal Findings
We developed and examined the initial validity of a deep
learning model to predict hospitalization for DKA within 180
days among youth with previously diagnosed T1D. We
examined model performance using lists containing the
rank-ordered top 5% of youth with the highest probability of
hospitalization (selected to match the 180-day incidence of
DKA among established patients aged 8 to 18 years in the
clinic). AUPRC showed a steep drop in precision to achieve
recall measures of approximately >10% and >33% in the OOS-P
and OOS-F validation cohorts, respectively. Precision increased
progressively as the threshold for inclusion rose on the
rank-ordered list (including all 80, vs the top 25, vs the top 10
youth for the OOS-P cohort), suggesting the model’s ability to
produce variably risk-enriched cohorts of individuals who might
be considered eligible for more intensive intervention. Compared
with the incidence of DKA-related hospitalization in this study
of 0.05, the AUPRC values of 0.29 and 0.42 in the OOS-P and
OOS-F validation cohorts, respectively, are significantly larger.
Receiver operating characteristic curves for the OOS-P and
OOS-F validation cohorts demonstrated that the model had a
72% and 85% probability, respectively, of identifying youth
with T1D who will experience DKA-related hospitalization
within 180 days.

Prior multinational and single-center studies have shown that
multiple demographic and clinical care factors are associated
with increased risk of hospitalization for DKA in United States–

and European-based populations: hospital admissions for DKA
in the prior 12 months, nonprivate insurance, elevated HbA1c,
racial and ethnic minority individuals, lower household income,
mental health comorbidities, female sex, missed endocrine
appointments, higher insulin doses, and insulin delivery by
injection [17-21]. In a multinational registry of approximately
50,000 children, Maahs et al [22] identified female sex, ethnic
minority groups, and individuals with HbA1c ≥7.5% (≥58
mmol/mol) as having an increased risk of experiencing DKA.
Their aim was to identify the factors associated with DKA and
not to implement a model that clinically predicts future DKA
admissions. They used a limited number of discrete variables
available in the EHR and cross-sectional data, which did not
consider changes in predictors or the recurrence of discrete
events over time. In addition, most of the factors were not
modifiable. Notably, our comprehensive prediction model uses
a greater variety of data that are widely recorded in EHRs and
identifies a considerable number of at-risk youth who did not
experience DKA-related hospitalization in the previous 12
months. The rate of DKA in this cohort (5%) is consistent with
the annual rates (1% to 15% per established patient per year)
reported in prior studies [19,23,24]. Prior work suggests that
20% of annual admissions for DKA involve readmissions of
the same individual within 1 year [25]. Youth in the top 5% of
the rank-ordered lists for both validation cohorts consisted of
more female individuals, were older, were more often racial
and ethnic minority individuals, and more frequently
experienced other chronic conditions. They also had a higher
prevalence of previous DKA admissions, a higher prevalence
of DKA admission in the subsequent 180 days, elevated HbA1c,
and a lower proportion of CGM use compared with youth
outside the top 5%. Compared with the OOS-P validation cohort,
fewer youth in the OOS-F cohort were on insulin pumps. This
is likely related to the shorter duration of T1D in the OOS-F
cohort versus the training and OOS-P cohorts.

Few studies have sought to develop and validate risk prediction
models for DKA that could be deployed in clinical care. One
study developed a multivariable prediction model using
generalized estimating equations to predict DKA events within
the next 12 months among youth with T1D. In that study,
hospital admission in the prior year, HbA1c, nonprivate
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insurance, female sex, and racial and ethnic minority individuals
predicted DKA admissions, whereas age, duration of diabetes,
and number of office visits in the prior year did not. The
AUROC curve for that model was 0.735 to 0.746, compared
with 0.72 to 0.85 for the model used in this study. The prior
model resulted in a 5-fold risk-enriched population, which is
comparable with our model’s overall performance in the 5.62%
(98/1745) of individuals with the highest risk probabilities. In
contrast, the approach used in this study allows significantly
greater risk enrichment (16 to 20 fold) if one focuses on patients
with higher ranks on the rank-ordered list by probability of
admission [26]. An independent study of youth reported on the
development of a risk index that achieved an AUROC curve of
0.709. However, the generation of that index required the use
of a 20- to 30-minute psychosocial screening tool, which could
be a significant barrier to clinical adoption [27]. Another study
reported the performance of different machine learning
approaches in predicting DKA among adults with T1D using
EHR data and a small set of hand-selected features [28]. This
nested case-cohort study leveraged the Optum database of EHR
records, which consisted of 3400 potential DKA cases and
11,780 control cases. The authors found that different machine
learning techniques demonstrated similar performance and
identified overlapping but different top 10 predictors. As their
purpose was to identify factors associated with hospital
admission for DKA, they did not report a prespecified
observation window for predicting the outcome. This omission
may make the models, as reported, challenging to translate into
practice by clinicians who want to forecast the probability of
hospital admission for DKA within defined periods.

This study differs substantially from prior studies in its focus
on predicting DKA events within 180 days in a pediatric
population; in its model development approach, which combined
discrete data elements with features derived from NLP of
free-text clinical documents; in the diversity and scale of data
features used to create the model; and in the use of LSTM,
which retains a memory of more distal historical events when
weighting features. The approach used in this study is also novel
because it introduces the use of a simple-to-interpret list that is
rank ordered by the probability of hospital admission, allowing
clinicians to choose the number of top-ranked patients they will
select for intervention based on capacity. The threshold rank
that clinicians use to select individuals for intervention is directly
tied to the level of risk enrichment (eg, 5.5 to 20 fold) they will
achieve in the target cohort, which makes it easier to determine
the number needed to treat to have a chance of preventing 1
hospitalization for DKA. For example, using the OOS-P
findings, targeting youths 1 to 10 on the rank-ordered list would
require treating only 1 youth to potentially prevent DKA-related
hospitalization. In contrast, one would have to treat 3 youths
from individuals comprising the top 5% of risk (ranks 1 to 80
in the OOS-P cohort) to have a chance of preventing
DKA-related hospitalization in at least 1 youth. How clinicians
use the rank-ordered list can thus impact the cost-effectiveness
of any chosen interventional strategy.

These results are clinically meaningful because they offer a
practical approach for continuous DKA risk stratification in
youth within a T1D clinical population. Creating rank-ordered

lists of youth based on the probability of admission is clinically
intuitive and adaptable to clinical workflows that involve care
navigation (enrolling youth in specific care pathways based on
risk or established eligibility criteria). Even clinics with limited
resources can benefit from this approach by a priori defining
the number of youths per 6-month period for which they have
the capacity to intervene. Longitudinal DKA risk scores based
on the probability of hospital admission can be tracked as a
process metric to drive resource allocation and quality
improvement projects. When health systems apply deep learning,
best practices should be followed to protect data to uphold
privacy, design transparent and interpretable models, and prevent
bias or discrimination among groups. Health care providers and
developers need to collaborate, be critical, and be discretionary
regarding the application of artificial intelligence (AI) in
scenarios where human health and well-being are impacted;
they should not simply defer to AI outputs [29]. For example,
predictive models generated via deep learning may include
multiple variables, such as race and ethnicity and socioeconomic
status, as input features that are used to improve model
prediction. Predicted probabilities and model performance
should be examined across segments of the population by age,
sex, race and ethnicity, insurance type, or socioeconomic status
to uncover potential health inequities or model bias. The
identification of inequities or model bias in specific groups can
drive quality improvement projects to rectify them.

Currently, clinicians have limited knowledge about how to
prevent hospitalization for DKA. Harris et al [30] developed
and evaluated the Novel Interventions for Children’s Healthcare
program as an approach to preventing hospital admissions in
youth with chronic diseases. Although the start-up cost to health
systems or payers can be a barrier to adoption, this remains a
promising approach [30-33]. Others have reported case studies
on the successful use of remote patient monitoring in preventing
DKA among adults with T1D [34]. One study demonstrated
that quality improvement methods, with the implementation of
longitudinal multiple care delivery interventions, can reduce
the rate of DKA admissions in a clinical population of youth
with T1D [9].

Limitations and Strengths
This study must be considered in the context of its notable
limitations and strengths. One limitation of this study is that the
data and source population were derived from a regional clinic
network located in the Midwestern United States; therefore, the
findings may not be generalizable outside of this network’s
catchment area. Future research should replicate this strategy
in other geographic areas and health systems, including those
using alternate EHR systems. Diabetes self-management device
data were not included in this study; future studies should
evaluate the inclusion of this information on model performance.
Hundreds of variables were considered, which could lead to
overfitting. Although we addressed this by performing an
out-of-sample validation on model-naive individuals, future
research should still examine this model’s performance in new
institutional data sets. Another limitation lies in the use of either
the most recent value carried forward or the population average
as a means of interpolating missing data. Future studies should
consider other methods to address missingness. Finally, we did
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not seek to develop an explainable model, which may limit
clinicians’ trust. The use of more explainable AI models has
been proposed to improve the trust of clinicians and other
stakeholders [35]. These models may help clinicians identify
characteristics that are heavily weighted in the prediction. For
instance, it would be useful to determine whether CGM use
contributes to the assignment of lower risk by the prediction
model. Other researchers have experimented with various
methods (the Shapley additive explanations algorithm) to
achieve explainable LSTM models [36]. A future goal is to
further validate feature sets that are heavily weighted in the
prediction. These features could represent valuable targets for
intervention.

The strengths of this study include the novel application of
advanced machine learning to predict pediatric health outcomes
and the quantity and variety of data evaluated compared with
previous studies. Although clinical researchers have minimally
used recurrent neural networks and LSTMs with medical data,
opportunities exist to examine and highlight this approach for
forecasting outcomes. For example, using a Weibull loss
function could theoretically allow for the prediction of the
probability of admission along with the time until likely
admission [15,16]; this could enable the development and
dissemination of just-in-time interventions to prevent DKA.
Our simple imputation approach for handling missing data is
another strength, enabling the model to predict the risk for youth
with fewer measurements owing to reduced access to care. Risk
indices that do not use imputation to address missing data among
repeated measures may exclude susceptible youth who

demonstrate reduced access to care. Another strength is the
ability of advanced machine learning models such as LSTMs
to process robust and diverse data sets with large numbers of
variables per participant, even when some data are missing or
inaccurate [13]. We also included features derived from NLP
of free-text clinical documents, allowing a largely untapped
source of clinical data from the EHR to be considered during
predictive model development. Future studies should examine
the relative importance of NLP- and non–NLP-derived features.
Finally, we validated the predictive model using a model-naive
out-of-sample cohort.

Conclusions
Clinicians can leverage advanced machine learning to identify
and rank individuals at the highest risk of experiencing DKA.
We found that an LSTM model identified individuals at the
highest risk of experiencing DKA-related hospitalization with
reasonable precision. We proposed that clinics may apply the
model used in this study to generate monthly rank-ordered lists
by the probability of DKA-related hospitalization to identify
at-risk individuals for targeted intervention. Clinics can
determine the number of patients per month or quarter who can
receive an intervention based on the available resources. This
will enable future research that designs and tests novel
interventions to prevent DKA-related hospitalization in those
at risk. Future studies should refine and evaluate the
performance of this LSTM model using data over a more
extended period and in multiple clinics to ensure validation in
racially, geographically, and socioeconomically diverse cohorts
receiving care across different health systems.
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