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Abstract

Background: Diabetic ketoacidosis (DKA) is the leading cause of morbidity and mortality in pediatric type 1 diabetes (T1D),
occurring in approximately 20% of patients, with an economic cost of $5.1 billion/year in the United States. Despite multiple
risk factors for postdiagnosis DKA, there is still a need for explainable, clinic-ready models that accurately predict DKA
hospitalization in established patients with pediatric T1D.

Objective: We aimed to develop an interpretable machine learning model to predict the risk of postdiagnosis DKA hospitalization
in children with T1D using routinely collected time-series of electronic health record (EHR) data.

Methods: We conducted a retrospective case-control study using EHR data from 1787 patients from among 3794 patients with
T1D treated at a large tertiary care US pediatric health system from January 2010 to June 2018. We trained a state-of-the-art;
explainable, gradient-boosted ensemble (XGBoost) of decision trees with 44 regularly collected EHR features to predict
postdiagnosis DKA. We measured the model’s predictive performance using the area under the receiver operating characteristic
curve–weighted F1-score, weighted precision, and recall, in a 5-fold cross-validation setting. We analyzed Shapley values to
interpret the learned model and gain insight into its predictions.

Results: Our model distinguished the cohort that develops DKA postdiagnosis from the one that does not (P<.001). It predicted
postdiagnosis DKA risk with an area under the receiver operating characteristic curve of 0.80 (SD 0.04), a weighted F1-score of
0.78 (SD 0.04), and a weighted precision and recall of 0.83 (SD 0.03) and 0.76 (SD 0.05) respectively, using a relatively short
history of data from routine clinic follow-ups post diagnosis. On analyzing Shapley values of the model output, we identified key
risk factors predicting postdiagnosis DKA both at the cohort and individual levels. We observed sharp changes in postdiagnosis
DKA risk with respect to 2 key features (diabetes age and glycated hemoglobin at 12 months), yielding time intervals and glycated
hemoglobin cutoffs for potential intervention. By clustering model-generated Shapley values, we automatically stratified the
cohort into 3 groups with 5%, 20%, and 48% risk of postdiagnosis DKA.

Conclusions: We have built an explainable, predictive, machine learning model with potential for integration into clinical
workflow. The model risk-stratifies patients with pediatric T1D and identifies patients with the highest postdiagnosis DKA risk
using limited follow-up data starting from the time of diagnosis. The model identifies key time points and risk factors to direct
clinical interventions at both the individual and cohort levels. Further research with data from multiple hospital systems can help
us assess how well our model generalizes to other populations. The clinical importance of our work is that the model can predict
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patients most at risk for postdiagnosis DKA and identify preventive interventions based on mitigation of individualized risk
factors.

(JMIR Diabetes 2024;9:e53338) doi: 10.2196/53338
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Introduction

Background
Diabetic ketoacidosis (DKA) is the leading cause of morbidity
and mortality among patients with pediatric type 1 diabetes
(T1D), accounting for nearly 50% of all deaths in this population
[1,2]. DKA occurs in 20% of patients with T1D, with an average
cost of US $26,566 per DKA admission and a total economic
cost of US $5.1 billion/year in the United States [3-7].
Hospitalizations for DKA in the United States have increased
by 6.3% each year from 2009 to 2014 despite many attempts
at prevention [8]. The incidence of DKA hospitalizations
postdiagnosis has been estimated to be about 8 to 16 per 100
person-years in the pediatric population, with variations in both
patient populations and in hospital or care systems [9]. DKA
has a significant impact on growth and development in children,
potentially leading to neurocognitive impairment, cerebral
edema, coma, or even death [1,2,10].

Most prior studies pertaining to DKA hospitalization risk in
pediatric patients are associational in nature, focusing on
assessing DKA prevalence, predicting the risk of DKA at onset,
and relating DKA at onset to its impact on glycemic control.
These studies [11-18], conducted with a limited number of
electronic health record (EHR)–derived features, using classical
statistical methods, have identified the most common factors
associated with DKA in patients with pediatric T1D. They
include (1) insulin omission, especially in the context of chronic
hyperglycemia (high glycated hemoglobin [HbA1c]) [5], (2)
females of age greater than 10 years, (3) racial minority youths
(Hispanic and African American) [19-21], (4) nonprivate health
insurance (a proxy for socioeconomic disadvantage) [22,23],
(5) underlying mental health comorbidities, and (6) prior-DKA
[19,23-25].

Despite knowledge of DKA risk factors, there are few predictive
tools ready for clinical integration that can accurately stratify
DKA risk for established patients. This is partly because the
relationship between known risk factors and postdiagnosis DKA
is complex [4,20,25] and highly nonlinear, whereas tools for
elucidating them have been generally limited to simple statistical
models, such as logistic regression. Over the last 2 decades,
nonlinear predictive techniques ranging from deep neural
networks [26] to ensemble methods such as bagging and
boosting [27], have been devised in the field of supervised
machine learning. These methods derive their power from the
ability to infer complex prediction functions directly from raw
data. They have allowed for great progress in some diagnostic
areas: diabetic retinopathy [28], machine translation of clinical

notes [29], object recognition in radiologic or pathologic images
[30], as well as in DKA prediction in both patients with pediatric
and adult T1D [31,32], but pose challenges in terms of
interpretability.

Objective
We develop an explainable, machine-learning model to predict
pediatric patients with T1D who are at risk of DKA
hospitalization postdiagnosis using a time-series of routinely
collected, EHR data. We evaluate the predictive performance
of our gradient-boosted decision tree model (XGBoost) on one
of the largest cohorts of pediatric patients with T1D. Further,
we use Shapely value analysis of our model outputs to (1) derive
key predictive factors for postdiagnosis DKA, both at the cohort
and at the individual levels, (2) reveal the progression of
postdiagnosis DKA risk over time, and (3) automatically
perform cohort-level risk stratification by agglomerative
clustering of Shapley values.

Methods

Study Design
This study accessed deidentified EHR data from 6288 pediatric
patients with diabetes, 3794 of them with a confirmed T1D
diagnosis, between January 1, 2010, and June 30, 2018, treated
at Texas Children’s Hospital (TCH). TCH is one of the largest
tertiary-care pediatric health systems in the United States, and
likely has some of the largest sets of pediatric patients with
diabetes.

To limit unintended biases and erroneous predictions caused
by missing data, we defined stringent inclusion criteria to select
the training cohort for model building. We selected patients
who were (1) initially diagnosed at, and subsequently followed
up within the TCH system with an onset date on or after January
1, 2010, (2) whose age at diagnosis was between 0 and 21 years,
(3) who had at least 1 positive antibody titer (glutamic acid
decarboxylase 65-kilodalton isoform [GAD65], islet cell
autoantigen 512 [ICA512], and insulin AB) at diagnosis, and
(4) with a clinical diagnosis of T1D by an endocrinologist. These
criteria excluded 1723 patients from the first criterion, 45 from
the second, and 239 from the third; with a remainder of 1787
patients included in the final analysis. Of these 1787 patients,
324 experienced at least 1 postdiagnosis DKA hospitalization.
The small number of overall and positive cases is a consequence
of T1D itself being a rare pediatric disease and postdiagnosis
DKA being a rare complication of this disease.
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Feature Generation and Selection

Feature Construction
For each patient in the cohort, we extracted more than 100
features available in the EHR, from the time of diagnosis to
3-month clinic follow-ups for up to 2 years after onset. The data
included demographic information, clinical data, laboratory
values, treatment modality (insulin delivery), hospitalization
records, and ambulatory care components. Demographic features
included age at diagnosis (onset age), sex, race, ethnicity, and
socioeconomic status proxies such as type of insurance, and zip
code of residence. Clinical features included vital signs, BMI,
and laboratory values including titers at the time of diagnosis.
We included both raw diabetes titer values, as well as discretized
Boolean (0 or 1) titer values (1 if GAD65 [33] titer >5 IU/mL,
1 if ICA512 [33] titer >5.4 IU/mL, 1 if insulin AB [33] titer
>0.4 U/mL). We also included HbA1c values at diagnosis and
at 3-month clinic follow-ups for up to 24 months.
Hospitalization features included length of stay, laboratory-test
time-series during the stay, as well as therapeutic interventions.
Ambulatory care features included the use of auxiliary services
(educators, nutrition services, psychology, and social workers),
as well as no-shows and cancellations. We also included diabetes
age (years after T1D onset), whether there was DKA at onset,
and C-peptide value at the time of diagnosis since they were
clinically relevant features.

Feature Selection
We omitted features that were missing values for more than
50% of the cohort. We dropped ambulatory care component
features and most laboratory test features (except for HbA1c)
on this basis. We also omitted features highly correlated with
HbA1c values (such as the BMI time series) because they did
not add to the predictive power of the model. In addition, we
dropped all features perfectly correlated with the outcome
variable—these included all hospitalization-derived features
including laboratory tests conducted during DKA hospitalization
and therapeutic interventions during hospitalization. This left
us with 44 features described in detail later. We did not use
additional feature selection methods, relying instead on
XGBoost to select relevant features in the construction of the
final decision ensemble.

Missing Value Imputation
We used a simple piecewise linear interpolation technique to
fill in missing values in HbA1c records. HbA1c imputation was
done only between 2 known values—for example, if the 3-month
and 9-month HbA1c values for a patient were known, then the
6-month value was imputed as the average. We did not perform
any other imputation. The XGBoost learning algorithm handles
missing values by default, obviating the need for more
imputation.

Final Features
The 44 features finally used for each patient in our cohort
included 15 demographic features: sex (male or female),
insurance (private or Medicaid or self-pay), race (White, African
American, Asian, and Other), ethnicity (Hispanic, non-Hispanic,
and Other), first 3 digits of zip code, 7 diabetes titers (raw values

and discretized values for GAD65, ICA512, insulin AB, and
the total number of positive antibody titers), 17 HbA1c features
including 9 values of HbA1c (at diagnosis, and at 3-month
follow-ups from 3 to 24 months), as well as 8 delta measures
(differences between HbA1c measurements at successive
follow-ups), and 5 other features: diabetes age (years since T1D
diagnosis), onset age, DKA at onset (yes or no), C-peptide titer
at diagnosis, and discretized C-peptide (>1 U/mL).

Outcome Definition
We used hospitalization with DKA after diagnosis of T1D to
define the outcome variable. We split the cohort into 2 classes:
those who experienced at least 1 DKA episode after diagnosis
(324/1787, 18%) and those who did not.

Model Selection and Training Protocol
We trained a multivariate gradient boosting decision tree
ensemble on the data, using the Python XGBoost open-source
library [34]. As illustrated in Figure S1 in Multimedia Appendix
1, we used a 5-fold stratified cross-validation approach. We
divided the data set into 5 equal-sized folds, with the ratio of
patients with postdiagnosis DKA and non-DKA being equal in
all groups. We used 4 of the folds for training a gradient-boosted
ensemble and used the held-out fold for testing the ensemble.
We repeated the process 5 times, each time with a different
held-out fold, yielding 5 sets of performance measures. We used
4 standard metrics to quantify the performance of the
postdiagnosis DKA classifier: area under the receiver operating
characteristic curve (AUC), weighted F1-score, weighted
precision, and weighted recall. We reported the mean and SD
of these 4 scores across the 5 folds, to characterize the predictive
performance of the ensemble model.

Key hyper-parameters for XGBoost (number of trees and tree
depth) were selected using the standard hyperparameter tuning
process described in section 5.3 of Deep Learning by
Goodfellow et al [35]. We held out 10% of the training data in
each cross-validation fold as a validation set—this data does
not participate in model construction.

One of the challenges in model training is handling class
imbalance (324 positive examples in a set of 1787 patients, in
our case). This is an inherent consequence of postdiagnosis
DKA being relatively uncommon. XGBoost handles imbalanced
data sets by using the parameter scale_pos_weight, to reflect
the degree of imbalance. This parameter weights the components
of the cross-entropy loss function used by the training algorithm,
assigning a higher weight to the minority class examples, in
effect, simulating the process of up-sampling the minority class
[36].

Explaining Classifier Performance: Bee-Swarm and
Main-Effects Plots
We used the Shapley value [37] framework to assign predictive
importance to each feature. The Shapley value, or SHAP
(Shapley additive explanations) value, of a feature for a patient,
is a quantification of the contribution made by that feature to
the DKA or no-DKA prediction made for that patient. The unit
of measurement for SHAP values is the change in logarithmic
odds of postdiagnosis DKA with and without the feature.
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Positive SHAP values mean a positive impact on prediction,
that is, they lead the model to predict postdiagnosis DKA.
Negative SHAP values mean a negative impact on prediction,
that is, they lead the model to predict no DKA after diagnosis.
Unlike regular feature importance plots, SHAP values show the
directionality of the impact of the feature value on the outcome.
We use plots of averaged SHAP values over the whole cohort
for each feature, called a bee-swarm plot, to rank key factors
that determine the risk of postdiagnosis DKA at the level of the
entire cohort.

Main-effects plots show variation in the log-odds of
postdiagnosis DKA as functions of a single predictor, all else
being equal. A sharp change in log-odds in the main-effects
plot of a feature reveals important thresholds at which
postdiagnosis DKA risk increases or decreases. For example,
these plots help answer questions such as: does the risk of
postdiagnosis DKA increase linearly with diabetes age, or is
there an age interval where the risk rises significantly? For an
individual patient, SHAP values allow for the selection of
features relevant to the prediction outcome and explain the
outcome as an additive combination of SHAP values. We
produce main-effects plots for key cohort-level risk factors
identified in the bee-swarm plot.

Cohort Risk Stratification by Clustering Shapley
Values
Cohort risk stratification is a byproduct of the Shapley value
analysis. We clustered the Shapley value matrix constructed
from the output of the XGBoost model using a hierarchical
agglomerative clustering algorithm, based on Ward linkage
[38]. The algorithm groups patients according to similarities in
their Shapley value vectors, producing a dendrogram. Any

horizontal cut of the dendrogram induces a clustering of the
original data. We select a cut level to maximize the dissimilarity
between clusters.

Personalized Risk Assessment
In addition to cohort-level predictions, the model is equally
useful for generating interpretable predictions for individual
patients. The model produces an additive risk score, which is
the sum of the Shapley values for each predictive feature for
that patient. When the sum is positive, it indicates higher than
baseline risk for that patient; if it is negative, then the patient
is at lower risk relative to the whole cohort.

Ethical Considerations
Data were gathered under institutional review board (number
H-42624), which was approved by the institutional review board
of Baylor College of Medicine. The institutional review board
covers secondary analysis utilizing this data without additional
consent. Data were deidentified prior to analysis.

Results

Descriptive Analysis of Data
We summarize the value distributions of key predictors in Table
1. Surprisingly, DKA at the onset which has been shown to be
associated historically with worsening glycemic control over
time [13], does not have a strong correlation with postdiagnosis
DKA. The median diabetes age at the first DKA after diagnosis
is 2.43 (IQR 1.26-4.09) years. It validates the selection of
time-series of HbA1c measurements from baseline to the first
24 months after diagnosis, as the basis for postdiagnosis DKA
prediction.
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Table 1. Value distributions of key demographics and laboratory test values for the entire cohort of 1787 patients with type 1 diabetes treated at Texas
Children’s Hospital between January 1, 2010, and June 30, 2018.

VariablesFeature

891 (49.86)Sex (female), n (%)

Race, n (%)

299 (16.73)African American

65 (3.64)Asian

1364 (76.33)White

59 (3.30)Other

Ethnicity, n (%)

1301 (72.80)Non-Hispanic

442 (24.73)Hispanic

44 (2.46)Other

Insurance, n (%)

1146 (64.13)Private

641 (35.87)Medicaid

Antibody titer, median (IQR)

13.0 (3.85-30.00)Glutamic acid decarboxylase 65-kilodalton isoform

6.80 (1.2-20.8)Islet cell autoantigen 512

0.4 (0.4-3.50)Insulin antibody

HbA1c
a, median (IQR)

11.1 (9.5-12.90)HbA1c baseline at diagnosis (n=1787)

7.51 (6.76-8.48)HbA1c at 3 months (n=1768)

7.34 (6.52-8.37)HbA1c at 6 months (n=1712)

7.71 (6.87-8.7)HbA1c at 9 months (n=1651)

7.85 (7.08-8.84)HbA1c at 12 months (n=1553)

7.95 (7.20-8.91)HbA1c at 15 months (n=1471)

8.07 (7.30-9.07)HbA1c at 18 months (n=1401)

8.13 (7.31-9.10)HbA1c at 21 months (n=1320)

8.15 (7.33-9.20)HbA1c at 24 months (n=1239)

0.43 (0.26-0.725)C-peptide, median (IQR)

4.10 (1.80-6.47)Duration of T1Db (in years; diabetes age), median (IQR)

10.40 (6.73-13.43)Age at T1D diagnosis (in years; onset age), median (IQR)

623 (34.86)DKAc at onset, n (%)

2.43 (1.26-4.09)Diabetes age at first DKA postdiagnosis (years postdiagnosis), median (IQR)

324 (18.13)Patients with at least 1 postdiagnosis DKA, n (%)

aHbA1c: glycated hemoglobin.
bT1D: type 1 diabetes.
cDKA: diabetic ketoacidosis.

Model Evaluation by Cross-Validation With AUC,
Precision, and Recall
The box plot in Figure 1A shows the clear separation in
probability between the no DKA and DKA postdiagnosis cohort

(P value <.001). The model is able to distinguish between the
postdiagnosis DKA cohort and the non-DKA cohort at a
statistically significant level. The cross-validated model with
all 9 HbA1c measurements from baseline to 24 months has an
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AUC of 0.80 (SD 0.04) and a weighted F1-score of 0.78 (SD
0.04). The weighted precision and recall of the model are 0.83
(SD 0.02) and 0.76 (SD 0.07) respectively. Cross-validation
allows robust estimation of the predictive performance of the
model on new patients. Table S1 in Multimedia Appendix 1

shows the incremental effect of the addition of HbA1c values
from 3 to 24 months on these performance measures. Model
performance stops improving after the addition of HbA1c at 18
months after onset.

Figure 1. (A) Probability of postdiagnosis DKA at the cohort level, (B,C) risk by individual key features of diabetes age and HbA1c at 12 months, and
(D) risk stratification into group. The cohort that will develop DKA can be distinguished from the one that will not, with a (A) P value <.001. The
main-effects plots show critical thresholds where risk sharply rises (gray regions), (B) for diabetes age between 2.2 and 4.3 years, and (C) for HbA1c

at 12 months between 8 and 10.3. (D) The scatterplot uses a diabetes age cutoff of 2.2 years and HbA1c at 12 months of 9.2 to stratify the population
into 3 risk groups for postdiagnosis DKA. A total of 30% of the population has 5% or low risk for DKA, shown in light gray; 50% of the population is
at 20% or moderate risk (in medium gray), and 20% is at 48% or high risk of postdiagnosis DKA. DKA: diabetic ketoacidosis; HbA1c: glycated
hemoglobin.

Key Predictors of Postdiagnosis DKA
Figure 2 shows a bee-swarm plot summarizing the entire
distribution of SHAP values for each predictor. The x-axis of
the plot shows the impact on model output (log-odds of

postdiagnosis DKA risk) of each of the predictors sorted along
the y-axis by decreasing importance. The most important feature
that predicts postdiagnosis DKA is diabetes age (top row). Every
point in the top row denotes a patient’s diabetes age and the
impact of the value of diabetes age on their log-odds of
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postdiagnosis DKA risk. Patients with low diabetes age (newly
diagnosed, and colored blue) have negative SHAP values and
thus lower postdiagnosis DKA risk, while patients with higher
diabetes age (colored red) have positive SHAP values and higher
postdiagnosis DKA risk. As diabetes age increases, the log-odds
of DKA risk goes from –1.25 to +0.7. While the plot shows the
overall trend of increasing diabetes age contributing to increased
risk of postdiagnosis DKA it does not elucidate the exact nature
of that trend. HbA1c value at 12 months is the second most
important feature, and the plot shows a trend of increasing
postdiagnosis DKA risk with an increase in HbA1c values. For
the third most important feature, C-peptide at diagnosis, the
plot shows that higher values at diagnosis are associated with
lower postdiagnosis DKA risk. Higher HbA1c levels at 9, 18,
and 24 months are all associated with higher postdiagnosis risk.
Higher onset age, ranked seventh in the ordering, is associated
with lower postdiagnosis DKA risk. Not only has the model
identified and ranked key predictors, but it also provides a

quantitative measure of the impact of each of these features on
the probability of postdiagnosis DKA risk.

Figures 1B and 1C show the main effects of 2 of the top
predictors in the model: diabetes age and HbA1c at 12 months.
The log-odds of postdiagnosis DKA risk do not vary linearly
with diabetes age. Rather, there is a threshold effect, with a
rapid increase in log-odds of risk from –0.95 to +0.35 units
between diabetes ages of 2.2 and 4.3 years. HbA1c levels at 12
months reveal a similar threshold effect: levels below 8 are at
relatively low risk of postdiagnosis DKA, with the risk rising
steeply from –0.15 to +0.26 units for patients with HbA1c levels
between 8 and 10.3. Beyond the value of 10.3, the risk
contribution of the 12-month-HbA1c level plateaus at a log-odds
of 0.26. Taken together, as shown in the shaded regions of the
plots, the model predicts that at the cohort level, diabetes age
between 2.2 and 4.3 years, and HbA1c levels at 12 months
between 8 and 10.3 offer the best intervention points to influence
postdiagnosis DKA risk.

Figure 2. Model features displayed in order of decreasing importance for postdiagnosis DKA risk prediction. Each feature in this bee-swarm plot is
shown with its full range of values—from a minimum in blue, to a maximum in red; see the color scale on right for values in between. The x-axis defines
the log-odds of postdiagnosis DKA risk (SHAP value). Each colored dot in a horizontal line represents the value of the corresponding feature for a
patient in the training cohort. The most important predictors are diabetes age, HbA1c at 12 months, and C-peptide titer at diagnosis. DKA: diabetic
ketoacidosis; GAD65: glutamic acid decarboxylase 65-kilodalton isoform; HbA1c: glycated hemoglobin; SHAP: Shapley additive explanations.
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Cohort Risk Stratification by Clustering Shapley
Values
The agglomerative clustering analysis reveals 3 well-separated
groups characterized by postdiagnosis DKA rates of 5%, 20%,
and 48% respectively. Note that the clustering algorithm does
not have access to the features or the labels (DKA or non-DKA)
for each patient, but only the Shapley value of each feature for
that patient. By using a decision tree algorithm to predict cluster
membership, we identified the primary criteria to be a diabetes
age cutoff of 2.2 years and an HbA1c at a 12-month cutoff of
9.2. Figure 1D visually displays these clusters across the
dimensions of diabetes age and HbA1c at 12 months. Cluster 1,
which is the low-risk group (5% probability of postdiagnosis
DKA) consists of patients whose diabetes age is less than 2.2
years. Cluster 2, the medium risk group (20% probability of
postdiagnosis DKA) is composed of patients with diabetes age
of 2.2 years and older and HbA1c at 12 months <9.2. Cluster 3,

the high-risk group (48% probability of postdiagnosis DKA)
consists of patients with diabetes age of 2.2 years and older and
HbA1c at 12 months>9.2. Patients at low risk constitute 30% of
the population, those at medium risk constitute 50% of the
population, and the high-risk group constitutes 20% of the
population.

Personalized Risk Assessment
Figure 3 shows the individualized risk predictions for a patient
at high risk for postdiagnosis DKA (Figure 3A) and low risk
for postdiagnosis DKA (Figure 3B). For the patient in Figure
3A, the model shows the features contributing to high risk:
worsening HbA1c values from 9 to 21 months post diagnosis
(9.8 → 10.1 → 10.6 →10.8), and high diabetes age of 8.39
years. For the patient in Figure 3B, the model identifies a low
diabetes age of 1.44 years as the primary reason for low DKA
risk. HbA1c levels for this patient start at 6.7 at 9 months
postdiagnosis and remain at 6.72 at the 12-month mark.

Figure 3. Risk models for 2 individual patients (A) at high risk and (B) at low risk of postdiagnosis DKA shown as waterfall plots. The baseline risk
of –0.672 marked with a black vertical line represents the overall risk of postdiagnosis DKA at the cohort level. Factors in red are associated with higher
DKA risk, and those in blue are associated with lower risk. The personalized risk score represents an individual’s unique risk profile. DKA: diabetic
ketoacidosis; GAD65: glutamic acid decarboxylase 65-kilodalton isoform; HbA1c: glycated hemoglobin.
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Discussion

Principal Findings
Approximately 18% of patients with T1D experience DKA after
onset and yet there are few tools available to assist clinicians
in assessing postdiagnosis DKA risk, either at the cohort level
or at an individual level [39]. Our gradient-boosted ensemble
of decision trees trained on a diverse cohort of 1787 patients
with T1D has demonstrated the ability to predict DKA after
onset with high accuracy, revealing insights into the features
most predictive of high risk, and offering explainable risk scores
at the level of an individual patient.

With an AUC of 0.80 (SD 0.04), a weighted F1-score of 0.78
(SD 0.04), and weighted precision and recall of 0.83 (SD 0.03)
and 0.76 (SD 0.05) respectively, the model delivers performance
similar to Food and Drug Administration–approved predictive
computational tools for detecting cervical and breast cancer
[40,41]. Using Shapley value analysis, the model identified
diabetes age and HbA1c at 12 months as the top 2 drivers of
postdiagnosis DKA (Figure 1). Even more interesting, is the
data-driven discovery of a “critical period” between 2.2 and 4.3
years of disease and an HbA1c at 12 months between 8 and 10.3
that poses the greatest risk for postdiagnosis DKA, as revealed
by the main-effects Shapley value plots. During this period, a
sharp nonlinear rise in DKA risk (Figures 1B and 1C) suggests
that the optimal window for preventive intervention may exist
years prior to the adverse event. By clustering Shapley values
using a hierarchical agglomerative clustering technique, we can
cleanly stratify the population into 3 major risk classes: 30% in
the low-risk group (5% risk of postdiagnosis DKA), 50% in the
medium-risk group (20% risk of postdiagnosis DKA) and 20%
in the high-risk group (48% risk of postdiagnosis DKA).
Consistent with the high AUC scores, the model displayed clear
separation between patients with T1D with no DKA
postdiagnosis, and those with DKA postdiagnosis (P<.001;
Figure 1A), holding promise for accurate identification of at-risk
patients, with personalized risk scores highlighting individual
patient-level factors that drive postdiagnosis DKA risk (Figure
3).

Our model, made interpretable by Shapley value analysis,
provides insights into the key determiners of risk for
postdiagnosis DKA, and elucidates the nonlinear relationships
between key predictors and postdiagnosis DKA risk. Using the
Shapley value framework, the model assesses risks at both the
cohort and at the individual level, guiding the choice of
therapeutic interventions.

Comparison With Prior Work
Data-driven approaches to building predictive risk models are
becoming important in clinical applications as prescriptive
analytics and targeted personalized therapy become more readily
available [28,42]. Recent models [22,23] for predicting patients
at high risk for DKA have used logistic regression analyses to
identify the top 3 features indicative of postdiagnosis DKA in
pediatric T1D: most recent HbA1c, type of health insurance, and
prior occurrence of DKA in the past 2 years. These models were
qualitatively evaluated in a retrospective setting.

Our unique contribution is the design of an explainable
predictive model for postdiagnosis DKA using one of the largest
pediatric T1D cohorts studied in the literature. Our model’s
predictive performance surpasses the state of the art on this
problem (Williams et al [31]) on a similar patient cohort. It does
so using variables collected on a patient with pediatric T1D
during diagnosis, and routine clinic follow-ups for up to 24
months, and not measurements gathered from DKA
hospitalization visits (which are fully correlated with our
outcome variable). In addition, through our choice of model
and statistical analysis using the Shapley value framework, we
identify key risk factors predictive of postdiagnosis DKA at the
population level and the individual level. We are able to reveal
sharp changes in postdiagnosis DKA risk over time, identifying
intervals for possible intervention. Finally, we perform risk
stratification by automatically deriving risk clusters from
Shapley values.

The ensemble model developed here has robust quantitative
performance measures. It captures the heterogeneity inherent
in the T1D population by building a set of weighted models,
rather than a single linear model. Further, it can be
operationalized as a predictive tool within existing EHR
frameworks, allowing for better clinical management of pediatric
T1D with enhanced resource allocation where specialized
diabetes care is scarce [43,44].

Our model is derived from data spanning a decade in a large
and diverse cohort of patients with pediatric T1D at a major
tertiary-care children’s hospital. Data readily available in the
EHR was included in the data input to the model. The model
lets the data drive the selection of key predictors, thus
eliminating human bias. The gradient-boosted ensemble method
is key to predictive performance since (1) the relationships
between predictors and the outcome variable are highly
nonlinear (Figures 1B and 1C), precluding the use of simpler
models such as logistic regression, and (2) there is significant
variation among patients in the cohort, precluding the use of a
one-size-fits-all model [32,33,45]. To our knowledge, this is
the first deployment of such a model to predict DKA occurrence
in a pediatric context. However, successful deployment of the
model in a decision support context requires careful integration
into clinical workflow.

Limitations and Strengths
This study is a single-center, retrospective study with data
limited to what was currently available in the EHR. We
acknowledge that the EHR does not capture every patient
characteristic that impacts clinical outcomes. Including data
collected outside of the traditional health care environment, that
is, remote patient monitoring data, and social determinants of
health, can improve the predictive performance of our model.

We further acknowledge that DKA occurrences postdiagnosis
are not always deterministically predictable, particularly in cases
involving infection, illness, and instances of inadequate parental
supervision.

In our study, the postdiagnosis DKA outcome in a patient with
T1D is determined by hospitalization for DKA; this is a
commonly used criterion in prior work on pediatric T1D [31].
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However, it is possible that patients with mild cases of
postdiagnosis DKA who did not require hospitalization, or were
treated at a different facility are not accounted for in our
outcome definition.

Conclusions
We have built an explainable, predictive, machine learning
model with potential for integration into clinical workflow. The
model risk-stratifies patients with pediatric T1D and identifies
patients at the highest postdiagnosis DKA risk using limited
follow-up data starting from the time of diagnosis. The model

identifies key time points and risk factors to direct clinical
interventions at both the individual and cohort levels. The
clinical import of our work is that the model can predict patients
most at risk for postdiagnosis DKA and identify preventive
interventions based on mitigation of individualized risk factors.

Future work includes further developing the model with data
from multiple hospital systems, testing its generalizability across
cohorts from other institutions, and prospectively studying
whether it can assist clinicians target interventions to improve
outcomes.
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