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Abstract

Background: Wearable devices can simultaneously collect data on multiple items in real time and are used for disease detection,
prediction, diagnosis, and treatment decision-making. Several factors, such as diet and exercise, influence blood glucose levels;
however, the relationship between blood glucose and these factors has yet to be evaluated in real practice.

Objective: This study aims to investigate the association of blood glucose data with various physiological index and nutritional
values using wearable devices and dietary survey data from PhysioNet, a public database.

Methods: Three analytical methods were used. First, the correlation of each physiological index was calculated and examined
to determine whether their mean values or SDs affected the mean value or SD of blood glucose. To investigate the impact of each
physiological indicator on blood glucose before and after the time of collection of blood glucose data, lag data were collected,
and the correlation coefficient between blood glucose and each physiological indicator was calculated for each physiological
index. Second, to examine the relationship between postprandial blood glucose rise and fall and physiological and dietary nutritional
assessment indices, multiple regression analysis was performed on the relationship between the slope before and after the peak
in postprandial glucose over time and physiological and dietary nutritional indices. Finally, as a supplementary analysis to the
multiple regression analysis, a 1-way ANOVA was performed to compare the relationship between the upward and downward
slopes of blood glucose and the groups above and below the median for each indicator.

Results: The analysis revealed several indicators of interest: First, the correlation analysis of blood glucose and physiological
indices indicated meaningful relationships: acceleration SD (r=–0.190 for lag data at –15-minute values), heart rate SD (r=–0.121
for lag data at –15-minute values), skin temperature SD (r=–0.121), and electrodermal activity SD (r=–0.237) for lag data at
–15-minute values. Second, in multiple regression analysis, physiological indices (temperature mean: t=2.52, P=.01; acceleration
SD: t=–2.06, P=.04; heart rate_30 SD: t=–2.12, P=.04; electrodermal activity_90 SD: t=1.97, P=.049) and nutritional indices
(mean carbohydrate: t=6.53, P<.001; mean dietary fiber: t=–2.51, P=.01; mean sugar: t=–3.72, P<.001) were significant predictors.
Finally, the results of the 1-way ANOVA corroborated the findings from the multiple regression analysis.

Conclusions: Similar results were obtained from the 3 analyses, consistent with previous findings, and the relationship between
blood glucose, diet, and physiological indices in the real world was examined. Data sharing facilitates the accessibility of wearable
data and enables statistical analyses from various angles. This type of research is expected to be more common in the future.

(JMIR Diabetes 2024;9:e62831) doi: 10.2196/62831
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Introduction

Global Prevalence of Diabetes and Hyperlipidemia
The global prevalence of diabetes in 2021 among individuals
aged between 20 and 79 years was estimated to be 10.5% (536.6
million people), with this figure expected to rise to 12.2% (783.2
million) by 2045. Global diabetes-related health expenditures
were estimated at US $966 billion in 2021 and are projected to
reach US $1054 billion by 2045 [1]. In 2020, approximately
38.1 million adults aged ≥18 years, or 14.7% of all adults in the
United States, had diabetes [2]. The global prevalence of
hyperlipidemia in adults is 39% (37% in men and 40% in
women), and as of 2020, approximately 10% (about 25 million
people) of adults aged ≥20 years in the United States had total
cholesterol levels of ≥240 mg/dL and 33% (about 86 million
people) had total cholesterol levels of ≥200 mg/dL [3]. Several
primary hyperlipidemias (eg, familial combined hyperlipidemia,
familial hypertriglyceridemia, and abnormal β lipoproteinemia)
have been reported to be associated with an increased risk of
type 2 diabetes [4].

The Role of Wearable Devices and Real-World Data
Wearable devices are becoming increasingly capable of
measuring a range of physiological data. Real-world data, which
collect and analyze activity and physiological measurements
from participants in clinical studies, can provide more sensitive
measures of disease activity than traditional scales, thereby
enabling faster and more objective readings in clinical trials [5].
Wearable devices can continuously collect measures of multiple
physiological functions in real-time. Depending on the size and
complexity of the raw data obtained from the device, data
preprocessing, feature extraction, and selection are performed
through data processing, such as data mining, and are applied
toward abnormality detection, prediction, diagnosis, and
decision-making [6]. Conversely, data repositories have
advanced in recent years, making large, open databases available
for wearable devices. Data mining techniques have advanced
significantly in the last few years, and with the availability of
these open data, opportunities emerged to devise algorithms
suitable for wearable sensors [6].

Use of Open Datasets and Research Progress
Table S1 in Multimedia Appendix 1 depicts studies that applied
existing open datasets. Several studies were conducted to
establish algorithms and prediction models based on machine
learning from sensor data [7-24].

Open datasets are available on the following websites: (1) IEEE
Data Port, a research data platform designed to store research
data and provide global access to research data across various
fields [25]; (2) the Open Wearables Initiative, which aims to
promote the effective use of high-quality sensor-generated health
measurements in clinical research by openly sharing algorithms
and datasets [26]; (3) PhysioNet, a searchable database
containing a collection of cardiopulmonary, neurological, and
other biomedical signals from healthy individuals and patients
with several serious health conditions, including congestive
heart failure, epilepsy, gait disturbance, and sleep apnea [27].

Development of Prediction Models for Blood Glucose
Indicators
The BIG IDEAs Lab Glycemic Variability and Wearable Device
Data (version 1.1.1) by Cho et al [28,29], a wearable database
containing blood glucose–related indicators from PhysioNet,
was selected for the study. Two previous studies have used the
same database [30,31]. The first study demonstrated the
feasibility of predicting blood glucose changes by continuously
detecting individualized blood glucose deviations and
determining the contribution of each variable to interstitial
glucose prediction. The LOPOCV random forest regression
model was used to examine the importance of the characteristics,
resulting in the extraction of diet, circadian rhythm, stress,
activity, body temperature, heart rate, electrodermal activity,
biological sex, and HbA1c [30]. The second study evaluated
methods for detecting prediabetes and estimating glycated
hemoglobin (HbA1c) and glucose variability using digital
biomarkers from wearables [31]. The relationships between
features extracted from wearables and blood glucose variability
and HbA1c were investigated, and the results showed that
glucose variability indices and HbA1c could be estimated with
high accuracy. The HbA1c estimation model developed from a
noninvasive wrist-worn wearable was as accurate as the invasive
continuous glucose monitor (CGM)–based estimated A1c (as
recommended by the American Diabetes Association). Notably,
all the sensors used in this study (triaxial accelerometer-derived
acceleration [ACC], heart rate [HR], electrodermal activity
[EDA], and skin temperature [TEMP]) were important for
estimating glucose variability indices and HbA1c, although EDA
and TEMP were the most important indicators when estimating
HbA1c [31]. Similar to the other studies based on existing open
datasets (Table S1 in Multimedia Appendix 1), these 2 studies
were conducted to establish a prediction model for blood
glucose-related indicators using machine learning and used the
random forest regression model for analysis. This analysis can
be difficult to interpret in a specific clinical context.

Factors Influencing Blood Glucose Levels and
Real-World Evaluation
Several factors influence blood glucose levels, including diet
[32], physical activity, exercise [33], stress [34], circadian
rhythm [35], and HR [36]. For example, regarding diet,
following the dietary approaches to stop hypertension (DASH)
diets [37], low carbohydrate diets [38,39], and high consumption
of phytochemicals and polyphenols [40,41] prevent type 2
diabetes. However, although some factors associated with blood
glucose variability, such as HR [36], body temperature [42],
and autonomic functions [43], including sweating motor
response [44], have been reported [30], these factors have not
been evaluated in real-world setting. Therefore, we conducted
an exploratory study of the association between blood glucose
and each physiological and nutritional index, using existing
data from PhysioNet as well as simple analytical methods, such
as correlation and multiple regression analyses. These analysis
methods were used for their simplicity compared to the random
forest model and may increase the explanatory potential as the
contribution of each variable is clarified.
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Methods

Database Selection and Dataset Creation
A database search was conducted using the word “wearable”
from PhysioNet, which yielded 11 hits. Among these, we
focused on wristband-type wearable devices and searched the
relevant databases because the major market share is dominated
by wristband- and watch-type devices [45]. The search resulted
in 7 (64%) of 11 studies with wristband-type wearable devices
(Empatica [Empatica Inc]: n=5, 45%; Apple watch [Apple Inc]:
n=2, 18%; Fitbit [Fitbit, Inc]: n=2, 18%; Garmin [Garmin Ltd]:
n=1, 9%; Samsung Galaxy watch [Samsung, Inc]: n=1, 9%;
Xiaomi [Xiaomi Corp]: n=1, 9%; and Biovotion Everion
[Biofourmis Inc]: n=1, 9% study; Table S2 in Multimedia
Appendix 1).

We selected 1 study that investigated Empatica E4, the most
commonly used wristband-type wearable device. The dataset,

BIG IDEAs Lab Glycemic Variability and Wearable Device
Data (version 1.1.1) by Cho et al [28,29] was selected to
examine the correlation between each physiological index and
blood glucose as well as conduct multiple regression analysis
and 1-way ANOVA of the slope in postprandial glucose over
time with each physiological index and nutrient value. The main
eligibility criteria in the study included men and postmenopausal
women aged 35-65 years, with point-of-care HbA1c

measurements between 5.2% and 6.4%.

A total of 16 patients (n=7, 44% men and n=9, 56% women)
with HbA1c in the high normal and prediabetic range
(5.3%-6.4%, mean 5.73%, SD 0.28%) were included and
monitored for 8-10 days using the Dexcom G6 CGM and
Empatica E4 wrist-worn wearable-type device [28].

The demographic characteristics of the participants are listed
in Table 1.

Table 1. Demographic characteristics of the participants in the database.

HbA1c
a (%)SexID

5.5Femalea01

5.6Malea02

5.9Femalea03

6.4Femalea04

5.7Femalea05

5.8Femalea06

5.3Femalea07

5.6Femalea08

6.1Malea09

6.0Femalea10

6.0Malea11

5.6Malea12

5.7Malea13

5.5Malea14

5.5Femalea15

5.5Malea16

aHbA1c: glycated hemoglobin.

Notably, all data were time-shifted (by date) to prevent
reidentification; the Dexcom G6 measured interstitial glucose
concentration (mg/dL) every 5 minutes using a CGM, and the
Empatica E4 measured photoelectric volumetric pulse wave,
electrical activity: EDA, TEMP, and ACC, for 7 functions. The
photoelectric volumetric pulse wave was sampled at 64 Hz, and
HR and blood volume pulse (BVP) signals were obtained every
second, from which the interbeat interval (IBI) data were
calculated. Of these, EDA is known as a psychological factor
and a measure of sympathetic activation related to stress [46,47].
In addition, HR variability, a related index of HR and IBI, was
used as a psychological stress indicator [47,48]. EDA and TEMP
were sampled at 4 Hz, whereas accelerometry was sampled at

32 Hz. For ACC, triaxial data were calculated using the
Euclidean norm as a measure of average motion in the 3 axes
using the following formula [49]:

Each physiological index (ACC, HR, TEMP, EDA, BVP, and
IBI) collected using Empatica was also extracted at 5-minute
intervals to match blood glucose, which had the longest
measurement interval (5 minutes).

In addition, when the Cho et al [28] dataset was updated from
version 1.0.0 to version 1.1.0 on March 6, 2023, the results of
nutrient value calculations from the dietary survey records were
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added to the analysis dataset. The parameters of the calculated
nutritional values were calories, total carbohydrate (carbon),
dietary fiber, sugar, protein, and total fat. The values of these
nutritional assessment indices at each time point were summed.

Correlation Analyses Between Blood Glucose and Each
Physiological Index
The correlation of each physiological index (ACC, HR, TEMP,
EDA, BVP, and IBI) was calculated and examined to determine
whether their mean values or SDs affected the mean value or
SD of blood glucose. Mean values and SDs were calculated for
blood glucose and each physiological index at three 5-minute
points in the same individual (10 minutes in total), and their
correlation coefficients were calculated. To examine the impact
of each physiological indicator on blood glucose before and
after the time of collection of blood glucose data, lag data (data
on physiological indicators before glucose data collection at 8
points [120, 105, 90, 75, 60, 45, 30, and 15 minutes] and after
blood glucose data collection at 8 points [15, 30, 45, 60, 75, 90,
105, and 120 minutes]) were collected, and the correlation
coefficient between blood glucose and each physiological
indicator was calculated for each physiological index.

Lag data for physiological indicators before glucose data
collection were created by time-shifting each physiological
indicator every 15 minutes until 120 minutes (Figure S1 in
Multimedia Appendix 1). Lag data for physiological index data
after blood glucose data collection were time-shifted by 15
minutes for each glucose reading to 120 minutes (Figure S2 in
Multimedia Appendix 1). The purpose of creating lag data was
to calculate the correlation between glucose levels and ACC
(ACC values at 15, 30, 45, 60, 75, 90, 105, and 120 minutes)
before and after measurement. The correlation coefficient was
calculated using Spearman correlation.

Multiple Regression Analysis of Postprandial Blood
Glucose Over Time and Each Physiological Index and
Nutrient Value
To examine the relationship between postprandial blood glucose
rise and fall and physiological and dietary nutritional assessment
indices, multiple regression analysis was performed on the
relationship between the slope before and after the peak in
postprandial glucose over time and physiological and dietary

nutritional indices. Multiple regression analysis was performed
using objective and explanatory variables.

Objective Variables
The objective variables included the slope of the tangent line
to the postprandial blood glucose curve, which includes the
slope of the rise in postprandial glucose from the lowest point
before the rise to the peak and the slope of postprandial blood
glucose from the peak to the lowest point.

The following formula was used to calculate the slope:

where x indicates time (min) and y indicates blood glucose
(mg/dL).

Explanatory Variables
The explanatory variables comprised the calculated nutritional
value of the diet (carbon, protein, calories, sugar, dietary fiber,
protein, and total fat) and the means and SDs of physiological
indices (ACC, HR, TEMP, EDA, BVP, and IBI) at the following
time points (Figure 1):

1. Time from the most recent postprandial glucose to peak
glucose level. The variables are ACC, HR, TEMP, EDA,
BVP, and IBI.

2. Time from peak glucose to the lowest glucose level
(excluded from the analysis of the slope of peak ascent
owing to limited data). The variables are ACC_af, HR_af,
TEMP_af, EDA_af, BVP_af, and IBI_af.

3. Time from the most recent postprandial glucose peak to 30
minutes before the most recent postprandial glucose. The
variables are ACC_30, HR_30, TEMP_30, EDA_30,
BVP_30, and IBI_30.

4. Time from 30 minutes before the most recent postprandial
glucose to 60 minutes before. Variables are ACC_60,
HR_60, TEMP_60, EDA_60, BVP_60, and IBI_60.

5. Time from 60 minutes before the most recent postprandial
glucose to 90 minutes before. Variables are ACC_90,
HR_90, TEMP_90, EDA_90, BVP_90, and IBI_90.

Multiple regression analysis was performed using the variable
reduction method, and the significance level used as the criterion
for the backward elimination method [50,51] was P=.20.
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Figure 1. Collection times for the objective (blood glucose slope) and explanatory (physiological indexes) variables used in the multiple regression
analysis.

One-Way ANOVA for Postprandial Blood Glucose
and Groups Above and Below Each Physiological
Indicator and the Median Dietary Nutrient Value
As a supplementary analysis to the multiple regression analysis,
a 1-way ANOVA was performed to compare the relationship
between the upward and downward slopes of blood glucose and
the groups above and below the median for each indicator. The
groups below the median were used as comparison controls.
The following variables were used in the 1-way ANOVA.

Objective Variables
The same variables were used for analysis as those in the
multiple regression analysis.

Explanatory Variables
For the following indices, variables were created through
patterns of group combinations using the physiological index
mean and dietary nutrient value, with groups above and below
the median for each index as 1 and 0, respectively. Group
combinations that contained missing measures or extremely
low group combinations were not included in the analysis
population. The mean values of physiological indices (ACC,
HR, TEMP, and EDA) at three 5-minute intervals (10 minutes
in total) in the same participant at the following times and the

nutritional value of the diet (carbon, protein, calories, sugar,
and dietary fiber) were assessed.

The results of the multiple regression analysis showed that the
physiological indicators associated with the slope of the rise
and fall of blood glucose were TEMP, ACC, HR, and EDA,
and the nutritional value indicators were carbon, protein,
calories, sugar, and dietary fiber. Therefore, we focused on the
following time indicators:

1. Time from the most recent postprandial glucose to peak
glucose level.

2. Time from peak glucose to lowest glucose level (excluded
from this analysis).

3. Time from the most recent postprandial glucose to 30
minutes before.

4. Time from 30 minutes before the most recent postprandial
glucose to 60 minutes before.

5. Time from 60 minutes before the most recent postprandial
glucose to 90 minutes before.

Patterned combination of groups by physiological indicator
mean and dietary nutrient value are given in Textbox 1.

All analyses were performed using JMP Pro (version 16.10;
SAS Institute Inc), SAS (version 9.4; SAS Institute Inc), and
Microsoft Excel for Mac (version 16; Microsoft Corp).

Textbox 1. Patterned combination of groups.

Combination patterns of physiological index mean groups. Combination pattern of temperature (TEMP), acceleration (ACC), heart rate
(HR), and electrodermal activity (EDA); for example,

• Combination pattern for groups with TEMP, ACC, HR, and EDA below the median (used as a comparison). TEMP: ACC:HR:EDA=0000.

• Combination pattern for groups with TEMP, ACC, HR, and EDA above the median. TEMP: ACC:HR:EDA=1111.

• Combination pattern for groups where TEMP and EDA were above the median and all other values were below the median.
TEMP:ACC:HR:EDA=1001.

Combination patterns for dietary nutrient value groups; for example,

• Combination pattern for all indicators of dietary nutritional value (used as comparisons and controls) below the median. Calories:carbon:dietary
fiber:sugar:protein=00000.

• Combination pattern for all indicators of dietary nutritional value above the median. Calories:carbon:dietary fiber:sugar:protein=11111.

• Combinations pattern for carbon and sugar above the median and all other indicators of dietary nutritional value below the median.
Calories:carbon:dietary fiber:sugar:protein=01010.
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Ethical Considerations
No ethical approval was required since this study was
exclusively based on published literature.

Results

Correlation Coefficients Between Blood Glucose Mean
and the Mean of Lag Data for Each Physiological
Indicator

Lag Data for Each Physiological Indicator Before Blood
Glucose Data Collection
Figure 2 and Table S3 in Multimedia Appendix 1 illustrate the
evolution of the correlation coefficients of the lag data (–120,

–105, –90, –75, –60, –45, –30, and –15 min) between the mean
values of blood glucose and physiological indices. For HR, the
correlation remained negative, peaking at the –15-minute value
of lag data (r=–0.147). For TEMP, the correlation remained
positive, with a peak at the 0-minute value (r=0.135). For EDA,
the correlation remained negative, peaking at the –15-minute
value of lag data (r=–0.164).

Figure 2. Trends in correlations between mean blood glucose and the mean of lag data for each physiological indicator (lag data for physiological
indicators before blood glucose data collection). ACC: triaxial accelerometer–derived acceleration; BVP: blood volume pulse; EDA: electrodermal
activity; HR: heart rate; IBI: interbeat interval; TEMP: skin temperature. *P value of correlation coefficient P<.05.

Lag Data for Each Physiological Indicator After Blood
Glucose Data Collection
Figure S3 and Table S4 in Multimedia Appendix 1 illustrate
the evolution of the correlation coefficients of the lag data (15,
30, 45, 60, 75, 90, 105, and 120 min) for the mean values of
glucose and physiological indices.

For HR, the correlation remained negative and peaked at the
45-minute value of lag data (r=–0.147). For TEMP, the
correlation remained positive, peaking at the 60-minute value

of lag data (r=0.161). For EDA, the correlation remained
negative, with a peak at 0 minutes (r=–0.161). For IBI, the
correlation remained positive, peaking at the 120-minute value
of lag data (r=0.120).
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Correlation Coefficients Between Blood Glucose Mean
and SD of Lag Data for Each Physiological Indicator

Lag Data for Each Physiological Indicator Before Blood
Glucose Data Collection
Figure 3 and Table S5 in Multimedia Appendix 1 illustrate the
evolution of the correlation coefficients of the lag data (–120,
–105, –90, –75, –60, –45, –30, and –15 min) of the mean blood
glucose values and SDs of physiological indices.

Regarding the evolution of the correlation coefficient of the lag
data, which are the data at and after the time of blood glucose
measurement, the correlation remained negative and peaked at
the 15-minute value of lag data (r=–0.190) for ACC. For HR,
the correlation remained negative, peaking at the 15-minute
value of lag data (r=–0.121). For TEMP, the correlation
remained negative, with a peak at the 0-minute value (r=–0.121).
For EDA, the correlation remained negative, peaking at the
15-minute value of lag data (r=–0.237).

Figure 3. Trends in correlations between mean blood glucose values and SD of lag data for each physiological indicator (lag data for physiological
indicators before blood glucose data collection). ACC: triaxial accelerometer derived acceleration; BVP: blood volume pulse; EDA: electrodermal
activity; HR: heart rate; IBI: interbeat interval; TEMP: skin temperature. *P value of correlation coefficient P<.05.

Lag Data for Each Physiological Indicator After Blood
Glucose Data Collection
Figure S4 and Table S6 in Multimedia Appendix 1 illustrate
the evolution of the correlation coefficients of the lag data (15,
30, 45, 60, 75, 90, 105, and 120 min) for the mean blood glucose
values and SDs of physiological indices.

Regarding the evolution of the correlation coefficients of the
lag data, which are the data at and after the time when blood
glucose was measured, the correlation remained negative and
peaked at the 0-minute value (r=–0.185) for ACC. For HR, the

correlation remained negative, peaking at the 45-minute value
of lag data (r=–0.127). For TEMP, the correlation remained
negative, with a peak at 0-minute value (r=–0.121). For EDA,
the correlation remained negative, with a peak at the 0-minute
value (r=–0.236).
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Correlation Coefficients Between SD of Blood Glucose
and SD of Lag Data for Each Physiological Indicator

Lag Data for Each Physiological Indicator Before Blood
Glucose Data Collection
Figure S5 and Table S7 in Multimedia Appendix 1 illustrate
the evolution of the correlation coefficients of the lag data (–120,
–105, –90, –75, –60, –45, –30, and –15 min) for the SD of blood
glucose and physiological indices.

Regarding the evolution of the correlation coefficients of the
lag data, which are the data at and after the time of glucose
measurement, the correlation remained positive, with a peak at
the 0-minute value for ACC, HR, and TEMP (r=0.157, r=0.142,
and r=0.127, respectively).

Lag Data for Each Physiological Indicator After Blood
Glucose Data Collection
Figure S6 and Table S8 in Multimedia Appendix 1 illustrate
the evolution of the correlation coefficients of the lag data (15,
30, 45, 60, 75, 90, 105, and 120 min) for the SD of glucose and
physiological indices.

For the transition of the correlation coefficients for the lag data,
which are the data at and after the time of glucose measurement,
the correlation remained positive and peaked at the 0-minute
value (r=0.157) for ACC. For HR, the correlation remained
positive, with a peak at the 0-minute lag data (r=0.142). For
TEMP, the correlation remained positive, with a peak at the
0-minute value (r=0.127).

Results of Regression Analysis of Postprandial Glucose
Over Time and Each Physiological Index and Nutrient
Value

Results of Multiple Regression Analysis Between the
Slope of the Peak of Blood Glucose Rise and the Mean
Values of Physiological and Nutritional Assessment
Indices
The results of multiple regression analysis between the slopes
of the elevated blood glucose peak and the mean values of
physiological and nutritional assessment indices are shown in
Table S9 and S10 in Multimedia Appendix 1.

The physiological index (TEMP: t=2.52, P=.01) and nutritional
assessment indexes (calorie: t=–3.98, P<.001, carbon: t=6.53;
P<.001, dietary fiber: t=–2.51, P=.01, and protein: t=3. 82,
P<.001) suggest that the mean values of these nutritional
measures were significantly associated with the slope of the
peak blood glucose elevation.

Results of Multiple Regression Analysis Between the
Slope of the Descending Peak of Blood Glucose and the
Mean Values of Physiological and Nutritional
Assessment Indexes
The results of multiple regression analysis between the slope
of the blood glucose descending peak and the mean values of
physiological and nutritional assessment indices are shown in
Table S11 and S12 in Multimedia Appendix 1.

The physiological indices (ACC: t=2.67, P=.008, HR_af: t=3.86;
P<.001, and HR_90: t=2.27, P=.02), and nutritional assessment
index (sugar: t=–3.72, P<.001) suggest that the mean values of
these physiological and nutritional assessment measures were
significantly associated with the slope of the descending peak
of blood glucose.

Results of Multiple Regression Analysis Between the
Slope of the Peak of Blood Glucose Rise and SD of
Physiological and Nutritional Assessment Indexes
The results of multiple regression analysis between the slope
of the peak of elevated blood glucose and the SD of
physiological indices are shown in Tables S13 and S14 in
Multimedia Appendix 1.

The physiological indices (ACC: t=–2.06, P=.04, HR_30:
t=–2.12, P=.03, and EDA_90: t=1.97, P=.049) suggest that the
SD of these physiological indicators was significantly associated
with the slope of the peak glucose rise.

Results of Multiple Regression Analysis Between the
Slope of the Descending Peak of Blood Glucose and SD
of Physiological and Nutritional Assessment Indexes
The results of multiple regression analysis between the slope
of the blood glucose descending peak and SD of physiological
and nutritional assessment indices are shown in Tables S15 and
S16 in Multimedia Appendix 1.

None of the physiological indices showed a significant
association between the SD of the physiological index and the
slope of the blood glucose elevation peak.

Age [52], weight, BMI, blood lipid levels, blood pressure
[53,54] and sex [55] affect blood glucose levels. However, since
we obtained data from a public database, background
information other than sex could not be obtained. When sex
was added to the multiple regression analysis as an adjustment
factor, the results were largely consistent with the unadjusted
results (Tables S17-S24 in Multimedia Appendix 1).

Results of the 1-Way ANOVA of Postprandial Blood
Glucose Over Time and Groups Above and Below Each
Physiological Indicator and the Median Dietary Nutrient
Value

Results of the 1-Way ANOVA of the Slope of Elevated
Postprandial Blood Glucose and the Combined Pattern for
Groups Above and Below the Median of the Mean of Each
Physiological Index (TEMP, ACC, HR, and EDA)

The results of the 1-way ANOVA of the slope of elevated blood
glucose and the combined pattern for the mean values of
physiological indicators (TEMP, ACC, HR, and EDA) are
shown in Figure 4 and Tables S25 and S26 in Multimedia
Appendix 1.

The combination patterns of the group with a greater upward
slope of blood glucose than the group with TEMP, ACC, HR,
and EDA values  a l l  be low the  median
(TEMP:ACC:HR:EDA=0000; mean value of upward slope
0.803) were TEMP:ACC:HR:EDA=0101 (mean value of upward
slope 1.110), 1000 (mean value of upward slope 1.140), 1011
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(mean value of upward slope 1.048), and 1101 (mean value of
upward slope 1.303), with a larger upward slope in the
population with higher TEMP and EDA.

Combination patterns with slightly larger values were
TEMP:ACC:HR:EDA=0001 (mean value of upward slope
0.920), 0010 (mean value of upward slope 0.940), 0011 (mean

value of upward slope 0.946), 0111 (mean value of upward
slope 0.970), 1001 (mean value of upward slope 0.916), 1010
(mean value of upward slope 0.975), 1100 (mean value of
upward slope 0.969), and 1111 (mean value of upward slope
0.922), which were also similar to the larger combination pattern
groups.

Figure 4. Relationship between the slope of blood glucose rise and the combination patterns (skin temperature [TEMP], triaxial accelerometer–derived
acceleration [ACC], heart rate [HR], and electrodermal activity [EDA]).

Results of the 1-Way ANOVA of the Combined Pattern for
Groups With the Downward Slope of Postprandial Blood
Glucose and Higher and Lower Than Median Values of
Each Physiological Index Mean

The results of the 1-way ANOVA of the combined pattern of
the descending slope of blood glucose and mean physiological
indices (TEMP, ACC, HR, and EDA) are shown in Figure S7
and Tables S27 and S28 in Multimedia Appendix 1.

The combination pattern with a greater downward slope of blood
glucose than the group with TEMP, ACC, HR, and EDA values
all below the median (TEMP:ACC:HR:EDA=0000, mean value
of downward slope –0.663) was TEMP:ACC:HR:EDA=1011
(mean value of downward slope –1.045), with a greater
downward slope in the population with higher TEMP, HR, and

EDA. Combination patterns with slightly larger values were
TEMP:ACC:HR:EDA=0111 (mean value of downward slope
–0.751), 1000 (mean value of downward slope –0.752), 1010
(mean value of downward slope –0.785), 1100 (mean value of
downward slope –0.787), and 1110 (mean value of downward
slope –0.713), with the pattern combining HR and ACC with
TEMP and EDA having a higher downward slope.

Results of the 1-Way ANOVA of the Slope of the
Postprandial Rise in Blood Glucose and the Combined
Pattern for Groups Above and Below the Median for Each
Dietary Nutrient Value

The results of the 1-Way ANOVA of the combined pattern of
the upward slope of blood glucose and dietary nutrient values
(carbon, protein, calories, sugar, and fiber) are shown in Figure
5 and Tables S29 and S30 in Multimedia Appendix 1.
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Figure 5. Relationship between the slope of the rise in blood glucose and dietary nutrient combination patterns (carbon, protein, calories, sugar, and
fiber).

A slightly smaller upward slope of blood glucose was observed
than the group where carbon, protein, calories, sugar, and fiber
w e r e  a l l  b e l o w  t h e  m e d i a n
(carbon:protein:calories:sugar:fiber=00000; the mean value of
upward slope 0.599), for the combination pattern of
carbon:protein:calorie:sugar:fiber=01001 (mean value of the
upward slope 0.506), which was a combination of protein and
fiber.

The larger  combinat ion  pat terns  were
carbon:protein:calorie:sugar:fiber=01010 (mean value of upward
slope 1.296), 11110 (mean value of upward slope 1.389), and
10010 (mean value of upward slope 1.675), with high calories
and sugar, and the upward slope of the low fiber group was
large.

Slightly larger combination patterns were observed for
carbon:protein:calories:sugar:fiber=00001 (mean value of
upward slope 0.751), 00010 (mean value of upward slope 0.784),
01101 (mean value of upward slope 0.792), 00001 (mean value
of upward slope 0.793), 11101 (mean value of upward slope
1.019), 10111 (mean value of upward slope 1.084), 01011 (mean
value of upward slope 1.084), 10110 (mean value of upward
slope 1.132), 11100 (mean value of upward slope 1.168), 11111
(mean value of upward slope 1.172), and 10011 (mean value
of the upward slope 1.181). Compared with the combination of
carbon and sugar above the median, the combination of carbon
and sugar above the median and fiber above the median had a
smaller upward slope (carbon:protein:calorie:sugar:fiber=01010
[mean value of upward slope 1.296] and 01011 [mean value of
upward slope 1.084]), 11110 [mean value of upward slope;
1.389] and 11111 [mean value of upward slope 1.172], 10010
[mean value of upward slope 1.675] and 10011 [mean value of
upward slope 1.181]).

Results of the 1-Way ANOVA of the Downward Slope of
Postprandial Blood Glucose and the Combined Pattern for

Groups Above and Below the Median for Each Dietary
Nutrient Value

The results of the 1-way ANOVA of the combined pattern of
the downward slope of blood glucose and dietary nutrient values
(carbon, protein, calories, sugar, and fiber) are shown in Figure
S8 and Tables S31 and S32 in Multimedia Appendix 1.

T h e  c o m b i n a t i o n  p a t t e r n  o f
carbon:protein:calories:sugar:fiber=01100 (mean value of the
downward slope –0.408), which was a combination of protein
and calories, showed a slightly smaller downward slope in blood
glucose than the group where carbon, protein, calorie, sugar,
a n d  f i b e r  w e r e  a l l  b e l ow  t h e  m e d i a n
(carbon:protein:calories:sugar:fiber=00000; mean value of the
downward slope –0.525).

The larger  combinat ion  pat terns  were
carbon:protein:calories:sugar:fiber=01010 (mean value of the
downward slope –1.012), 10111 (mean value of the downward
slope –0.978), and 10010 (mean value of the downward slope
–1.028). The slightly larger combination patterns were
carbon:protein:calories:sugar:fiber=01011 (mean value of
downward slope –0.626), 11101 (mean value of downward
slope –0.762), 11100 (mean value of downward slope –0.769)
and 11110 (mean value of downward slope –0.783), 00010
(mean value of downward slope –0.793), 10110 (mean value
of downward slope –0.826) and 10011 (mean value of
downward slope –0.884), than those with carbon and sugar
above the median. Compared with the combination of carbon
and sugar higher than the median, the combination of carbon
and sugar higher than the median and fiber or protein higher
than the median had a smaller downward slope
(carbon:protein:calorie:sugar:fiber=01010 [mean of downward
slope –1.012] and 01011 [mean of upward slope –0.626], 10111
[mean of upward slope –0.978] and 11111 [mean of upward
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slope –0.769], 10010 [mean value of upward slope –1.028] and
10011 [mean value of upward slope –0.884]).

Discussion

Correlation Analyses Between the Mean and SD of
Glucose and the Mean of Each Physiological Index
We reviewed the evolution of the correlation coefficients,
including the lag data for glucose, to determine whether the
impact of each physiological indicator on glucose was
influenced by physiological indicators before and after the time
the glucose data were collected (Table 2).

The results showed that some indices such as ACC, TEMP,
EDA, and IBI showed data correlations before and after the
collection of blood glucose data. Activity, exercise, and stress
are factors that influence blood glucose levels. Factors such as
HR, body temperature, and autonomic nervous system function,
including the sweating motor response, were associated with
blood glucose variability [30]. The mean blood glucose and
ACC SDs were negatively correlated; however, the uptake of
blood glucose by mild to moderate physical activity is reported
to cause decreased blood glucose levels and increased glucose
production in the liver, leading to increased blood glucose [56].
This may be attributed to fluctuations in physical activity. The
mean values of blood glucose and HR were negatively
correlated; however, previous reports have indicated a negative
relationship between blood glucose and HR variability, as
sympathetic dominance increases with increasing blood glucose
[57,58], which contradicts previous results. This could be

attributed to, among others, increased in HR due to
fasting-related hypoglycemia [58] and mild to moderate physical
activity [56].

Regarding the correlation between mean blood glucose and
mean TEMP, intravenous administration of blood glucose
increased heat production by 20%, accompanied by an increase
in TEMP after 55 minutes, which was presumed to be caused
by this effect [59]. Regarding the correlation between blood
glucose and EDA, EDA can increase during stress and is
mediated by stress-induced activation of adrenergic hormones
and cortisol. This increases blood glucose production and is
thus positively related. Blood glucose levels increase in some
individuals and decrease in others in response to stressful
situations. Naturally occurring daily stressors may be associated
with increased glycemic instability from hypoglycemia and
decreased food intake, possibly due to these factors [60].

The mean blood glucose and SD of the physiological indices
were negatively correlated.

This is because the mean and SD of physiological indicators
were calculated from the mean and SD of the 3 points at
individual 5-minute intervals, and the variation in physiological
indicators was greater before and after the peak rise in glucose,
whereas the variation in relevant physiological indicators was
smaller at the peak of the rise in blood glucose. Meanwhile, the
SD of blood glucose and physiological indicators were positively
correlated, which was attributed to the increased variability in
the SD of physiological indicators and blood glucose at times
of blood glucose fluctuation (prepeak and peak transition).
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Table 2. Summary of correlations between blood glucose and physiological indexes.

r

Correlation coefficients between mean values of blood glucose and mean values of physiological indices

Before blood glucose data collection

–0.147HRa: negative correlation, peaking at –15 minutes

0.135TEMPb: positive correlation, peaking at 0 minutes

–0.164EDAc: negative correlation, peaking at 15 minutes

After blood glucose data collection

–0.147HR: negative correlation, peaking at 45 minutes

0.161TEMP: positive correlation, peaking at 60 minutes

–0.161EDA: negative correlation, peaking at 0 minutes

0.120IBId: positive correlation, peaking at 120 minutes

Correlation coefficients between mean values of blood glucose and SDs of physiological indices

Before blood glucose data collection

–0.190ACC: negative correlation, peaking at 15 minutes

–0.121HR: negative correlation, peaking at 15 minutes

–0.121TEMP: negative correlation, peaking at 0 minutes

–0.237EDA: negative correlation with EDA, peaking at 15 minutes

After blood glucose data collection

–0.185ACC: negative correlation, peaking at 0 minutes

–0.127HR: negative correlation, peaking at 45 minutes

–0.121TEMP: negative correlation, peaking at 0 minutes

–0.236EDA: negative correlation, peaking at 0 minutes

Correlation coefficients between SD of blood glucose and SD of physiological indices

Before blood glucose data collection

0.157ACC: positive correlation, peaking at 0 minutes

0.142HR: positive correlation, peaking at 0 minutes

0.127TEMP: positive correlation, peak at 0 minutes

After blood glucose data collection

0.157ACC: positive correlation, peaking at 0 minutes

0.142HR: positive correlation, peaking at 0 minutes

0.127TEMP: positive correlation, peak at 0 minutes

aHR: heart rate.
bTEMP: skin temperature.
cEDA: electrodermal activity.
dIBI: interbeat interval.

Slopes of the Rise to the Peak and Fall After the Peak
in Blood Glucose Over Time After a Meal and the
Results of the Regression Analysis of the Mean and
SD of Each Physiological Index and Nutrient Value
To investigate the relationship between the slopes of the blood
glucose rise and fall peaks and the mean values of physiological

indices and nutritional assessment indices, as well as the
relationship between the slope of the blood glucose rise and fall
peaks and the mean values of physiological indices, a multiple
regression analysis was conducted. A summary of the results
is shown in Table 3.
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Table 3. Summary of the relationship between the slopes of the blood glucose rise and fall peaks and the mean values of physiological and nutritional
assessment indices as well as the relationship between the slope of the blood glucose rise and fall peaks and the mean values of physiological indices.

Slope of blood peak glucose decreaseSlope of peak blood glucose increase

P valuet valueP valuet value

Results of multiple regression analysis between the slope of the glucose peak and the mean values of physiological indices and nutritional
assessment indices

Physiological indices

——a.012.52Temperature

.0082.67——ACCb

<.0013.86——HR_afc

.022.27——HR_90d

Nutritional assessment indices

——<.0013.98Calorie

——<.0016.53Carbon

——.012.51Dietary fiber

——<.0013.82Protein

<.001–3.72——Sugar

Results of multiple regression analysis between the slope of the glucose peak and the SD of physiological indices

Physiological indices

——.042.06ACC

——.032.12HR_30e

——.0491.97EDA_90f

aNot available.
bACC: triaxial accelerometer-derived acceleration.
cHR_af: heart rate_af.
dHR_90: heart rate_90.
eHR_30 heart rate_30.
fEDA_90: electrodermal activity_90.

The physiological and nutritional assessment indices associated
with the slope of the peak blood glucose increase were TEMP,
calories, carbon, dietary fiber, protein, ACC, HR_30, and
EDA_90. For TEMP, a positive association was observed;
however, this was presumably due to the reported association
between increased glucose and TEMP [59]. For carbon, a
positive association was found, which was thought to be because
carbohydrates contribute to the increase in blood glucose,
although they are not absorbed as rapidly as glucose [61].

Although the upward slope of blood glucose and the calorie
mean were negatively associated, the 1-way ANOVA revealed
a positive association, as did carbon. Therefore, this result may
be due to the multicollinearity effect of simultaneously
introducing carbon and calories (r=0.78; P<.001), which are
strongly correlated as explanatory variables.

Dietary fiber intake lowers postprandial and average daily blood
glucose levels [62]. Protein intake does not increase plasma
glucose levels but rather decreases them; thus, protein intake
with glucose suppresses the postprandial increase in glucose
[63], contrasts with the expected result. This was inferred to be
due to increased carbohydrate intake since total carbon and

protein intake were positively correlated (r=0.49; P<.001). A
negative association was found for ACC and HR, which was
presumed to be physical activity-related increased HR,
accompanied by decreased blood glucose levels [56]. A positive
relationship was found for EDA_90. EDA increases during
stress and is mediated by stress-induced activation of adrenergic
hormones and cortisol, which increases gluconeogenesis [60].

The physiological and nutritional assessment indices associated
with the slope of the descending glucose peak were ACC, sugar,
HR_af, and HR_90; positive associations were found between
the downward slope of blood glucose and ACC and HR mean
values. The decrease in blood glucose is potentially due to an
increase from mild to moderate physical activity (HR also
increased with physical activity), resulting in a smaller upward
slope of blood glucose and therefore creating a smaller
downward slope [56]. Although a negative relationship was
observed between the downward slope of blood glucose and
sugar, similar to carbohydrates, sugar intake has been reported
to increase blood glucose [64], The upward slope of blood
glucose is greater when carbohydrate intake is higher, and
therefore the downward slope is also greater.
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A 1-Way ANOVA for Groups With Higher and Lower
Than Median Blood Glucose Rise and Fall Slopes and
Mean Values of Each Physiological Indicator and
Dietary Nutrient Value
As a supplementary analysis to the multiple regression analysis,
a 1-way ANOVA was performed to compare the relationship
between the upward and downward slopes of blood glucose and
the groups above and below the median for each indicator, using
variables created by patterned group combinations by
physiological indicator mean and dietary nutrient value. In
addition, below-median groups were used as comparison
controls. A summary of the results is presented in Table S33.

The results of the multiple regression analysis showed that the
physiological indicators associated with the slope of rising and
falling blood glucose were TEMP, ACC, HR, and EDA, whereas
the nutritional indicators were carbon, protein, calories, sugar,
and dietary fiber; therefore, these indicators were of interest.

The combination pattern of physiological indicators
TEMP:ACC:HR:EDA, which included TEMP and EDA, showed
that the upward and downward slopes of blood glucose were
greater in the group above than in the group below the median.
The effect on the upward slope of blood glucose was particularly
large, similar to the results of multiple regression analysis. The
combination pattern TEMP:ACC:HR:EDA=1011, which had
a large upward slope of blood glucose, was due to stress, with
high EDA and HR. The combination patterns
TEMP:ACC:HR:EDA=1101 and 1111 also reported high
glucose levels during and after moderate-intensity exercise [65]
and high EDA due to exercise-induced sweating [66]. TEMP
and EDA are strongly associated with autonomic nervous system
function, which, in turn, is sensitive to glucose fluctuations,
especially hyperglycemia. Therefore, we inferred that a high
association exists between these indicators and the increase and
fall in blood glucose slopes [31].

Conversely, for ACC and HR, the upward and downward slopes
of blood glucose were slightly smaller in the group above than
in the group below the median, accompanied by decreased blood
glucose levels due to mild to moderate increases in physical
activity [56] and physical activity-related increased HR similar
to the results of the multiple regression analysis.

In the combination pattern of the nutrient indices
carbon:protein:calories:sugar:fiber, the combination pattern
including carbon, calories, and sugar showed a greater upward
and downward slope of blood glucose in the group above than
in the group below the median.

Dietary fiber reduces postprandial and mean daily blood glucose
levels [62]; however, a group pattern of combinations with a
greater rise and fall slope in blood glucose levels exists, with
fiber above the median. The rise and fall slopes were smaller
than those for groups of combinations below the median, similar
to the results of the multiple regression analysis.

Previous Analyses
Two previous studies have used the wearable database in this
study, BIG IDEAs Lab Blood Glycemic Variability and
Wearable Device Data [30,31]. These studies were conducted

to establish a prediction model for blood glucose-related
indicators using machine learning and used a random forest
regression model as the method of analysis. This analysis can
be difficult to interpret in a specific clinical context.

In contrast, this study used simple analysis methods, such as
correlation and multiple regression analyses, to explore the
relationship between blood glucose and each physiological and
nutritional index in a real-world setting. Despite the difference
in analysis methods, the results for glucose and related indicators
of our study were consistent with those of previous studies,
reinforcing the results of this study. In addition, compared with
the random forest model, these simpler analyses revealed more
details of the relationship between blood glucose and each
physiological and nutritional index.

Other publicly available open datasets on diabetes are shown
in Table S1 in Multimedia Appendix 1. In total, 4 studies were
conducted using PhysioNet’s D1NAMO Multimodal Dataset
for Noninvasive Type 1 Diabetes Management Studies (2018)
dataset. This dataset was collected to contribute to the
development of data-centric algorithms and diabetes monitoring
techniques by providing an openly available multimodal dataset.
It was obtained from real patients in a nonclinical setting,
containing electrocardiogram signals, respiratory signals,
accelerometer output, blood glucose level information, and
annotated food photographs [67]. Studies conducted with this
dataset include the following: a study that used machine learning
to predict blood glucose in patients with type 1 diabetes [20];
1 study aimed at improving the accuracy of CGM systems [21];
an insulin absorption simulation study [22]; and a study for
predicting diabetes [24], which is useful in several approaches.

This study has some limitations. First, as we used publicly
available data, other data, such as detailed patient background
data (height and weight) collected during a clinical study but
not made publicly available, were not included in the analysis.
Second, Empatica, a wearable device, continuously collects a
vast amount of data on physiological indicators, whereas the
Dexcom G6, which measures glucose, collects data at 5-minute
intervals. For the analysis of the physiological indicators, data
were extracted according to the glucose measurement interval,
and data that were not extracted could not be considered. Third,
as the data were from 16 participants, which is a small sample
size, the calculation of correlation coefficients and multiple
regression analysis were conducted; however, only exploratory
studies were possible. Fourth, while data at the beginning of
the meal were available for all cases, data at the end of the meal
were available only for some cases. Therefore, in analyzing the
relationship between the upward and downward slopes of
postprandial glucose to the peak and the nutritional index of the
meal, the nutritional index immediately before the peak was
added together. Therefore, the effect of mealtime length may
not have been considered.

Conclusions
Existing data from clinical studies on wearable-type devices
(Dexcom 6 CGM and Empatica) from PhysioNet, a public open
dataset, were used secondarily to examine the association of
blood glucose with physiological and nutritional indices in 16
patients with borderline diabetes. The results showed that
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physiological indices associated with blood glucose were
physical activity, HR, TEMP, and EDA, a stress indicator. In
addition, physiological indices that were associated with the
slope of the peak of the rise and fall of blood glucose were
TEMP, physical activity, HR, and EDA. Nutritional measures
associated with the slope of the peak rise and fall of blood
glucose were carbohydrates, dietary fiber, and sugars. For the
3 analyses, the physiological measures associated with blood
glucose were similar and consistent with previous reports.

The wearable-type device dataset allowed for the examination
of the relationship of blood glucose with physiological and
nutritional indicators. Research using existing data is expected
to increase as open datasets of wearable device data become
more readily accessible through data sharing and as it becomes
possible to perform statistical analysis from various angles using
such data.
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