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Abstract

Background: Diabetic retinopathy (DR) affects about 25% of people with diabetes in Canada. Early detection of DR is essential
for preventing vision loss.

Objective: We evaluated the real-world performance of an artificial intelligence (AI) system that analyzes fundus images for
DR screening in a Quebec tertiary care center.

Methods: We prospectively recruited adult patients with diabetes at the Centre hospitalier de l’Université de Montréal (CHUM)
in Montreal, Quebec, Canada. Patients underwent dual-pathway screening: first by the Computer Assisted Retinal Analysis
(CARA) AI system (index test), then by standard ophthalmological examination (reference standard). We measured the AI
system's sensitivity and specificity for detecting referable disease at the patient level, along with its performance for detecting
any retinopathy and diabetic macular edema (DME) at the eye level, and potential cost savings.

Results: This study included 115 patients. CARA demonstrated a sensitivity of 87.5% (95% CI 71.9-95.0) and specificity of
66.2% (95% CI 54.3-76.3) for detecting referable disease at the patient level. For any retinopathy detection at the eye level, CARA
showed 88.2% sensitivity (95% CI 76.6-94.5) and 71.4% specificity (95% CI 63.7-78.1). For DME detection, CARA had 100%
sensitivity (95% CI 64.6-100) and 81.9% specificity (95% CI 75.6-86.8). Potential yearly savings from implementing CARA at
the CHUM were estimated at CAD $245,635 (US $177,643.23, as of July 26, 2024) considering 5000 patients with diabetes.
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Conclusions: Our study indicates that integrating a semiautomated AI system for DR screening demonstrates high sensitivity
for detecting referable disease in a real-world setting. This system has the potential to improve screening efficiency and reduce
costs at the CHUM, but more work is needed to validate it.

(JMIR Diabetes 2024;9:e59867) doi: 10.2196/59867
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Introduction

Diabetes mellitus is a prevalent metabolic disease affecting 5.7
million Canadians, or 14% of the population, in 2022. This
number is expected to increase to 7.3 million by 2032 [1].
Diabetic retinopathy (DR) is a common complication of the
disease, affecting up to 25% of patients in Canada [2]. DR is
also the leading cause of vision loss in people of working age
and is associated with increased mortality [3]. Detection of DR
at an early stage, when it can be treated with the best prognosis,
is crucial in preventing vision loss [4].

Diabetes Canada recommends annual to biennial DR screening
by an ophthalmologist or an optometrist for all people with
diabetes [3]. Despite this recommendation, up to a third of
diabetic patients go unscreened in Ontario, for example [5].
Demographic and socioeconomic factors, such as low income
and immigration, are the main risk factors for being unscreened
[5]. Numerous Canadian provinces have implemented more
inclusive DR screening programs through DR telescreening
(DRTS) [6-10].

In Quebec, significant progress has been made in developing
DRTS pathways for patients with diabetes in distant regions
[11]. However, in large urban centers, only a minority of patients
benefit from such access [6]. For most patients, screening is
carried out in optometry clinics, resulting in out-of-pocket
expenses, as these services are not covered by the provincial
health insurance program [12]. Many patients are referred to
consult with an ophthalmologist at a hospital. However, this
care process is usually inefficient, with numerous obstacles to
effective screening [6].

The recent demonstrations of artificial intelligence (AI)-based
grading systems for DR have sparked interest into their
integration in pre-established DRTS care pathways in Quebec

[11,13]. These systems can integrate existing DRTS pathways
in 2 ways: a semiautomated manner, where they replace the
preliminary triage currently performed by level 1 trained graders
[14]. Alternatively, they can operate in a fully autonomous way,
which would not require any human oversight [15].

In this study, we share findings from incorporating a
semiautomated AI model into the care strategy for diabetic
patients at a major tertiary care center in Quebec. We report on
the prospective clinical validation of this AI system, showcasing
its real-world performance at both the patient and eye levels for
detecting retinopathy and diabetic macular edema (DME). We
also perform an economic analysis to estimate the potential cost
savings achievable with the implementation of the AI system.

Methods

Study Design
The Centre hospitalier de l’Université de Montréal (CHUM) is
a tertiary and quaternary care teaching hospital and one of the
two major health care networks in Montreal, Quebec, Canada.
It serves 500,000 patients annually. At the CHUM, patients with
diabetes are managed by the endocrinology service in
specialized clinics, with DR screening conducted either
externally or within the ophthalmology department, depending
on patient and physician choice.

To improve the patient experience and increase screening
uptake, we implemented an AI-based DRTS pathway within
the CHUM. To evaluate our approach, we designed a silent
prospective clinical validation trial. All recruited patients were
screened through 2 parallel pathways: screening by an AI-based
system called Computer Assisted Retinal Analysis (CARA),
followed by standard of care screening by a CHUM
ophthalmologist who was masked to the output of CARA. The
study pathway is described in Figure 1.
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Figure 1. Overview of the silent prospective clinical validation study. Adult patients with diabetes were recruited from CHUM's endocrinology service.
After consenting, fundus photography was obtained on the same day. The fundus images were then transferred through the cloud to the prospective
validation pipeline. The images were automatically analyzed by the CARA algorithm. Before generating the report, a trained grader employed by the
service provider would grade the CARA-processed images. Within a month, with the outputs of CARA masked, the patients were referred to receive
standard of care screening with an ophthalmologist at the CHUM. To determine the discriminative performance of CARA, the outputs from the silent
prospective validation were compared to the ophthalmologist exam (standard reference). CARA: Computer Assisted Retinal Analysis; CHUM: Centre
hospitalier de l’Université de Montréal; DR: diabetic retinopathy.

Study Population
Patients who attended the diabetes clinic of the endocrinology
service between September 2018 and January 2019 were
recruited. All patients were new patients to the department of
ophthalmology. Previous DR diagnosis, past retinal disease, or
intraocular surgery was not exclusionary.

CARA: A Semiautomated AI Model for DR Detection
The CARA system, a semiautomated AI developed by Diagnos
Inc. in Montreal, is a clinically inspired machine learning (ML)
algorithm designed to detect retinopathy and maculopathy. As
a traditional ML model, CARA required the handcrafting of
feature extractors that transform pixel values of a retinal image
into feature vectors for an ML classifier [16,17]. This is different
from deep learning approaches which became prominent after
the development of CARA [17,18]. CARA identifies specific
lesions in retinal images, including dark lesions like
microaneurysms and hemorrhages, as well as bright lesions
such as hard exudates and cotton wool spots [19,20].

The algorithm uses a multistep process involving image
enhancement, laterality determination, vascular network, optic
nerve and fovea detection, and lesion identification. A final
output is reached by a weighted combination of image quality,
the highest probability of bright and dark lesions, and image
conformity. This output is reviewed by a Diagnos Inc senior
grader before being sent to the CHUM, marking the process as
semiautomated. The senior grader, an ophthalmologist with 12
years of grading experience, was employed by Diagnos Inc.
The CHUM was not informed of any formal auditing or quality
assessment methods used by Diagnos Inc.

CARA received approval from the US Food and Drug
Administration as a class II medical device in 2011 through the
510(k) pathway. It was intended as a software platform to
visualize, store, and enhance color fundus images through
computerized networks, but was not certified for diagnosing

DR at that time. Prior to this current study, CARA had shown
a 93% sensitivity and 71% specificity in retinopathy detection
across an international data set of 509 eyes (personal
communication with Diagnos Inc). Our study served as a first
prospective clinical validation study for the CARA service.

Fundus Photography
On recruitment day, in the endocrinology clinic, 45-degree,
nonstereoscopic color fovea-centered fundus photographs were
obtained by a technician, without pupillary mydriasis, using the
Centervue DRS camera (Hillrom, Chicago, United States). A
single image was obtained per eye as CARA was designed to
make classifications from single-field images. At the time of
the study's design, there were no Canadian recommendations
in that regard, but this approach seemed reasonable as
single-field images were being used in the Scottish DR screening
services, for example [21]. The acquired images were uploaded
to the CARA platform for them to be processed by the ML
algorithm. The generation of AI outputs was carried out
asynchronously and the patient, the referring endocrinologist,
and all eye care providers were masked to the output of the AI
system.

Ophthalmologist Examination (Standard Reference)
Within a month of recruitment, patients were referred to undergo
screening by an ophthalmologist using slit lamp examination,
typically with a 78 or 90D lens. Fundus photography and optical
coherence tomography were not routinely carried out. Each
patient's grading was performed by a single attending
ophthalmologist, with the study including a total of 28
ophthalmologists with diverse subspecialties and levels of
experience (Multimedia Appendix 1). No specific grading
training was administered; however, all participating
ophthalmologists were board-certified by the Royal College of
Physicians and Surgeons of Canada. They were expected to
have the competence to diagnose and grade DR, as it is
considered an objective (#3.1.2.4.2.2) of ophthalmology training
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by the Royal College [22]. Using standardized case report forms,
the ophthalmologists graded each eye using the Scottish Diabetic
Retinopathy Grading Scheme [23,24]. Standardized imaging
examples were available as needed. This represented the
standard reference to which the AI model was compared to.

Disease Definition
In a DR screening program, individuals with no or mild DR
undergo annual monitoring, while those with more than mild
(mtmDR), and those with DME are referred for evaluation [25].
Accordingly, numerous pivotal trials of AI-based DR screening
models have focused on their ability to detect mtmDR [13,15].
The intended use of CARA, however, was as a tool to detect
any retinopathy (including mild disease) and DME. This
included, according to the Scottish Diabetic Retinopathy
Grading Scheme: R1, R2, R3, and R4 for retinopathy grading,
and M1 and M2 for DME grading [23]. This is equivalent to
level 1 triaging responsibility as defined by the CR2N
Tele-Retina Steering Committee [14].

For each patient, we determined if they were referable by
mapping the retinopathy and DME labels to “retinopathy or
DME present” (referable) or “retinopathy and DME absent”
(not referable), taking the worst of the 2 eyes to correspond to
the outputs of the AI system at the patient level. Patients without
referral outputs for both eyes were considered “inconclusive.”

Economic Analysis
We conducted an economic evaluation to estimate the costs of
adopting the CARA system for screening 5000 annual patients
with diabetes at the CHUM, analyzed from a health care system
perspective. The direct costs of screening, and costs for
inconclusive outputs and false positive referrals were considered
in the analysis. All values are presented in Canadian dollars.

Outcomes and Statistical Analysis
The primary outcomes were the sensitivity and specificity of
the AI system to detect referable disease at the patient level.
The secondary outcomes were first, the sensitivity and
specificity of the AI system for the detection of retinopathy and
DME at the eye level, and second, the cost savings in Canadian
dollars should the system be implemented.

Sensitivity, specificity, positive predictive value, and negative
predictive value for each of retinopathy and DME detection
were computed from the confusion matrices. We used the
Wilson score interval method to calculate 95% CI. The study
follows the Standards for Reporting of Diagnostic Accuracy
(STARD) checklist [26].

Ethical Considerations
Patients were enrolled only if they understood the study and
provided informed consent. This research complied with the
Declaration of Helsinki. Departmental approval was obtained,
and an ethical waiver was granted by the CHUM given the
silent, noninterventional nature of the study. All data was
deidentified.

Results

Patient Flow
Between September 2018 and January 2019, the endocrinology
service referred 133 patients to the study, of which 115 (230
eyes) underwent fundus imaging and received CARA outputs.
Multimedia Appendix 2 presents demographics of the 18
excluded patients, showing no significant differences from those
included. Figures 2 and 3 illustrate recruitment at the patient
and eye levels for retinopathy and DME, respectively.
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Figure 2. STARD (Standards for Reporting of Diagnostic Accuracy) flowchart at the patient level. Referable disease was defined as “retinopathy or
DME present” and not referable was defined as “retinopathy and DME absent”, taking the worst of the two eyes to correspond to the outputs of the AI
system at the patient level. CARA: Computer Assisted Retinal Analysis; DME: diabetic macular edema.

Figure 3. STARD (Standards for Reporting of Diagnostic Accuracy) flowchart at the eye level. Using the Scottish Diabetic Retinopathy Grading
Scheme, retinopathy was defined as the presence of any retinopathy (corresponding to R1, R2, R3, and R4). DME was defined as the presence of M1
or M2. CARA: Computer Assisted Retinal Analysis; DME: diabetic macular edema.

Study Cohort
Patient demographics and characteristics are summarized in
Table 1. The majority of patients were male (57.4%) with a

mean age of 55.4 (SD 15.6) years. Most patients were White
(60.9%). While the type of diabetes was the most often
unspecified (43.5%), type 2 diabetes (36.5%) was more common
than type 1 (20.0%).
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Table 1. Patient demographics for the patients included in the study.

Value (N=115)Demographic

Sex, n (%)

66 (57.4)Male

49 (42.6)Female

Age (years)

55.4 (15.6)Mean (SD)

20-90Range

Diabetes type, n (%)

23 (20)Type 1

42 (36.5)Type 2

50 (43.5)Unspecifieda

Ethnicity, n (%)

70 (60.9)White

17 (14.8)Middle-Eastern

13 (11.3)Hispanic

11 (9.6)Black

4 (3.5)Unknown

aDiabetes subtype not specified on the study referral form.

Performance for Detecting Referable Patients
The primary outcome was model performance at the patient
level. For the 100 patients with analyzable data, the confusion
matrix demonstrating the performance of CARA for referable
patient detection is shown in Figure 4A. CARA had a sensitivity
of 87.5% (95% CI 71.9-95.0) and a specificity of 66.2% (95%
CI 54.3-76.3). There were 4 false negatives with mild
background retinopathy (R1) not requiring treatment. No cases
of vision-threatening retinopathy were missed.

Inconclusive outputs occurred in 13% (15/115) patients. Reasons
varied, including imageability issues like small pupil (n=5),
uncooperative patient (n=1), and media opacity (n=2), along
with ungradable model outputs due to processing errors or unmet
decision thresholds (n=7). Multimedia Appendix 3 describes
the demographics of this patient cohort, noting older age in
patients with inconclusive outputs (69.5 vs 53.3, P<.001). In
this group, 8 patients (53.3%) had referable disease, including
3 cases of DME but no cases of severe nonproliferative or
proliferative retinopathy.

Figure 4. Confusion matrices showing the discriminative performance of CARA (Computer Assisted Retinal Analysis) at the patient level (referral)
and eye level (retinopathy and DME [diabetic macular edema] detection) for patients with analyzable outputs. At the patient level (n=115), 100 had
analyzable outputs, and 15 were inconclusive. At the eye level, from 230 eyes, 32 and 40 eyes had inconclusive AI outputs for retinopathy and DME,
respectively, and 1 eye lacked an ophthalmologist's grading (DME). This resulted in 198 and 189 eyes with analyzable outcomes for retinopathy and
DME, respectively.
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Performance for Detecting Disease at the Eye Level
The confusion matrix demonstrating the performance of CARA
for retinopathy detection is shown in Figure 4B. CARA had a
sensitivity of 88.2% (95% CI 76.6-94.5) and a specificity of
71.4% (95% CI 63.7-78.1). Among the 32 eyes with an
inconclusive CARA output for retinopathy, 17 eyes had
retinopathy (53.1%) and 15 did not (46.9%).

The confusion matrix demonstrating the performance of CARA
for DME detection is shown in Figure 4C. CARA had a
sensitivity of 100% (95% CI 64.6-100) and a specificity of
81.9% (95% CI 75.6-86.8). The remaining performance metrics
are summarized in Table 2. Among the 40 eyes with an
inconclusive CARA output for DME, 5 eyes had DME (12.5%)
and 35 did not (87.5%).

Table 2. Summary of the discriminative performance of CARAa.

Eye levelPatient levelMetric

DMEbRetinopathyReferable disease

100.0 (64.6-100)88.2 (76.6-94.5)87.5 (71.9-95.0)Sensitivity (95% CI)

81.9 (75.6-86.8)71.4 (63.7-78.1)66.2 (54.3-76.3)Specificity (95% CI)

17.5 (8.8-32.0)51.7 (41.4-61.9)54.9 (41.4-67.7)PPVc (95% CI)

100.0 (97.5-100)94.6 (88.7-97.5)91.8 (80.8-96.8)NPVd (95% CI)

aCARA: Computer Assisted Retinal Analysis
bDME: Diabetic macular edema.
cPPV: Positive predictive value (precision).
dNPV: Negative predictive value.

Economic Analysis
A detailed description of the assumptions and calculations
performed for the economic analysis is described in Multimedia
Appendix 4. Implementing the AI system for screening could
result in a yearly savings of CAD $245,635 (US $177,643.23,
as of July 26, 2024) or CAD $49 (US $35.44) per patient, as
shown in Table 3.

These estimates are based on 5000 patients followed annually
at the diabetes clinic of the CHUM. The calculations are based
on specific costs per patient, the prevalence of diabetic
retinopathy among analyzable cases, the percentage of
inconclusive outputs by the AI system, and the AI system's
specificity. The final row highlights the total cost savings
achievable when employing the AI system for screening,
demonstrating a significant economic advantage over the current
standard of care.

Table 3. Cost comparison between standard of care and AIa system screening for DRb screening.

AI systemStandard of careCost component (CAD $c)

150,000590,500Direct screening cost

76,765N/AdCost for inconclusive outputs

118,100N/ACost for false positive referrals

344,865590,500Total cost

245,635N/ACost savings

69118Average cost per patient

49N/AAverage cost savings per patient

aAI: Artificial intelligence
bDR: Diabetic retinopathy
cAs of July 26, 2024, CAD $1=US $0.7232)
dN/A: not applicable.

Discussion

Principal Findings
AI-based telescreening is a promising approach that has the
potential to improve community-based screening of DR [27,28].
When effective, AI-based DRTS systems can help reduce

unnecessary examinations of patients without DR, allowing
resource allocation to those who need more active management
[28]. In this work, we describe the outcomes of real-world
implementation of an AI-based DRTS for the screening of DR
in a tertiary care hospital in Montreal.
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We carried out a silent prospective clinical validation study to
assess the performance of the CARA system prior to its
implementation in our local population [29]. Our cohort featured
an equitable sex distribution and a strong representation of
several visible minority groups in Montreal (Black,
Middle-Eastern, and Hispanic), which makes our findings
generalizable to the local population [30]. The retention rate in
this study was notably high, with 86.5% completing the study.
While this hints at positive patient acceptance, further studies
will be needed for a conclusive understanding of patient
acceptability of this technology. The literature suggests a general
preference among patients for automated DR screening [31,32],
especially when clinicians are involved in supervising the AI
system's decisions [33].

CARA identified patients for referral with 87.5% sensitivity
and 66.2% specificity. It detected retinopathy with 88.2%
sensitivity and 71.4% specificity, and DME with 100%
sensitivity and 81.9% specificity. These results meet the 85%
sensitivity benchmark obtained by several similar AI systems
designed for DR screening [34]. In the real-world setting, a
recent meta-analysis showed a pooled sensitivity of 91% (95%
CI 87-94) and specificity of 92% (95% CI 88-94) for detecting
any retinopathy at the eye level [35]. For vision-threatening
DR, which includes DME, sensitivity was 99% (95% CI 95-100)
and specificity 92% (95% CI 74-98) [35]. CARA's performance

in detecting retinopathy and DME is on par with other systems
in sensitivity but not in specificity, suggesting it effectively
identifies disease needing referral but may result in higher false
positive rates than desired. The performance gap between CARA
and the current state of the art may be partly due to the inherent
limitations of traditional feature-based models like CARA
[36,37]. In contrast, novel neural network–based models have
seen significant improvements in recent years, driven by
enhanced architectures and the availability of extensive training
data sets [38].

Despite the limited specificity, CARA could significantly reduce
the workload of the ophthalmology department at the CHUM
by filtering out patients without DR (Figure 5). While false
positives can create patient stress and costs [39], since
ophthalmologists evaluate these cases, they are unlikely to lead
to unnecessary treatments. A similar approach has been
successful in the Scottish DRTS program, where all images
undergo a first pass through an “autograder” algorithm [40].
With similar specificity to CARA, the Scottish system’s
automated grading has been shown to be safe [41], and has
reduced the burden of manual grading by up to one-third [42].
The current CARA service, in its semiautomated setup, however,
still requires grader oversight. Despite that, we expect it could
also reduce the burden of manual grading.

Figure 5. Proposed clinical pathway for the artificial intelligence (AI) system implementation. In the current screening pathway, all patients are evaluated
by the department of ophthalmology. With AI system integration as a level 1 triage agent, disease-free patients would be filtered out, reducing unnecessary
referrals. Only those with referable disease or an inconclusive AI output would be directed to ophthalmology. False positives would re-enter the AI
screening pathway, while patients with any disease receive follow-up care in ophthalmology. CHUM: Centre hospitalier de l’Université de Montréal.

Implementing CARA in our screening pathway could yield an
estimated first-year saving of approximately CAD $245,635
(US $177,643.23) for 5000 patients (CAD $49 [US $35.44] per
patient), considering direct screening costs and those related to
false positive and inconclusive outputs. Of note, the potential
costs associated with false negatives (missed cases) were not
considered in the analysis due to the lack of such data in our
context. The impact of the CARA system on quality-adjusted
life years also was not assessed. In the future, we will focus on
modeling the screening pathway with decision trees to calculate
the incremental cost-effectiveness of our approach, also
accounting for false negative cases.

Our study has several limitations and design flaws that have
become identifiable in hindsight. Firstly, the provision of the
CARA AI system as a service provided to the CHUM introduced
several constraints to our study. We lacked control over the
model both before and during its implementation. The final
outputs were sent to us post grader assessment, without insights
into model failures and ungradable images. The semiautomated
nature of the pipeline meant that the performance metrics could
have been influenced by grader performance, which we are now
unable to measure retrospectively. Secondly, we employed
dilated fundus examinations as the reference standard instead
of using image-assisted evaluations with fundus photographs
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and optical coherence tomographic scans. This screening
method, common in Quebec, might not capture the full human
diagnostic accuracy achievable through a multimodal approach.
Due to these limitations, our findings should not be used as a
basis to support the approval of CARA as a software medical
device. Instead, this study should be viewed as a preliminary
trial that helped develop pathways for future, more robust studies
involving AI in the DR screening process at CHUM.

Building on those learnings, we have designed a new clinical
trial to evaluate the real-world performance of a fully automated
deep learning system called NeoRetina (Diagnos Inc) [43]. This
new model uses neural networks, which represent the current
state of the art in AI. To have a more robust standard reference,
in addition to the routine ophthalmological evaluation of DR
and DME, masked grading of the same retinal photographs used
by NeoRetina will be performed. These images will be assessed
for quality and then graded by at least 2 fellowship-trained retina

specialists, with a predefined arbitration process. The new trial
will leverage the screening pathways developed in this study
and will aim to recruit 630 patients by December 2026.

Conclusions
In conclusion, we report findings from the first real-word
implementation study of an AI-based DRTS system in the
province of Quebec and possibly in Canada [35]. Large-scale
implementation of CARA at CHUM would be expected to result
in cost savings and reduced waiting times. However, we are
currently investigating more advanced models that we aim to
validate more robustly. Once deployed, any model will require
routine audits to ensure model performance is maintained,
especially with changes in population demographics and disease
patterns over time [44,45]. Similarly, ensuring strict information
governance policies will be crucial for protecting patient data
and responsibly leveraging the benefits of AI systems.
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Multimedia Appendix 1
Subspecialties, years of experience of the grading ophthalmologists, and numbers of images graded.
[PDF File (Adobe PDF File), 17 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Patient demographics of the 18 patients who were excluded from the study. After recruitment, 15 patients were lost to follow-up
and 3 patients withdrew. There were no statistically significant differences in the patient demographics. *The comparison between
the study cohort (n=115) and excluded group (n=18) was performed using Mann-Whitney U test for all continuous variables. For
categorical variables, we used the Chi-squared test. **Diabetes subtype not specified on the study referral form.
[PDF File (Adobe PDF File), 20 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Patient demographics of the 15 patients with inconclusive Computer Assisted Retinal Analysis (CARA) outputs. The cohort of
patients with inconclusive CARA outputs was significantly older than the one with analysable outputs (P< 0.001). *The comparison
between the cohort with analysable outputs (n=100) and the group with inconclusive outputs (n=15) was performed using
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Mann-Whitney U test for all continuous variables. For categorical variables, we used the chi-squared test. **Diabetes subtype
not specified on the study referral form.
[PDF File (Adobe PDF File), 19 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Cost parameters, assumptions and calculations for the economic analysis. AI: artificial intelligence; FPR: false positive rate: pt:
patient.
[PDF File (Adobe PDF File), 22 KB-Multimedia Appendix 4]
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