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Abstract
Highly effective antiobesity and diabetes medications such as glucagon-like peptide 1 (GLP-1) agonists and glucose-dependent
insulinotropic polypeptide/GLP-1 (dual) receptor agonists (RAs) have ushered in a new era of treatment of these highly
prevalent, morbid conditions that have increased across the globe. However, the rapidly escalating use of GLP-1/dual RA
medications is poised to overwhelm an already overburdened health care provider workforce and health care delivery system,
stifling its potentially dramatic benefits. Relying on existing systems and resources to address the oncoming rise in GLP-1/dual
RA use will be insufficient. Generative artificial intelligence (GenAI) has the potential to offset the clinical and administrative
demands associated with the management of patients on these medication types. Early adoption of GenAI to facilitate
the management of these GLP-1/dual RAs has the potential to improve health outcomes while decreasing its concomitant
workload. Research and development efforts are urgently needed to develop GenAI obesity medication management tools, as
well as to ensure their accessibility and use by encouraging their integration into health care delivery systems.
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Introduction
Highly effective antiobesity and diabetes medications such
as glucagon-like peptide 1 (GLP-1) agonists have ushered
in a new era of treatment of these highly prevalent, morbid
conditions that have increased across the globe over the
past few decades. It is estimated that by 2030 nearly 30
million people in the United States will be on GLP-1 or
glucose-dependent insulinotropic polypeptide/GLP-1 (dual)
receptor agonists (RAs; henceforth referred to as GLP-1/
dual RA) medications. Currently, their use is throttled by
limited availability and insurance coverage challenges. As

these issues resolve, their widespread use will trigger an
even larger bottleneck—the substantial clinical management
burden driven by the frequent communication, titration, and
administrative interactions required to successfully manage
obesity and related conditions using these important new
medications. Indeed, health care providers (HCPs) and their
practices have already begun to experience the strain of
managing the high demand for weight loss medications.
Relying on existing systems and resources to address the
oncoming rise in GLP-1/dual RA use will be insufficient.
Generative artificial intelligence (GenAI) has the potential
to offset the clinical and administrative demands associated
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with the management of patients on these medication types.
Research and development efforts are urgently needed to
develop GenAI GLP-1/dual RA medication management
tools, as well as to ensure their accessibility and use
by encouraging their integration into health care delivery
systems.

The High Burden of Obesity
Medications
When an HCP chooses to prescribe a GLP-1/dual RA to
their patient, they are embarking on a months-long journey of
clinical or administrative burden greater than most common
chronic disease medications. A clinical team will be tasked
with regularly balancing weight loss goals, hemoglobin A1c
targets, and side effects; continuously evaluating whether
to continue to titrate up (or down) the medication until a
maintenance dose is achieved. Moreover, HCPs will likely
be faced with navigating insurance preauthorizations and
fielding patient calls and messages about side effects, while
searching for alternative pharmacies or bridging medications
to address medication shortages.

On a small scale, this may be manageable, but as the
number of patients on GLP-1/dual RAs expands to accom-
modate the 42% of Americans with obesity [1], it is unsus-
tainable. With clinical practices already overburdened by
administrative workload and HCPs at high risk for burnout
[2], it is unreasonable to assume that the additional labor
demands to manage patients on GLP-1/dual RAs could be
handled by the existing workforce or that a health care system
could feasibly hire enough additional personnel to meet this
demand. To address the potential wave of future patients on
GLP-1/dual RAs, tools are needed to reduce communication
and administrative burden, allowing HCPs to focus on more
complex patient care.

GenAI Role in Medication
Management
GenAI may represent an opportunity to automate many of
the low-complexity, high-burden GLP-1/dual RA manage-
ment tasks. As compared to previous iterations of artificial
intelligence (AI), the technical functionality of GenAI allows
for the creation of content, addressing numerous aspects of
care management tasks that were previously impossible or
overly burdensome to automate. Specifically, through the
use of recurrent neural networks [3], generative adversarial
networks [4], and large language models [5] with natural
language processing [6] capabilities, GenAI has an inher-
ent flexibility to combine heterogeneous sources of data to
generate summaries, perform calculations, and create original
content, including the production of potentially impactful
metrics to improve clinical decision-making [7-10]. Fur-
thermore, advancements in natural language understanding
research have enabled the design of AI-driven chatbots—
conversational agents that mimic human interaction through
written, oral, and visual forms of communication with a user

[11,12]. AI chatbots can learn from previous interactions,
offering a more personalized, engaging, and on-demand user
experience to support health behaviors [13,14]. The addition
of GenAI functionality to AI-driven chatbots further improves
the chatbot’s ability to respond dynamically. In these ways,
the capabilities of GenAI extend its potential functionality
well beyond a single algorithm for medication titration.

Indeed, while still an emerging technology, GenAI has
shown itself to be a potentially effective tool for patient
medication and care management in the areas of diabetes
insulin management, hypertension, and weight management.
In the form of chatbots, AI has demonstrated its use to
facilitate the collection of patient data, reduce HCP mes-
sage burden [14], and deliver health coaching for adults
with overweight and obesity [12], producing similar results
to those expected from in-person lifestyle interventions
[15]. AI chatbots have also demonstrated the potential
integration of wearable device data and messaging plat-
forms for the creation of personalized intervention messag-
ing [16]. GenAI-generated responses to patient questions
have even been shown to be perceived as higher quality,
more empathetic, and have greater clinical decision sup-
port accuracy than physician responses [17,18]. GenAI is
also powering new “ambient clinical documentation” tools
that effectively transform patient-clinician conversations into
medical documentation [19].

Through the synthesis of patient data, clinical guidelines,
and information databases, GenAI can provide effective and
accurate clinical decision support and patient intervention,
and even pharmacist-validated medication management [20].
For example, a voice-based conversational GenAI applica-
tion effectively provided an autonomous real-time remote
patient intervention for basal insulin management among
patients with type 2 diabetes by incorporating HCP-selected
titration algorithms and emergency protocols (parameters)
for hypoglycemia and hyperglycemia based on daily patient
reports of insulin dose and blood sugar value. This inter-
vention led to significantly improved insulin management
as compared to standard care [21]. Similarly, GenAI has
revealed promise as a potential solution to the high burden
incurred in remote patient monitoring for hypertension. By
creating a GenAI-powered messaging platform for patient
interactions, and integrating GenAI-created smart summaries
into the electronic health record (EHR), these tools assisted
in the management of the large volume of incoming data
and have the potential to enhance both patient and HCP-fac-
ing tasks associated with digital health care for hypertension
management [22]. These examples highlight how GenAI tools
may be capable of supporting more efficient GLP-1/dual
RA dose titration and increasing patient engagement without
significantly increasing HCP workload.

Similar to these example cases, the management of GLP-1/
dual RA medications requires patient engagement, as well as
the collation of information from patients themselves, medical
records, and clinical guidelines. Furthermore, GLP-1/dual RA
management can be subjective with nuance in the interpreta-
tion of patient symptom tolerability and thus requires greater
use of clinical judgment as opposed to hard and fast rules
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or cutoffs. GenAI has the potential to address multiple
aspects of GLP-1/dual RA management, including streamlin-
ing patient-HCP communication, giving HCPs recommenda-
tions on optimal dose titration, and providing prescribing
guidance based on nonclinical factors such as insurance
coverage and medication availability (Figure 1). Through
its inherent flexibility to incorporate multiple data sour-
ces, GenAI can interpret patient natural language responses

regarding side effects and weight-loss goals, as well as
incorporate information living in the EHR and other databases
such as patient characteristics including weight changes,
medical history, current medication dose, blood sugar levels,
and insurance status [7]. This enables GenAI to provide a
broad range of GLP-1/dual RA management services from
personalized guidance for patients on the management of side
effects to clinical advisement to optimize dose titrations.

Figure 1. GLP-1/dual RA medication management workflow and example opportunities for GenAI intervention. AI: artificial intelligence; EHR:
electronic health record; GenAI: generative artificial intelligence; GLP-1: glucagon-like peptide 1; RA: receptor agonist.

Health Care System Integration of
GenAI Interventions
Scaling the effective management of GLP-1/dual RAs,
however, cannot be achieved through stand-alone develop-
ment of GenAI tools, bots, and algorithms—they must be
deeply integrated into the health care delivery system. This
requires careful EHR and clinical workflow integration;
a “last-mile” problem that most health care startups and
innovators avoid until the end of their product development
journey. While this may be consistent with their business
plan, it has repeatedly led to low penetration of these
potentially valuable digital tools. GenAI-assisted GLP-1/dual
RA management will need early and deep clinical and EHR
integration to disrupt this pattern.

To achieve clinical integration, however, there will be
several privacy, cost, implementation, and ethical challenges
that must be considered [23]. First, as with other forms of
digitization of health care, the use of AI may introduce
additional data privacy concerns regarding data storage,
sharing, and use in model training [24]. Consequently,
accommodations will need to be made to house and maintain
any patient data, and the AI models being used, on internal
firewall-protected servers, as opposed to externally hosted AI
platforms [17].

The cost of integrating GenAI into clinical practice is
also not insubstantial. In addition to costs associated with

setting up and maintaining additional secure servers to house
data, there are costs associated with each GenAI interaction.
Depending on the task demanded, a sequence of several
back-end prompts is likely required to achieve the desired
outcome, with each prompt costing a multitude of “tokens”
(ie, the basic units of text or code GenAI uses to process
and generate language) and the use of each token coming at
a monetary cost [25]. Moreover, each use of GenAI comes
with an additional inference cost due to energy consumption,
which can overtake the energy costs of training a GenAI
model with high volumes of use [26].

To promote the successful implementation of GenAI
products into clinical practice, usability, workflow integra-
tion, and user trust must be considered. Although presump-
tions have been made that the user-friendly, adaptable, and
rapidly iterative aspects of GenAI will improve efficiency,
productivity, and quality in ways not achieved with previous
technologies [27], the deployment of GenAI interventions
must be cognizant of clinical workflows, current technology
integrations, and be designed with the user needs in mind
[28]. Furthermore, the use of AI technologies in clinical
care is not universally trusted by HCPs and patients [29,30],
suggesting that substantial training and trust-building efforts
will be required to improve acceptability and gain universal
adoption.

Furthermore, there remain numerous ethical concerns
associated with relying on GenAI in clinical care, including
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the potential exacerbation of disparities in health equity.
Some ethical issues are associated with the technological
aspects of GenAI functionality including the potential impact
of algorithmic and language bias built into the training
data used to create GenAI models, and how the reliability
of models, including their potential for AI hallucinations,
may impact clinical safety [31,32]. To address these types
of concerns, health care institutions are likely to need a
governance committee to oversee GenAI implementation,
detail policies around data protection and data management
practices, and thoroughly test GenAI models prior to allowing
them for clinical use [33].

Digital health equity is another ethical consideration that
will need to be addressed early and often in the develop-
ment and deployment of GenAI-enabled clinical care, such
as GLP-1/dual RA management tools. Due to structural
inequities of access to insurance coverage, digital tools, and
digital literacy, as well as health care system resources for
GenAI adoptions, the potential benefits of GenAI GLP-1/dual
RA management tools may be inequitably distributed.

Bias within GenAI training datasets has the potential to
reinforce existing inequities [17]. Conscious efforts are likely
to be needed to evaluate and tailor model training data for the
populations of interest and through comparing and validating
different samples of training data for representativeness [34].
The development and use of frameworks to evaluate the
impact of GenAI use on health disparities and guide model
modifications, as explored in other areas such as clinical

predictive modeling [35], may be useful for guiding the
equitable use of GenAI in clinical care [36].

Correspondingly, the development of GenAI obesity
medication management and other GenAI-driven clinical
tools should engage equitable digital design philosophies
such as liberatory design [37]. Practical outcomes of this
may include integrating GenAI into current system technol-
ogies that are widely available, such as SMS text messag-
ing or existing EHR platforms, thus allowing for greater
accessibility to these tools. Furthermore, to serve as health
equity promotion interventions themselves, GenAI tools
could be designed to detect and address known structural
inequities, thereby proactively mitigating potential conscious
or unconscious biases from the HCP.

Conclusions
The rapidly escalating use of GLP-1/dual RA medications is
poised to overwhelm an already overburdened HCP work-
force and health care delivery system, stifling its potentially
dramatic benefits. Early adoption of GenAI to facilitate the
management of these GLP-1/dual RAs has the potential to
improve health outcomes while decreasing its concomitant
workload. Investment in GenAI’s potential to support GLP-1/
dual RA management is greatly needed. This effort should
be guided by inclusive design principles and deep integration
into clinical workflows to achieve scalable impact on clinical
outcomes.
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