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Abstract
Background: Diabetes-related lower extremity complications, such as foot ulceration and amputation, are on the rise,
currently affecting nearly 131 million people worldwide. Methods for early detection of individuals at high risk remain
elusive. While data-driven diabetic polyneuropathy algorithms exist, high-performing, clinically useful tools to assess risk are
needed to improve clinical care.
Objective: This study aimed to develop an electronic medical record–based machine learning algorithm that would predict
lower extremity complications.
Methods: We conducted a retrospective longitudinal cohort study to predict the risk of lower extremity complications within
24 months of an initial diagnosis of diabetic polyneuropathy. From an initial cohort of 468,162 individuals with at least 1
diagnosis of diabetic polyneuropathy at one of 2 multispecialty health care systems (based in northern California and Colorado)
between April 2012 and December 2016, we created an analytic cohort of 48,209 adults with continuous enrollment, who were
newly diagnosed with no evidence of end-of-life care. The outcome was any lower extremity complication, including foot
ulceration, osteomyelitis, gangrene, or lower extremity amputation. We randomly split the data into training (38,569/48209;
80%) and testing (9,640/48209; 20%) datasets. In the training dataset, we used super Learner (SL), an ensemble learning
method that employs cross-validation and combines multiple candidate risk predictors, into a single risk predictor. We
evaluated the performance of the SL risk predictor in the testing dataset using the receiver operating characteristic curve and a
calibration plot.
Results: Of the 48,209 individuals in the cohort, 2327 developed a lower extremity complication during follow-up. The
SL risk estimator exhibited good discrimination (AUC=0.845, 95% CI 0.826-0.863) and calibration. A modified version
of our SL algorithm, simplified to facilitate real-world adoption, had only slightly reduced discrimination (AUC=0.817,
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95%CI 0.797-0.837). The modified version slightly outperformed the naïve logistic regression model (AUC=0.804, 95% CI
0.783-0.825) in terms of precision gained relative to the frequency of alerts and number of patients that needed to be evaluated.
Conclusions: We have built a machine learning–based risk estimator with the potential to improve clinical detection of
diabetic patients at high risk for lower extremity complications at the time of an initial diabetic polyneuropathy diagnosis. The
algorithm exhibited good discriminant validity and calibration using only data from the electronic medical record. Additional
research will be needed to identify optimal contexts and strategies for maximizing algorithmic fairness in both interpretation
and deployment.
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Introduction
Up to 50% of the more than 38 million Americans who have
diabetes experience some peripheral nerve damage, known as
diabetic polyneuropathy [1,2]. Distal symmetric polyneurop-
athy, the most common type of diabetic polyneuropathy, is
frequently characterized as pain, tingling, and numbness that
starts in the extremities. Motor and autonomic involvement,
also seen in those with diabetic polyneuropathy, can lead
to foot deformity. Lower extremity complications associ-
ated with diabetic polyneuropathy include foot ulceration,
osteomyelitis, and gangrene, leading to amputation [1-4].
Diabetic polyneuropathy is the leading risk factor for the
recent resurgence in nontraumatic lower extremity amputa-
tions in the United States [3,4], with health care costs falling
between US $ 4.6 and US $ 13.7 billion dollars per year [1].

Although there is no cure for this condition, it may
be possible to reduce the clinical impact of diabetic poly-
neuropathy through control of blood sugar levels, annual
foot checks, patient education, and specialty referrals
(eg, podiatry) [5]. Novel digital interventions may also
hold promise for improving self-care and function among
individuals at risk of lower extremity complications [6].
While likely not done often enough, identifying and referring
high-risk patients for enhanced educational intervention may
be cost-effective [7].

Both clinical and nonclinical factors may contribute to
delayed diagnosis and undertreatment in subgroups of this
patient population [8-10]. For example, differences in patient
presentation or clinician interpretation of symptoms may
be driven by clinical, interpersonal and societal factors.
Additional tools are needed to reduce diagnostic uncertainty,
as well as augment human factors to promote evidence-based
care [8].

Several screening tools designed to facilitate early
detection of diabetic polyneuropathy are currently used
in clinical practice. These include monofilament tests,
brief questionnaires (eg, the Michigan Neuropathy Screen-
ing Instrument) [11], and vibration testing, among others.
Collectively, these instruments have been criticized for their
lack of accuracy and vulnerability to human error and biases
that lead to missed opportunities for follow-up [9,10].

Validated tools are needed to facilitate risk detection and
reduce diagnostic uncertainty in the management of diabetic
polyneuropathy [12-16]. However, the quality and transpar-
ency of existing risk stratification systems and algorithms is
highly variable, limiting their use in everyday clinical practice
[17]. The aim of this study was to evaluate the accuracy
and clinical use of a machine learning (ML)–based algorithm
designed to predict complications that develop within 2 years
of an initial diabetic polyneuropathy diagnosis.

Methods
Creation of Analytic Cohort of
Patients Newly Diagnosed With Diabetic
Polyneuropathy
All data for this study were extracted from electronic medical
records (EMRs) at 2 Kaiser Permanente regions, Northern
California and Colorado, with facilities serving more than
5 million people. Patients with diabetes and related chronic
conditions receiving care in these facilities are typically
assigned to a single primary care provider with a robust panel
management approach that leverages performance feedback,
system-wide efficiencies, disease registries, and evidence-
based practice [18].

We included clinicians engaged in diabetes quality
improvement initiatives from 4 Kaiser Permanente regions
and the University of Michigan Health System at each stage
of the research endeavor to maximize the potential clinical
use of the resulting algorithm [19].

The EMRs at both Kaiser Permanente health systems
have automated patient files, which facilitate longitudinal
observation of use and clinical assessments obtained across
systems of care (eg, hospital, laboratory, pharmacy, and
clinic). The Kaiser Permanente Northern California and
Colorado embedded research units share a common data
model for organizing EMR and administrative (claims) data
for research use [20]. Data captured by the common data
model include, but are not limited to, outpatient encoun-
ters, emergency department and inpatient claims, pharmacy
orders and prescription fills, laboratory orders and results, and
member enrollment and benefit coverage.
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Using the EMRs, we identified 468,162 individuals who
carried at least 1 diabetes-related diagnosis based on the
International Classification of Diseases, Ninth and Tenth
Revisions (ICD-9 and ICD-10, respectively) between April
1, 2012, and December 31, 2016. From this group, we
identified a subset of 121,619 individuals with confirmed
diabetic polyneuropathy (ie, at least 1 inpatient or 2 outpa-
tient ICD-9 or ICD-10 diagnoses within 12 months of each
other) who were at least 18 years of age at the time of their
first diagnosis. Measures of polyneuropathy severity were
not available through the electronic health record. Therefore,
clinicians on the study team reviewed the list of codes and
discussed any disagreements on code inclusion before the
list was finalized. Detailed codes used to identify diabetic
polyneuropathy are included in Multimedia Appendix 1.

From the cohort of 121,619, we excluded 20,806 indi-
viduals who had 2 or more months of disenrollment from
the health plan in the 24 months before the first diabetic
polyneuropathy diagnosis (ie, start of follow-up) to reduce
the likelihood of missing healthcare use data. Among the
remaining 100,813, we excluded 51,728 individuals who
had evidence of a possible previous diagnosis of diabetic
polyneuropathy. Finally, we also excluded 876 individuals
who received hospice or palliative care during the 24 months
before diagnosis because these individuals may be less likely
to receive usual standard care and would be unlikely to
benefit from early identification of lower extremity compli-
cations. The resulting analytic cohort included 48,209 adults
with newly diagnosed diabetic polyneuropathy.
Identification of Lower Extremity Events
and Predictors
We created a composite time-to-event outcome that inclu-
ded the 4 most common diabetic polyneuropathy-related
lower extremity complications: foot ulceration (77.4%),
osteomyelitis (6.53%), gangrene (5.46%), and nontraumatic
lower extremity amputation (10.61%). We used evidence
from earlier literature and clinician review to determine the
diagnoses to be included [21-26]. A comprehensive list of
codes used to identify lower extremity events is included
in Multimedia Appendix 2 . We relied on the earlier peer-
reviewed literature to define a standard phase-out period to
account for the resolution of treatment for each type of event
in order to distinguish between new and ongoing events [24].
Identification of Candidate Predictors
A list of candidate covariates for predicting the outcome is
presented in Multimedia Appendix 3. Drawing on the existing
literature, we included several baseline characteristics (up to
24 months before the start of follow-up, ie, first diabetic
polyneuropathy diagnosis) that were identified in previ-
ous studies as covariates associated with adverse diabetic
polyneuropathy-associated events. These included self-repor-
ted demographics (age, sex, race, and ethnicity), clinical
risk factors (HbA1c levels, lipid levels, body mass index,
comorbidity, blood pressure, use of specific medications [eg,
insulin], smoking status, and alcohol use), specific comorbid-
ities, (cardiovascular disease, peripheral artery disease, atrial

fibrillation, heart disease, chronic pain, rheumatoid arthritis,
sleep apnea, nondiabetic neuropathies, and previous falls),
and other indicators of diabetes severity (number of dif-
ferent diabetes diagnoses, chronic kidney disease, celluli-
tis, diabetic retinopathy, stroke, Charcot foot, and previous
diabetic polyneuropathy events) [12,13,17,26-28]. Several of
these predictors, including laboratory results (blood pressure
and cholesterol), use of health services (eg, durable medical
equipment and diabetes medications), a Comorbidity Point
Score [29] (based on the Centers for Medicaid and Medi-
care Services Hierarchical Condition Categories [score range:
0‐1014; scores >300 are rare]) and behavioral risk factors
(eg, smoking and alcohol use) were not included in previous
prediction algorithms used to estimate the risk of neuropathy-
related outcomes [12].

For each covariate with missing values, we included
a missing indicator variable and imputed missing values
for continuous variables with the median value. Covariates
with missing values are indicated as imputed in Multimedia
Appendix 3. We note that baseline covariate values marked
as unavailable are not included as “missing data” because
we aim to predict outcomes using the type of data routinely
available in health care databases, which are, by their nature,
highly variable across patients and systems. Thus, we did
not use advanced analytic methods to address bias concerns
associated with missing data, as is typically warranted in
causal inference problems (eg, multiple imputation).
Algorithm Development and Validation
We developed an algorithm to predict lower extremity
complications during the 24 months following an initial
diagnosis of diabetic polyneuropathy. The first observed date
of a diabetic polyneuropathy diagnosis served as the index
date for the algorithm; this timepoint was defined as the start
of patient follow-up and the clinical decision point when the
constructed algorithm would be applied in practice. The first
observed lower extremity complication was identified as the
event date. We administratively censored follow-up after the
eighth quarter (91-day interval) of follow-up (ie, at approxi-
mately 2 years).

To develop the algorithm, we combined data from the
2 health systems into a single dataset, then randomly split
the data into distinct training (38,569/48209; 80%) and
testing (9640/48209; 20%) datasets [30]. Selection of a risk
predictor using the super learner (SL) ensemble learning
methodology [31] was based solely on the results obtained
using the training dataset; the independent validation set was
used to evaluate the resulting discrimination and calibration
performance. SL is a general loss-based ensemble learning
method that uses cross-validation to combine [32] multiple
candidate risk predictors defined by ML algorithms (eg,
random forest) or parametric (eg, logistic) models into a
single risk predictor referred to as “super learner”. The
approach is grounded in statistical theory and its practical
performance was demonstrated in previous applications [33].

Following the general approach of Polley and van der
Laan [34], we used SL to construct a single point estima-
tor of the vector of the discrete-time conditional hazards.
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The detailed mathematical formulas relating to the approach
can been found in Multimedia Appendix 4. Implementation
was generated using the sl3 R package (R Foundation for
Statistical Computing) [35] with 10-fold cross-validation and
the L2 loss function.

Due to potential limited computing infrastructures
available to generate real-time predictions based on ML
algorithms (eg, random forest) in some clinical settings,
we also implemented a simplified version of the prediction
approach described above in which we restricted the library
of candidate predictors to a main-term logistic regression
using training data pooled across all 8 quarters. This is
equivalent to a classical discrete-time survival model with
a logit link function [36]. The resulting predictor is thus a
simpler function of predicted values from a single logistic
regression that can be easily initiated in real-world clinical
settings. In addition to this hazard-based logistic regression
estimator for the cumulative incidence at 24 months, we
also implemented a naïve estimator of the same cumulative
incidence using a simple complete-case logistic regression
in which outcomes from patients that were right-censored
due to death or disenrollment from the health plan occurring
before 24 months were treated as missing. We compared
the performance [37] of the 3 estimators of the previously-
described cumulative risks at 24 months (hazard-based SL,
hazard-based logistic regression, and naïve logistic regres-
sion) using the areas under the receiver operating character-
istic curves (AUCs) to evaluate sensitivity and specificity,
calibration plots (ie, plots of observed versus predicted risks),
and standard measures of predictive accuracy for a diagnostic
test including sensitivity, specificity, positive and negative
predictive value, and number needed to evaluate outcomes
over a range of risk thresholds [38].

Finally, to determine whether the SL predictions were
consistent with previous predictive approaches, we also
examined select patient characteristics identified as predic-
tive of risk in earlier studies by quintiles of the SL risk
estimates for the 9640 patients in the testing data set. Based
on the results from previous studies, the following character-
istics were examined: age, HbA1c levels, race and ethnic-
ity, sex, evidence of select comorbid conditions known to
be associated with lower extremity risk (ie, chronic kidney
disease, heart failure, and peripheral artery disease), and a
history of diabetic polyneuropathy events. We also examined
differences in rates of symptoms by risk score quintile in the
subset of patients in the test dataset who had been screened
for diabetic polyneuropathy during the 12 months before
their diagnosis using a single-item questionnaire (3644/9590;
38%). Data were extracted and formatted using SAS (version
9.4; SAS Institute) and analyses were performed in R (version
3.4.4).
Ethical Considerations
This study was approved by the institutional review board at
Kaiser Permanente Northern California. Kaiser Permanente

Colorado ceded authority to the Kaiser Permanente North-
ern California Institutional Review Board. For this study,
the requirement that informed consent and Health Insurance
Portability and Accountability Act Privacy Rule authorization
be obtained from study participants was waived. To protect
the data and privacy of the patients included in our study,
we limited the number of individuals who would have access
to identifiable data. We removed personal identifiers from
data that were transmitted outside each health system via a
secure transfer site. Password-protected data were stored on
the servers behind the firewalls maintained by each health
system. Primary data were not distributed outside the 2
health care systems and only summary tables and figures
were shared with external collaborators. In addition, we
used randomly generated identifiers on all study documents,
secured storage of digital data (computer files) on pass-
word-protected computers, and limited access to data with
potentially identifying features to members of the research
team working under the direction of the investigators for the
duration of the project.

Results
Baseline Characteristics of Patients
Meeting the Inclusion Criteria
The cohort identification strategy is described in Figure 1;
48,209 adults newly diagnosed with diabetic polyneuropathy
met the inclusion criteria for this study. At the time of
their initial diabetic polyneuropathy diagnosis, characteristics
of individuals in the training and testing datasets exhibited
similar demographic and clinical characteristics. A compre-
hensive list of characteristics is presented in the Multimedia
Appendix 3. Overall, the average age at the time of dia-
betic polyneuropathy diagnosis was 64 years (SD 12 years).
In this cohort, 54% (25,828/48,209) were male and 52%
(25,110/48,209) were of White race, 13% (6095/48,209) were
of Asian race, 11% (5221/48,209) were of Black or Afri-
can American race, 20% (9708/48,209) were of Hispanic or
Latinx ethnicity, fewer than 2%(797/48,209) were of Native
Hawaiian, Pacific Islander or Native American race and fewer
than 3% (1278/48,209) had unknown race or ethnicity. The
comorbidity point score [29,39], which was calculated using
diagnosis records within 12 months previous the diabetic
polyneuropathy diagnosis, was 36.91 (SD 31.05).

Among the 48,209 patients newly diagnosed with diabetic
polyneuropathy in this study sample, 2327 (4.83%) developed
a lower extremity complication during the 24-month follow-
up period. A comparison of characteristics of those who did
and those who did not develop a lower extremity complica-
tion during follow-up is presented in Multimedia Appendix 5.
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Figure 1. Cohort identification and selection criteria.

Discrimination and Calibration
As shown in Figure 2, the AUC statistic for the more complex
SL was 0.845 (95% CI 0.826-0.863), indicating very good
discrimination between high- and low-risk patients. Figure
2A compares the ability of the model to distinguish between
those at high and low risk compared with a perfect test
and chance. The solid blue lines at the left and top bor-
ders represent a hypothetical test that perfectly distinguishes
between high and low risk patients. The solid black curve
displays the results of the predictive model, which correctly
classifies patients with an event more often than it incorrectly
misclassifies patients. The dashed line bisecting the graph
represents a test that correctly classifies patients 50% of
the time (i.e., by chance). Figure 2B displays the observed
and predicted probability of an event over the 24 months
following an initial DPN diagnosis. The dotted line represents
a hypothetical model that perfectly predicts the event. The
dashed line is the model-predicted risk at 24 months. The
filled circles represent the number of actual events occurring
over time.

The SL predictor correctly classified patients who
experienced an event as being at higher risk more often
than it misclassified patients who did not experience an
event as being at higher risk. Also shown in Figure 3 is
a comparison of the observed with the predicted probabil-
ity of a lower extremity complication over the 24 months
following an initial diabetic polyneuropathy diagnosis. The
blue line with circles represents the percent of people with

an event or the positive predictive value. The green line
with diamonds represents the number needed to treat. The
algorithm demonstrated a high level of accuracy in predicting
risk relative to perfect prediction.

The receiver operation characteristics curve for a
simplified SL approach that included only one learner
(logistic regression) was performed similarly to the more
complex SL approach; the AUC for the simplified SL
approach was 0.817 (95% CI 0.797-0.837). The similar
performance indicated that a simplified logistic regression
approach may be a viable alternative approach for use in
clinical practice. By contrast, a naïve logistic regression
model underperformed relative to both the complex and
simplified SL approaches, with an AUC of 0.804 (95% CI
0.783-0.825).

To evaluate the use of these estimators for clinical
decision-making, we compared the sensitivity, specificity,
and the number needed to evaluate for varying risk thresh-
olds at which an alert would be issued for the simplified
SL compared with the naïve regression approach, as shown
in Multimedia Appendix 6. Relative to a naïve logistic
regression approach, the simplified SL approach yielded
greater precision, triggered fewer alerts, and required fewer
patients to be evaluated.

Figure 3 shows the positive predictive value relative to
the number of patients needed to be evaluated as a func-
tion of the decision threshold. Setting an alert to trigger
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when an individual’s estimated risk reaches 30%‐50% using
the simplified SL approach would yield a positive predictive
value between 70%‐80%. Furthermore, we estimate that

fewer than 2 patients would need to be evaluated to identify
one likely to develop a lower extremity complication.

Figure 2. Discrimination and calibration plots for the model predicting hazard of lower extremity events among adults newly diagnosed with
diabetic peripheral neuropathy (n=48,209). (A) Comparison of the model’s ability to distinguish between those at high and low risk compared with
a perfect test and chance. The solid blue lines at the left and top borders represent a hypothetical test that perfectly distinguishes between high-
and low-risk patients. The solid black curve displays the results of the predictive model, which correctly classifies patients with an event more
often than it incorrectly misclassifies patients. The dashed line bisecting the graph represents a test that correctly classifies patients 50% of the time
(ie, by chance). (B) Display of the observed and predicted probability of an event over the 24 months following an initial diagnosis of diabetic
polyneuropathy. The dotted line represents a hypothetical model that perfectly predicts the event. The dashed line is the model-predicted risk at 24
months. The filled circles represent the number of actual events occurring over time.

Figure 3. Positive predictive value and number needed to evaluate as a function of the decision threshold. The blue line with enclosed circles
represents the percent with an event or the positive predictive value. The green line with enclosed diamonds represents the number needed to
evaluate.

JMIR DIABETES Adams et al

https://diabetes.jmir.org/2025/1/e60141 JMIR Diabetes 2025 | vol. 10 | e60141 | p. 6
(page number not for citation purposes)

https://diabetes.jmir.org/2025/1/e60141


Discussion
Principal Findings
In this study, we leveraged rich clinical data from a longitudi-
nal electronic health record to estimate the risk of developing
lower extremity complications (ie, foot ulceration, osteomye-
litis, gangrene, or amputation) among adults newly diagnosed
with diabetic polyneuropathy. The resulting ML-enabled
algorithm predicted risk of lower extremity complications
with a high level of discriminant validity (AUC=0.845,
95%CI 0.826-0.863) and calibration. We concluded that a
clinician would have to evaluate fewer than 2 patients newly
diagnosed with diabetic polyneuropathy to identify one who
would have a lower extremity event within the next 2 years.
Comparison With Previous Work
Our algorithm performed better than a similar algorithm
developed by Goyal et al [40] to identify infections in diabetic
foot ulcers (AUC of 0.658). This difference may be due to our
use of data from systems with a common data model, which
reduces coding variability. Two other approaches reported
accuracies for predicting diabetic foot and the severity of
neuropathy that exceeded 0.9 [41,42] However, these studies
used additional data, including clinical assessments and
patient questionnaires that are not routinely documented in
clinical practice.

Consistent with the earlier literature [12,13,40-43], our
predictor identified several clinical subgroups that may be
at higher risk for lower extremity complications, including
individuals with poorer glycemic control, cardiovascular
comorbidity, and previous lower extremity events. However,
additional work will be needed to estimate both intended
and unintended effects [44] of implementing the prediction
algorithm in diverse care settings.
Strengths and Weaknesses
Compared with previously published studies, strengths of
our prediction approach include the use of a shorter time
horizon (ie, 2-year time horizon), internal validation using
an independent testing dataset, the inclusion of risk factors
that are commonly available in EMRs, the use of a com-
mon data model [45], and the focus on overall risk of all
lower extremity events rather than a single outcome (eg, foot
ulceration).

Nonetheless, our prediction approach featured several
important weaknesses. First, the predictor may be vulnerable
to bias due to variability in the frequency of clinical moni-
toring during follow-up (ie, informative interval censoring).
Second, our earlier studies identified differences in rates of
diagnosis based on demographic factors (eg, age, race, and
socioeconomic factors) [10]. This finding suggests that the
predictor may underestimate risk in underserved populations.
Additional research will be needed to evaluate the potential
harm associated with the use of risk scores as well as other
potential biases resulting from interval censoring [44].
Future Directions
The diabetic polyneuropathy predictor developed using ML
methods and electronic health data from a common data
model demonstrated good calibration and a high level of
predictive accuracy. Such a tool could be useful for identi-
fying patients who might benefit from promising interven-
tions. However, the use of this and similar prediction tools
is limited by the availability of evidence-based practices and
protocols to guide clinical decision making in response to risk
information. Given the potential benefit of risk stratification
of newly diagnosed patients, our results support the value
of further research into how this might be implemented in
clinical practice, including the potential unintended conse-
quences of applying risk predictors in clinical practice and
ensuring that these tools are applied equitably to the benefit of
all patients.
Conclusions
Diabetic polyneuropathy is a complex condition. There is
not always a clear way to perform risk stratification for
lower extremity complications associated with this disor-
der based on easily identifiable characteristics [2,5]. We
hypothesize that diabetic polyneuropathy predictive analytics
may be especially useful for identifying patients with diabetic
polyneuropathy who are at highest risk for lower extremity
complications soon after an initial diagnosis [8,17]. Nonethe-
less, technology-based prediction tools are not a panacea for
complex clinical management. Consistent, strong evidence
from diverse datasets and health care systems will be needed
to determine the use of these and other strategies for patients,
providers, and health systems in the context of real-world
clinical practice [46].
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