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Abstract
Type 2 diabetes mellitus has seen a continuous rise in prevalence in recent years, and a similar trend has been observed in
the increased availability of glucose-lowering drugs. There is a need to understand the variation in treatment response to these
drugs to be able to predict people who will respond well or poorly to a drug. Electronic health records, clinical trials, and
observational studies provide a huge amount of data to explore predictors of drug response. The use of artificial intelligence
(AI), which includes machine learning and deep learning techniques, has the capacity to improve the prediction of treatment
response in patients. AI can assist in the analysis of vast datasets to identify patterns and may provide valuable information
on selecting an effective drug. Predicting an individual’s response to a drug can aid in treatment selection, optimizing therapy,
exploring new therapeutic options, and personalized medicine. This viewpoint highlights the growing evidence supporting the
potential of AI-based methods to predict drug response with accuracy. Furthermore, the methods highlight a trend toward using
ensemble methods as preferred models in drug response prediction studies.
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Introduction
Type 2 diabetes mellitus stands as one of the most common
metabolic disorders, comprising 90%‐95% of all cases of
diabetes and affecting millions of people worldwide. The
condition arises from 2 main factors: malfunctions in insulin
secretion by pancreatic β-cells and the resistance of insulin-
sensitive tissues to insulin [1]. The aim of treatment for
type 2 diabetes is to maintain good blood sugar (glucose)
levels, which can reduce the risk of development of complica-
tions related to diabetes, such as retinopathy, nephropathy,
neuropathy, and cardiovascular diseases. Initial therapies
include lifestyle changes and certain medications such as
metformin and sulfonylureas. The specific drug or combina-
tion of drugs used is based on individual needs and medical
history. Treatment with certain drugs may be unsuccessful

depending on the physiological and pathological characteris-
tics of individuals.

There is considerable heterogeneity among people with
type 2 diabetes and their response to different drugs. The
use of ineffective drugs results in the deterioration of a
patient’s condition and raises health care expenses. Thus,
there is a need to develop reliable drug response prediction
methods to help identify the efficacy of potential treatments
for an individual. The heterogeneity of disease and treat-
ment response emphasizes the need for advanced analytical
methods, such as artificial intelligence (AI), to understand
complex patterns within data, identify patient subgroups
with distinct characteristics and ultimately pave the way for
personalized and precision medicine.

The main objective of this viewpoint is to review the
literature exploring the use of AI-based techniques for
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predicting drug response in type 2 diabetes, as well as
drawing upon other disease areas such as rheumatoid arthritis,
multiple sclerosis, and cardiovascular diseases. For type 2
diabetes, AI methods can help gain insights into the determi-
nants or predictors of drug response (age, sex, type of drug,
dosage, duration, medical history, ethnicity, socioeconomics,
blood biochemistry, and genetics) and identify characteristics
that are responsible for poor drug response. The goal is to
provide an extensive overview of the key findings, meth-
odologies, algorithms, outcomes, and limitations identified
in the reviewed studies. Through a critical evaluation, this
review aims to assess the strengths and weaknesses of certain
AI-based algorithms in predicting treatment response and to
identify potential areas of future research.

Understanding the Role of AI
AI in Drug Response Prediction
AI presents a compelling solution for drug response predic-
tion due to several key factors. Traditional approaches to
determining drug response often rely on limited datasets
and simpler regression models, which may overlook the
complex interplay of factors influencing treatment outcomes.
Furthermore, these methods focus on a narrow set of
variables, potentially missing crucial insights into individ-
ual patient characteristics and treatment responses. However,
with the advancement of AI, particularly machine learning
(ML) algorithms, there is an opportunity to leverage vast
amounts of data, including electronic health records (EHRs),
genomics data and real-world patient data [2]. AI enables
a more comprehensive analysis, by considering multiple
variables and confounders simultaneously [3]. By examin-
ing data holistically and identifying intricate patterns across
diverse sources of information, AI has the potential to
increase our understanding of drug response mechanisms.
Leveraging a Diverse Data Source
There are a lot of data types available when considering
drug response. AI can potentially use all of these to ena-
ble drug response prediction. The data that can be used
by AI systems for observational studies includes laboratory
findings, EHRs, claims and bills, genome sequencing data,
clinical data, disease registries, patient-reported outcomes,
data from wearable devices and sensors, pharmacogenom-
ics data, demography data, hematology, etc [4,5]. Addi-
tionally, EHR data can itself provide detailed information
about a patient’s medical history, diagnoses, treatments,
drug prescription records, dosage, clinical outcomes, etc.
Furthermore, genetic data of patients, such as their genomic
profiles can be helpful to understand individualized treatment
responses. Pharmacogenomics studies can examine genetic
variations and their influence on drug responses.
AI Techniques and Their Applications
AI is a broad field comprising a wide range of technolo-
gies and techniques for building systems that can independ-
ently perform tasks associated with human intelligence. The
applications of AI in health care have been used in patient

data management, predictive medicine, clinical decision-mak-
ing, diagnostics, and personalized medicine [6,7]. AI includes
a range of methods, among which ML and deep learning
(DL) stand out as 2 prominent subsets [8]. ML is involved
in building systems that are capable of learning from data,
identifying patterns, and making decisions. On the other
hand, DL, is a special form of ML inspired by the structure
and function of the brain, especially neural networks. These
models learn from data autonomously and are adaptable to
various features.

The most prominent methods for prediction modelling are
ensemble-based methods, such as random forest (RF) and
gradient boosting machines [9-11]. These methods combine
the predictions of multiple models to produce a stronger
overall prediction. They can reduce overfitting and increase
robustness by using the diversity of the constituent mod-
els. This is achieved by training multiple base learners on
different subsets of the data or with different algorithms and
then combining their predictions [12].

Explainable Artificial Intelligence
It is important to understand how AI functions to ensure
trust and transparency. This is where explainable artificial
intelligence (XAI) methods come into play [13-15]. In
their review, Loh et al [13] discuss XAI and its practi-
cal applications. XAI methods have undergone significant
advancements to enhance our trust in a model’s predic-
tions by providing insights into the reasoning behind them.
Further, XAI proves to be a valuable tool alongside tradi-
tional statistical approaches when analyzing the connections
between variables and outcomes. Some of the most popu-
lar XAI methods include local interpretable model-agnostic
explanations, gradient-weighted class activation mapping,
and Shapley additive explanations [16,17]. These methods
are combined with ML models to make predictions. They
showcase the importance of features independently of the
model’s structure, and the direction of influence from
predictive variables.

Advanced Modeling Techniques
Methods exploring interactions among input variables should
also be considered in predictive modelling. These techni-
ques capture complex relationships and nonlinear effects
between predictors, improving model performance. Several
methods can identify potential interactions, such as intro-
ducing polynomial features, adding interaction terms by
multiplying variables, using tree-based algorithms, perform-
ing feature engineering, implementing neural networks to
automatically learn complex interactions, and using domain
knowledge. By accounting for these interactions, predictive
models can become more accurate and informative, enabling
better decision-making and personalized treatment strategies.

Ensuring Transparency and
Reproducibility
In drug response studies, mainly those leveraging AI
techniques, adherence to transparent and standardized
reporting guidelines is important. The Transparent Reporting
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of a Multivariable Prediction Model for Individual Progno-
sis or Diagnosis guidelines [18] ensures the robustness and
reliability of predictive models. These guidelines provide
a structured framework for model development, validation,
and performance evaluation, thus enhancing transparency
and reproducibility. Moreover, adherence to TRIPOD(Trans-
parent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis) guidelines enhances the
clinical relevance of predictive models by promoting clarity
and consistency in reporting key elements such as patient’s
characteristics, predictor variables, outcome measures, and
model performance metrics.
Model Selection and Performance
Evaluation
Selecting the best AI model is a critical task. The ideal model
is expected to be accurate and suitable for a specific task.
Opting for a model with higher performance ensures reliable
outcomes, improved predictions, and informed decision-mak-
ing. Thus, performance comparison of different models is
necessary to find the model with the highest accuracy
and efficiency. The process involves evaluating the mod-
el’s performance against each other using a set of metri-
ces and techniques. Performance comparison can be done
through various approaches, such as root-mean-square-error,
accuracy, sensitivity, specificity, precision, area under the
curve (AUC), mean absolute relative difference, receiver
operating characteristic curve, mean squared error, etc [9,19].
These metrices offer insights into various aspects of model
performance. In terms of AUC in drug response prediction,
a higher AUC indicates better discriminative ability of the
model, with values closer to 1 indicating stronger predictive
performance. However, the interpretation of AUC should
also consider factors such as the balance between specificity
and sensitivity, as well as the clinical significance of false
positives and false negatives [20].

Additionally, techniques such as cross-validation can be
used to obtain robust performance comparison by assess-
ing the model’s generalization capabilities. This involves
splitting the data into multiple folds and training or testing
the models on subsets of data to perform a more comprehen-
sive evaluation. It helps to reduce the chances of overfitting
or underfitting by providing a more realistic estimate of the
performance of any model. Methods for addressing generaliz-
ability in predictive modelling also include techniques such as
bootstrapping and external validation. These methods ensure
that the model’s performance is not overly influenced by
the specific characteristics of the training dataset and can be
applied to new populations.

Modeling Drug Response Using AI
To better understand the key aspects of drug response
prediction methods using AI-based models, we examined the
existing literature on the recent ML and DL-based models
in specific disease domains. A comprehensive search was
conducted in July 2023, across multiple academic databa-
ses, including PubMed, Scopus, and bioRxiv, using key-
words related to drug treatment response, ML, and specific
disease areas. The search strategy included keywords grouped
into 2 sets: “AI-based keywords” and “drug response-based
keywords.” These keywords were selected based on a
combination of domain knowledge, a review of existing
literature, and consultation with subject matter experts. These
2 sets were combined using the Boolean operator “AND” to
narrow down the search and identify relevant studies.

Keywords for AI were combined using the Boolean
operator “OR” to capture a wide range of AI-related concepts:
(“machine learning” OR “artificial intelligence” OR “deep
learning” OR “prediction model” OR “statistical model”
OR “neural network” OR “data science” OR “computational
intelligence” OR “graph data” OR “machine intelligence” OR
“convolutional network” OR “random forest” OR “reinforce-
ment learning”).

Keywords for drug response were similarly combined
using the Boolean operators “OR” to encompass various
related terms: (“treatment response” OR “drug response”
OR “response prediction” OR “treatment prediction” OR
“treatment outcome” OR “drug response prediction” OR
“clinical outcome” OR “therapeutic outcome”).

The studies were first filtered for “type 2 diabetes”
and then for other disease areas such as arthritis, multiple
sclerosis, and cardiovascular diseases (Figure 1A-C). These
additional conditions were chosen because they are widely
studied in relation to drug response and represent areas where
AI methods have shown emerging applications. Addition-
ally, we filtered for systematic reviews published on human
studies to identify already published papers, as they provide a
comprehensive summary of existing evidence.

The references of the retrieved studies were also reviewed
to locate additional relevant papers. For this review, studies
published between 2017 and 2023 were considered. We
focused on papers that applied ML and DL algorithms
specifically predicting treatment responses in clinical trials
or observational studies.
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Figure 1. A flowchart representing this study’s selection process. (A) references [21-31], (B) references [32-39], and (C) references [5-8,13].

AI and Drug Response in Type 2 Diabetes
While much literature has been published on AI methods,
their applications in life sciences are still comparatively
limited. The field that has been most explored is oncol-
ogy, where drug response prediction models are built using
pharmacogenomic databases and cancer cell lines due to
the impracticality and cost of clinical trials studies across
diverse cancers [4,40,41]. Cardiometabolic diseases are a
young upcoming field in the application of AI methodologies,
likely due to limitations in data availability. The 11 studies
identified in type 2 diabetes from the years 2017 to 2023
highlight the promise of data-driven insights in this field.

Most studies focus on predicting treatment responses
to combinations of drugs, which aligns more closely with
real-world scenarios where patients often receive multiple
medications to treat the medical conditions. These studies use
various criteria to make binary classification models. Some
aim to predict whether a patient achieves a target HbA1c
(glycated hemoglobin) goal, while others focus on predicting
if the patient experiences a reduction in HbA1c by a certain
number of units. Performance is evaluated using metrics such
as AUC or accuracy, depending on the context. Additionally,
we compare the quantity and nature of data used, as well as
AI methods and outcomes.

In the field of drug response studies, traditional linear and
logistic regression models have been staples for quite some
time. For instance, Pantalone et al [21] developed a logistic
regression model on 6973 patients to predict responders—
patients who achieve an HbA1c goal of less than 8% when
treated with a combination of multiple antidiabetic drugs
(Table 1). Their binary classification model achieved an
AUC of 0.648. In a separate observational study, Wang et al
[22] used a logistic regression model alongside multiple ML
models on 2787 patients’ data to predict patients who achieve
an HbA1c goal of less than 7% when treated with insulin.
While the logistic regression model yielded an accuracy of
0.55, the RF reached an accuracy of 0.75, and both the back
propagation artificial neural network and the support vector
machine achieved an accuracy of 0.73. Notably, the support
vector machine, RF, and back propagation artificial neural
network models outperformed the logistic regression model
in the accuracy metric. Both studies relied on traditional
logistic regression models, which, as indicated by the results,
demonstrated lower performance compared to ML methods
[21,22]. These traditional models assume linear relationships
between variables, which may not be well-suited for real-
world data. As a result, they fail to capture the necessary
associations for making accurate predictions.
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Table 1. Studies incorporating AIa to predict treatment response in type 2 diabetes using clinical trials or observational data.

Reference Study objective

Data type and
number of
patients (n)

Drug treatment
(single or in
combination) AI methods Prediction outcome Performance

Tao et al [27] Machine learning
models to predict
fasting blood
glucose and HbA1cb
after 3 months of
treatment

Retrospective
study
n=2169

Metformin,
sulfonylurea,
thiazolidinediones,
GLP-1c, DPP-4d,
SGLT2e, acarbose,
meglitinide, insulin

Logistic
regression, SGDf,
decision tree,
Gaussian NBg,
QDAh, Bernoulli
NB, LDAi,
Multinomial NB,
RFj, Extra Tree,
passive aggres-
sive, AdaBoost,
begging, GBMk,
XGBoost,
ensemble learning

Reach HbA1c target
below 7%

• AUCl

(ensemble
)>0.9

Berchialla et al
[24]

Machine learning
models to predict
treatment outcome

Clinical trials
n=385

Metformin,
sulfonylurea, DPP-4
inhibitors

Ensemble
algorithm (super
learner: GBM,
GLMm, RF,
MARSn, SVMo,
CARTp, BART)q

Reduction in HbA1c of
at least 0.5%

• AUC:
0.92

Sun et al [28] Effective treatment
recommendations
using reinforcement
learning

Observational
study
n=189,520

Metformin,
sulfonylurea,
thiazolidinediones,
DPP-4, GLP-1,
SGLT2, acarbose
(AGIr), basal insulin,
premixed insulin

Multivariate
logistic
regression,
reinforcement
learning

Odds of achieving
target HbA1c<7%
among concordant
compared to
nonconcordant group

• Odds
ratio: 1.73
(95% CI
1.69 to
1.76)

Pantalone et al
[21]

Prediction model on
probability of
HbA1c goal
attainment

Retrospective
cohort study
n=6973

Metformin,
sulfonylurea,
thiazolidinediones,
DPP-4, GLP-1,
SGLT2, AGI, insulin

Logistic
regression

Reach HbA1c target
below 8%

• AUC:
0.648

(95% CI 0.633 to
0.663)

Wang et al [22] Machine learning
models for
predicting HbA1c
among patients
treated with insulin

Observational
study
n=2787

Insulin Logistic
Regression, RF,
SVM, BP-ANNs

Reach HbA1c target
below 7%

• AUC
(LRt):
0.74

• AUC
(RF): 0.75

• AUC
(SVM):
0.72

• AUC (BP-
ANN):
0.72

Dennis [29] Using
individualized
prediction models to
optimize selection
of treatment

Observational
study
n=8798

Metformin,
sulfonylurea,
thiazolidinediones,
DPP-4, GLP-1,
SGLT2

Individualized
prediction models

3-year change from
baseline in HbA1c

• Reduction
in HbA1c
(mmol/
mol):

• Concorda
nt: −16.9
(95% CI
−18.2 to ‐
15.6)

Lopez et al [25] Predicting the
response to short-
term intensive
insulin therapy

Clinical trial
n=24

Insulin RF Percentage change in
ISSI-2u • AUC:

0.951
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Reference Study objective

Data type and
number of
patients (n)

Drug treatment
(single or in
combination) AI methods Prediction outcome Performance

Ngufor et al
[30]

Mixed effect
machine learning for
predicting
longitudinal change
in HbA1c

Observational
study
n=27,005

Metformin,
sulfonylurea,
thiazolidinediones,
insulin, Meglitinide,
AGI, GLP-1, DPP-4,
amylinomimetics

Mixed effect
Machine learning,
RF, GBM, GLMs

Reach HbA1c target
below 7%

• AUC: 0.7‐
0.8

Del Parigi et al
[23]

Machine learning to
identify predictors
of drug response

Phase III clinical
trial data
n=1363

SGLT2, DPP-4 RF, classification
trees

Reach HbA1c target
below 7%

• Prediction
accuracy:
0.77‐0.82

Nagaraj et al
[31]

Machine learning
models to predict
short and long-term
HbA1c response

Observational
study
n=1188

Insulin Generalized linear
regression, SVM,
RF

Reduction in HbA1c≥5
mmol/mol or reach
target HbA1c below
≤53 mmol/mol

• AUC
(short
term):
0.80 (95%
CI 0.78 to
0.83)

• AUC
(long
term):
0.81 (95%
CI 0.79 to
0.84)

Murphree et al
[26]

Machine learning
models to predict
response after 1 year
of metformin
therapy

Health records
n=12,147

Metformin Stacked classifi-
ers (ensemble):
LR, RF, NNv, k-
NNw, stochastic
gradient boosting,
SVM, CART,
averaged neural
network, FDAx,
GBM, PLSy,
SLDAz

Reach HbA1c target
below 7% • AUC:

0.58‐0.75

aAI: artificial intelligence.
bHbA1c: glycated hemoglobin.
cGLP-1: glucagon-like peptide 1.
dDPP-4: dipeptidyl peptidase 4.
eSGLT2: sodium-glucose cotransporter 2.
fSGD: stochastic gradient descent.
gNB: Naïve Bayes.
hQDA: quadratic discriminant analysis.
iLDA: linear discriminant analysis.
jRF: random forest.
kGBM: gradient boosted machine.
lAUC: area under the curve.
mGLM: generalized linear model.
nMARS: multivariate adaptive regression spline.
oSVM: support vector machine.
pCART: classification and regression tree.
qBART: Bayesian additive regression tree.
rAGI: alpha-glucosidase inhibitor.
sBP-ANN: back propagation artificial neural network.
tLR: linear regression.
uISSI-2: insulin secretion-sensitivity index-2.
vNN: neural network.
wk-NN: k-nearest neighbor.
xFDA: flexible discriminant analysis.
yPLS: partial least square.
zSLDA: sparse linear discriminant analysis.

Some of these studies use clinical trial data, which is more
organized, and cleaner compared to observational data for
building ML models. Del Parigi et al [23] used a clinical

trial data of 1363 patients and applied 2 ML algorithms,
namely RF and classification trees, to find predictors of
glycemic control in patients treated with a combination
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of sodium-glucose cotransporter 2 and dipeptidyl peptidase
4 inhibitors, both as dual-therapy and mono-therapy. The
prediction accuracy of their models ranged from 0.77 to 0.82,
with fasting plasma glucose and HbA1c emerging as the most
influential predictors of achieving glycemic control.

Berchialla et al [24] used a clinical trial data of 385
patients and used a weighted combination of 7 algorithms
(Table 1) using an ensemble approach known as the super
learner to predict responders, specifically patients who
achieve a reduction in HbA1c of at least 0.5% when treated
with conventional drugs and dipeptidyl peptidase 4 inhibitors.
Their ensemble model yielded an AUC of 0.92. In a different
study, Lopez et al [25] used clinical trial data from 24
patients to develop an RF model for predicting the response to
short-term intensive insulin therapy. Their binary classifica-
tion model yielded an accuracy of 0.91 and an AUC of 0.951.
These 2 analyses yield very high AUC values, which raise
some concerns. Their sample sizes are very small, presenting
a high risk of overfitting. Models trained on such limited data
may not generalize well to broader populations. Additionally,
with a small sample size, there is a higher risk of selection
bias, where the characteristics of the patients could be very
similar and may not represent larger populations. This can
skew the results and lead to an overestimation of model
performance.

We found that most studies that used ML approaches
used ensemble-based methods to build predictive models
[22-27,30]. Ensemble-based techniques, such as gradient
boosting machines, RFs, and stacking, have become popular
due to their high performance and capability to work with
complex datasets. For instance, Murphree et al [26] estab-
lished an ensemble-based ML model using 20 base mod-
els (Table 1) to predict glycemic response after 1 year
of metformin therapy. Their models achieved AUC values
ranging from 0.58 to 0.75 with baseline HbA1c, metfor-
min dosage, and diabetic complications being the strongest
predictors. In a different study, Tao et al [27], also devel-
oped ensemble-based ML models to predict patients who
achieve an HbA1c goal of less than 7% after 3 months of
treatment with multiple antidiabetic drugs. They compared
the performance of 16 different ML models (Table 1), where
AUC values of the top 5 models were all greater than 0.9.

Overall, these ensemble-based methods have the capability to
combine multiple weak learners and generate a more accurate
and robust final model, that can reduce bias and overfitting,
resulting in better predictions [42,43]. Additionally, these
methods have become more accessible with the development
of user-friendly libraries and packages, which helps research-
ers use them effectively.

All these ML models identified the significant features
associated with drug response. The most crucial indicators of
drug response included the patient’s baseline HbA1c, fasting
blood glucose, BMI, medication compliance, dietary habits,
age, race, family history, diabetes duration, blood pressure,
and dosage and usage of specific antidiabetic drugs [21-31].
These variables are derived from a combination of clinical
trials and health records.

These studies provide a basis for understanding observa-
tional data, clinical data, interpreting drug responses, using
statistical and ML algorithms, and suggesting tools and
packages for data analysis. In most of the studies, a general
trend of using ensemble-based models is observed, but it is
essential to consider other DL-based modelling techniques
for more complex datasets or when dealing with nonlinear
relationships between variables. These advanced AI methods
can offer the potential to find predictive factors that can help
identify patients who can benefit most from a given treatment.
AI and Drug Response in Other Disease
Areas
Exploring disease areas other than diabetes that have used
ML models for predicting drug responses can offer a broader
perspective and valuable insights. By studying how AI
models are applied in other disease contexts, we can adapt
and refine these methods for type 2 diabetes. Further, learning
additional techniques for data processing, feature engineering,
and cross-validation can enhance the reliability of AI-driven
drug response models. We identified numerous examples in
the literature of the application of ML and DL methodologies
in various disease domains [5,32-39], including rheumatoid
arthritis, multiple sclerosis, cardiovascular disorders, and
neurological conditions (Table 2).

Table 2. Studies incorporating AIa to predict treatment response using clinical trials or observational data in nondiabetes conditions.

Reference Study objective Disease state
Data type and number
of patients (N) AI methods Performance

Zhao et al [36] Machine learning and
statistical analysis to
predict drug treatment
outcome

Pediatric epilepsy Retrospective study
n=103

Multilayer percep-
tron, logistic
regression, Naïve
Bayes, SVMb, RFc,
decision tree

• AUC:d 0.812

Duong et al [37] Using machine learning to
find clinical predictors of
drug response

Rheumatoid arthritis Clinical trial data
n=775

LASSOe regression,
RF

• AUC
(LASSO):
0.74‐0.84

• AUC (RF):
0.62‐0.73
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Reference Study objective Disease state
Data type and number
of patients (N) AI methods Performance

Myasoedova et al
[38]

Using machine learning
for individualized
prediction of drug
response

Rheumatoid arthritis Observational study
n=643

RF • AUC: 0.84

Falet et al [35] Using deep learning to
estimate individual
treatment effect on
disability progression

Multiple sclerosis Clinical trial data
n=3830

Multilayer
perceptron

• HR:f 0.743

Koo et al [32] To develop machine
learning models for
predicting remission in
patients treated with
biologics.

Rheumatoid arthritis Observational study
n=1204

LASSO and ridge
regression, SVM,
RF, XGBoost,
SHAPg

• Accuracy:
52.8%‐
72.9%

• AUC: 0.511‐
0.694

Liang et al [39] Machine learning to
predict response after
cardiac resynchronization
therapy

Cardiovascular disease Retrospective study
n=752

LRh, SVM, RF,
LASSO, ridge, NNi,
ENj, k-NNk,
XGBoost

• AUC>0.77

Norgeot et al [34] Using longitudinal deep
learning model to predict
controlled or uncontrolled
state with clinical disease
activity index

Rheumatoid arthritis Electronic health
records
n=820

Longitudinal deep
learning

• AUC (UHl

cohort):
0.86‐0.96

• AUC (SNHm

cohort: 0.65‐
0.83)

Guan et al [33] Using AI to predict the
responses to TNFn
inhibitors in patients
using clinical and genetic
markers

Rheumatoid arthritis Observational study
n=2572

Gaussian process
regression model • AUC: 0.66

• Correlation
coefficient:
0.405

aAI: artificial intelligence.
bSVM: support vector machine.
cRF: random forest.
dAUC: area under the curve.
eLASSO: least absolute shrinkage and selection operator.
fHR: hazard ratio.
gSHAP: Shapley additive explanation.
hLR: linear regression.
iNN: neural network.
jEN: elastic net.
kk-NN: k-nearest neighbor.
lUH: university hospital.
mSNH: safety-net hospital.
nTNF: tumor necrosis factor.

In the case of rheumatoid arthritis, Koo et al [32] developed
multiple ML models (Table 2) for prediction of remission
in patients who are treated with biologic disease-modifying
antirheumatic drugs. They used Shapley additive explanation
values for explaining the predictions and ranking of impor-
tant features. The AUC for these models ranged from 0.511
to 0.694. Guan et al [33] developed a Gaussian process
regression model for the prediction of responses in terms of
changes in Disease Activity Score-28 to tumor necrosis factor
inhibitors. They used clinical and genetics data, and their
model yielded an AUC of 0.66. In another study, Norgeot
et al [34] developed a longitudinal DL model with clinical
disease activity index to predict controlled (low activity or
remission) or uncontrolled state (moderate or high activity).

The AUC ranged from 0.86 to 0.96 in 1 cohort and from 0.65
to 0.83 in another cohort.

For predicting treatment response to anti-CD20 monoclo-
nal antibodies in multiple sclerosis, Falet et al [35] used a
DL-based method called multilayer perceptron (MLP). Their
model yielded hazard ratio of 0.743. Similarly, Zhao et al
[36] used multiple ML models (Table 2) and MLP in case
of pediatric epilepsy to predict the drug treatment outcomes
of antiseizure medications. Their top performing MLP model
achieved an AUC of 0.812. The MLP is based on a neural
network architecture with the ability to approximate any
mathematical function, handle nonlinear relationships and
work with diverse datasets. MLPs can compute outputs based
on input data through a process called feed propagation.
MLPs use an optimization algorithm called backpropagation
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to adjust the weights and minimize the prediction error.
The flexibility of MLPs contribute to their role in various
classification and regression tasks [44,45].

Challenges and Limitations
Data Quality and Accessibility
Using AI for predicting treatment response from observatio-
nal studies comes with several challenges and limitations that
must be carefully considered. First, obtaining high-quality
and diverse patient data, including longitudinal and genetic
data, can be challenging. Obtaining individual-level patient
data linked to health outcomes can be restricted in several
geographic regions, and not adequately linked. Real-world
data often presents a high burden of curation and con-
tains gaps, such as mixed-up units or incorrect health care
recordings which diminish the data quality. Moreover, there
are very few data sources that offer harmonized data across
different medical systems, further complicating analysis, and
interpretation.
Data Biases and Missingness
Limited or biased data may prevent the AI model’s ability to
make precise predictions across various patient populations.
Biases in the data could arise from various sources, such as
demographic biases (eg, underrepresentation of certain age
groups or ethnicities), clinical biases (eg, overrepresentation
of patients with certain medical conditions or treatments),
or geographic biases (eg, data collected predominantly
from specific regions or health care settings). Furthermore,
data limitations could arise from insufficient sample sizes,
imbalanced class distributions, missing or incomplete data
points, etc. These limitations can impact a model’s ability to
perform better.

It is also possible that some of the important predictive
factors are not measured and therefore not included in most of
the analyses. For instance, when predicting disease progres-
sion or treatment response, factors such as patient’s socioe-
conomic status, medication history, adherence to treatment
regimens, genetic variations, or lifestyle behaviors (eg, diet or
exercise) could be critical for accurate predictions. However,
if these factors are not routinely collected or integrated into
the analysis, the model’s predictive performance may be
compromised.
Data Security and Privacy
It is important to address concerns related to data security and
privacy when handling patient data. Health care organizations
must safeguard sensitive patient information from unauthor-
ized access or misuse to ensure patient confidentiality.
Additionally, there are ethical considerations in AI pertaining
to how AI systems are developed, deployed, and used in
health care. AI models should not discriminate against certain
demographic groups or perpetuate existing biases in health
care delivery.

Model Interpretability, Validation, and
Clinical Integration
Furthermore, ensuring the interpretability and explainability
of AI models is crucial, as clinicians and researchers require
insight into the factors influencing predictions for improved
understanding and translation, to see increased adoption.
Thorough validation and testing of the model’s perform-
ance on an independent patient set is essential to ensure
the clinical utility. Moreover, the integration of AI models
into existing clinical workflows requires clinical collabora-
tions. Addressing these challenges requires a collective action
from stakeholders across the health care ecosystem, includ-
ing researchers, policy makers, health care providers, and
technology developers. By acknowledging and overcoming
these challenges, AI can be a valuable tool in predicting
treatment responses.

Conclusion
This viewpoint highlights the potential of AI in predicting
treatment response in people with type 2 diabetes as well
as other diseases. From this literature survey, we discovered
that methods such as Gaussian process regression and DL
techniques such as the MLP that have been used successfully
in other disease areas have not been extensively investigated
for predicting drug responses in type 2 diabetes. Yet, they
show significant potential for developing prediction models
due to several factors. Gaussian process regression offers
the advantage of providing probabilistic predictions, which
can capture uncertainty in the data. On the other hand, DL
techniques such as the MLP has capabilities to learn complex
patterns and representations from large-scale datasets, which
is useful in capturing heterogeneous drug response.

After reviewing the literature, it becomes evident that
integrating diverse data sources, using feature selection
algorithms, implementing effective model optimization
strategies, and validation through external validation have
collectively resulted in the development of robust predictive
models. Moving forward, it is essential to continue explor-
ing the innovative approaches to overcome limitations, such
as the interpretability, the curse of dimensionality [46], and
low-quality data.

Our viewpoint sheds light on the limitations of tradi-
tional statistical models in handling high-dimensional data
effectively. To overcome these constraints, advanced ML
methods should be considered, such as ensemble methods
and DL, which demonstrate high performance in handling
complex datasets. However, while these models excel in
predictive accuracy, their opaque nature presents challenges
in understanding the contributions of individual features to
predictions. This underscores the importance of exploring
methods to enhance the transparency and interpretability of
models by including XAI techniques.

In summary, the literature reviewed demonstrates the
successful use of AI methods for predicting drug respon-
ses in type 2 diabetes, while also identifying key clinical
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predictors of drug response. These models lay the foundation
for the development of treatment recommendation systems,

offering the potential for enhanced diabetes management, and
ultimately leading to improved patient care.

Acknowledgments
This work was supported by funding from Novo Nordisk Foundation, which provided a PhD studentship to SG.
Authors’ Contributions
EP contributed to conceptualization and supervision. SG collected the existing studies and wrote the original draft. SG, EP,
RK, and RG contributed to the reviewing and editing.
Conflicts of Interest
None declared.
References
1. Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med. Sep

29, 2016;375(13):1216-1219. [doi: 10.1056/NEJMp1606181] [Medline: 27682033]
2. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digital Med.

2018;1(1):18. [doi: 10.1038/s41746-018-0029-1]
3. Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. Aug 30,

2020;21(17):6275. [doi: 10.3390/ijms21176275] [Medline: 32872570]
4. Iqbal MJ, Javed Z, Sadia H, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis:

looking into the future. Cancer Cell Int. May 21, 2021;21(1):270. [doi: 10.1186/s12935-021-01981-1]
5. Momtazmanesh S, Nowroozi A, Rezaei N. Artificial intelligence in rheumatoid arthritis: current status and future

perspectives: a state-of-the-art review. Rheumatol Ther. Oct 2022;9(5):1249-1304. [doi: 10.1007/s40744-022-00475-4]
[Medline: 35849321]

6. Zhu T, Li K, Herrero P, Georgiou P. Deep learning for diabetes: a systematic review. IEEE J Biomed Health Inform. Jul
2021;25(7):2744-2757. [doi: 10.1109/JBHI.2020.3040225] [Medline: 33232247]

7. Sufyan M, Shokat Z, Ashfaq UA. Artificial intelligence in cancer diagnosis and therapy: current status and future
perspective. Comput Biol Med. Oct 2023;165:107356. [doi: 10.1016/j.compbiomed.2023.107356] [Medline: 37688994]

8. Fregoso-Aparicio L, Noguez J, Montesinos L, García-García JA. Machine learning and deep learning predictive models
for type 2 diabetes: a systematic review. Diabetol Metab Syndr. Dec 20, 2021;13(1):148. [doi: 10.1186/s13098-021-
00767-9] [Medline: 34930452]

9. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. [doi: 10.1023/A:1010933404324]
10. Pfeifer B, Gevaert A, Loecher M, Holzinger A. Tree smoothing: post-hoc regularization of tree ensembles for

interpretable machine learning. Inf Sci (Ny). Feb 2025;690:121564. [doi: 10.1016/j.ins.2024.121564]
11. Bolón-Canedo V, Alonso-Betanzos A. Ensembles for feature selection: a review and future trends. Inf Fusion. Dec

2019;52:1-12. [doi: 10.1016/j.inffus.2018.11.008]
12. Jin LP, Dong J. Ensemble deep learning for biomedical time series classification. Comput Intell Neurosci.

2016;2016:6212684. [doi: 10.1155/2016/6212684] [Medline: 27725828]
13. Loh HW, Ooi CP, Seoni S, Barua PD, Molinari F, Acharya UR. Application of explainable artificial intelligence for

healthcare: a systematic review of the last decade (2011-2022). Comput Methods Programs Biomed. Nov
2022;226:107161. [doi: 10.1016/j.cmpb.2022.107161] [Medline: 36228495]

14. Combi C, Amico B, Bellazzi R, et al. A manifesto on explainability for artificial intelligence in medicine. Artif Intell
Med. Nov 2022;133:102423. [doi: 10.1016/j.artmed.2022.102423] [Medline: 36328669]

15. Bennetot A, Donadello I, El Qadi El Haouari A, et al. A practical tutorial on explainable AI techniques. ACM Comput
Surv. Feb 28, 2025;57(2):1-44. [doi: 10.1145/3670685]

16. Lundberg S, Lee SI. A unified approach to interpreting model predictions. arXiv. Nov 25, 2017. [doi: 10.48550/arXiv.
1705.07874]

17. Ribeiro MT, Singh S, Guestrin C. Why should I trust you? explaining the predictions of any classifier. Presented at:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Aug
13-17, 2016:1135-1144; San Francisco, CA. [doi: 10.1145/2939672.2939778]

18. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. BMJ. Jan 7, 2015;350:g7594. [doi: 10.1136/bmj.
g7594] [Medline: 25569120]

JMIR DIABETES Garg et al

https://diabetes.jmir.org/2025/1/e66831 JMIR Diabetes 2025 | vol. 10 | e66831 | p. 10
(page number not for citation purposes)

https://doi.org/10.1056/NEJMp1606181
http://www.ncbi.nlm.nih.gov/pubmed/27682033
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.3390/ijms21176275
http://www.ncbi.nlm.nih.gov/pubmed/32872570
https://doi.org/10.1186/s12935-021-01981-1
https://doi.org/10.1007/s40744-022-00475-4
http://www.ncbi.nlm.nih.gov/pubmed/35849321
https://doi.org/10.1109/JBHI.2020.3040225
http://www.ncbi.nlm.nih.gov/pubmed/33232247
https://doi.org/10.1016/j.compbiomed.2023.107356
http://www.ncbi.nlm.nih.gov/pubmed/37688994
https://doi.org/10.1186/s13098-021-00767-9
https://doi.org/10.1186/s13098-021-00767-9
http://www.ncbi.nlm.nih.gov/pubmed/34930452
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.ins.2024.121564
https://doi.org/10.1016/j.inffus.2018.11.008
https://doi.org/10.1155/2016/6212684
http://www.ncbi.nlm.nih.gov/pubmed/27725828
https://doi.org/10.1016/j.cmpb.2022.107161
http://www.ncbi.nlm.nih.gov/pubmed/36228495
https://doi.org/10.1016/j.artmed.2022.102423
http://www.ncbi.nlm.nih.gov/pubmed/36328669
https://doi.org/10.1145/3670685
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.1136/bmj.g7594
http://www.ncbi.nlm.nih.gov/pubmed/25569120
https://diabetes.jmir.org/2025/1/e66831


19. Carrington AM, Manuel DG, Fieguth PW, et al. Deep ROC analysis and AUC as balanced average accuracy, for
improved classifier selection, audit and explanation. IEEE Trans Pattern Anal Mach Intell. Jan 2023;45(1):329-341. [doi:
10.1109/TPAMI.2022.3145392] [Medline: 35077357]

20. Hicks SA, Strümke I, Thambawita V, et al. On evaluation metrics for medical applications of artificial intelligence. Sci
Rep. Apr 8, 2022;12(1):5979. [doi: 10.1038/s41598-022-09954-8] [Medline: 35395867]

21. Pantalone KM, Misra-Hebert AD, Hobbs TM, et al. The probability of A1C goal attainment in patients with uncontrolled
type 2 diabetes in a large integrated delivery system: a prediction model. Diabetes Care. Aug 2020;43(8):1910-1919.
[doi: 10.2337/dc19-0968] [Medline: 32527797]

22. Wang J, Wang MY, Wang H, et al. Status of glycosylated hemoglobin and prediction of glycemic control among patients
with insulin-treated type 2 diabetes in North China: a multicenter observational study. Chin Med J. 2020;133(1):17-24.
[doi: 10.1097/CM9.0000000000000585]

23. Del Parigi A, Tang W, Liu D, Lee C, Pratley R. Machine learning to identify predictors of glycemic control in type 2
diabetes: an analysis of target HbA1c reduction using empagliflozin/linagliptin data. Pharmaceut Med. Jun
2019;33(3):209-217. [doi: 10.1007/s40290-019-00281-4] [Medline: 31933292]

24. Berchialla P, Lanera C, Sciannameo V, Gregori D, Baldi I. Prediction of treatment outcome in clinical trials under a
personalized medicine perspective. Sci Rep. Mar 8, 2022;12(1):4115. [doi: 10.1038/s41598-022-07801-4] [Medline:
35260665]

25. Lopez YON, Retnakaran R, Zinman B, Pratley RE, Seyhan AA. Predicting and understanding the response to short-term
intensive insulin therapy in people with early type 2 diabetes. Mol Metab. Feb 2019;20:63-78. [doi: 10.1016/j.molmet.
2018.11.003] [Medline: 30503831]

26. Murphree DH, Arabmakki E, Ngufor C, Storlie CB, McCoy RG. Stacked classifiers for individualized prediction of
glycemic control following initiation of metformin therapy in type 2 diabetes. Comput Biol Med. Dec 1,
2018;103:109-115. [doi: 10.1016/j.compbiomed.2018.10.017] [Medline: 30347342]

27. Tao X, Jiang M, Liu Y, et al. Predicting three-month fasting blood glucose and glycated hemoglobin changes in patients
with type 2 diabetes mellitus based on multiple machine learning algorithms. Sci Rep. Sep 30, 2023;13(1):16437. [doi:
10.1038/s41598-023-43240-5] [Medline: 37777593]

28. Sun X, Bee YM, Lam SW, et al. Effective treatment recommendations for type 2 diabetes management using
reinforcement learning: treatment recommendation model development and validation. J Med Internet Res. Jul 22,
2021;23(7):e27858. [doi: 10.2196/27858] [Medline: 34292166]

29. Dennis JM. Precision medicine in type 2 diabetes: using individualized prediction models to optimize selection of
treatment. Diabetes. Oct 2020;69(10):2075-2085. [doi: 10.2337/dbi20-0002] [Medline: 32843566]

30. Ngufor C, Van Houten H, Caffo BS, Shah ND, McCoy RG. Mixed effect machine learning: a framework for predicting
longitudinal change in hemoglobin A1c. J Biomed Inform. Jan 2019;89:56-67. [doi: 10.1016/j.jbi.2018.09.001]
[Medline: 30189255]

31. Nagaraj SB, Sidorenkov G, van Boven JFM, Denig P. Predicting short- and long-term glycated haemoglobin response
after insulin initiation in patients with type 2 diabetes mellitus using machine-learning algorithms. Diabetes Obes Metab.
Dec 2019;21(12):2704-2711. [doi: 10.1111/dom.13860] [Medline: 31453664]

32. Koo BS, Eun S, Shin K, et al. Machine learning model for identifying important clinical features for predicting remission
in patients with rheumatoid arthritis treated with biologics. Arthritis Res Ther. Dec 2021;23(1):178. [doi: 10.1186/
s13075-021-02567-y]

33. Guan Y, Zhang H, Quang D, et al. Machine learning to predict anti-tumor necrosis factor drug responses of rheumatoid
arthritis patients by integrating clinical and genetic markers. Arthritis Rheumatol. Dec 2019;71(12):1987-1996. [doi: 10.
1002/art.41056] [Medline: 31342661]

34. Norgeot B, Glicksberg BS, Trupin L, et al. Assessment of a deep learning model based on electronic health record data
to forecast clinical outcomes in patients with rheumatoid arthritis. JAMA Netw Open. Mar 1, 2019;2(3):e190606. [doi:
10.1001/jamanetworkopen.2019.0606] [Medline: 30874779]

35. Falet JPR, Durso-Finley J, Nichyporuk B, et al. Estimating individual treatment effect on disability progression in
multiple sclerosis using deep learning. Nat Commun. Sep 26, 2022;13(1):5645. [doi: 10.1038/s41467-022-33269-x]

36. Zhao X, Jiang D, Hu Z, et al. Machine learning and statistic analysis to predict drug treatment outcome in pediatric
epilepsy patients with tuberous sclerosis complex. Epilepsy Res. Dec 2022;188:107040. [doi: 10.1016/j.eplepsyres.2022.
107040]

37. Duong SQ, Crowson CS, Athreya A, et al. Clinical predictors of response to methotrexate in patients with rheumatoid
arthritis: a machine learning approach using clinical trial data. Arthritis Res Ther. Jul 1, 2022;24(1):162. [doi: 10.1186/
s13075-022-02851-5] [Medline: 35778714]

JMIR DIABETES Garg et al

https://diabetes.jmir.org/2025/1/e66831 JMIR Diabetes 2025 | vol. 10 | e66831 | p. 11
(page number not for citation purposes)

https://doi.org/10.1109/TPAMI.2022.3145392
http://www.ncbi.nlm.nih.gov/pubmed/35077357
https://doi.org/10.1038/s41598-022-09954-8
http://www.ncbi.nlm.nih.gov/pubmed/35395867
https://doi.org/10.2337/dc19-0968
http://www.ncbi.nlm.nih.gov/pubmed/32527797
https://doi.org/10.1097/CM9.0000000000000585
https://doi.org/10.1007/s40290-019-00281-4
http://www.ncbi.nlm.nih.gov/pubmed/31933292
https://doi.org/10.1038/s41598-022-07801-4
http://www.ncbi.nlm.nih.gov/pubmed/35260665
https://doi.org/10.1016/j.molmet.2018.11.003
https://doi.org/10.1016/j.molmet.2018.11.003
http://www.ncbi.nlm.nih.gov/pubmed/30503831
https://doi.org/10.1016/j.compbiomed.2018.10.017
http://www.ncbi.nlm.nih.gov/pubmed/30347342
https://doi.org/10.1038/s41598-023-43240-5
http://www.ncbi.nlm.nih.gov/pubmed/37777593
https://doi.org/10.2196/27858
http://www.ncbi.nlm.nih.gov/pubmed/34292166
https://doi.org/10.2337/dbi20-0002
http://www.ncbi.nlm.nih.gov/pubmed/32843566
https://doi.org/10.1016/j.jbi.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30189255
https://doi.org/10.1111/dom.13860
http://www.ncbi.nlm.nih.gov/pubmed/31453664
https://doi.org/10.1186/s13075-021-02567-y
https://doi.org/10.1186/s13075-021-02567-y
https://doi.org/10.1002/art.41056
https://doi.org/10.1002/art.41056
http://www.ncbi.nlm.nih.gov/pubmed/31342661
https://doi.org/10.1001/jamanetworkopen.2019.0606
http://www.ncbi.nlm.nih.gov/pubmed/30874779
https://doi.org/10.1038/s41467-022-33269-x
https://doi.org/10.1016/j.eplepsyres.2022.107040
https://doi.org/10.1016/j.eplepsyres.2022.107040
https://doi.org/10.1186/s13075-022-02851-5
https://doi.org/10.1186/s13075-022-02851-5
http://www.ncbi.nlm.nih.gov/pubmed/35778714
https://diabetes.jmir.org/2025/1/e66831


38. Myasoedova E, Athreya AP, Crowson CS, et al. Toward individualized prediction of response to methotrexate in early
rheumatoid arthritis: a pharmacogenomics-driven machine learning approach. Arthritis Care Res (Hoboken). Jun
2022;74(6):879-888. [doi: 10.1002/acr.24834] [Medline: 34902228]

39. Liang Y, Ding R, Wang J, et al. Prediction of response after cardiac resynchronization therapy with machine learning. Int
J Cardiol. Dec 1, 2021;344:120-126. [doi: 10.1016/j.ijcard.2021.09.049] [Medline: 34592246]

40. Park A, Lee Y, Nam S. A performance evaluation of drug response prediction models for individual drugs. Sci Rep. Jul
24, 2023;13(1):11911. [doi: 10.1038/s41598-023-39179-2] [Medline: 37488424]

41. Baptista D, Ferreira PG, Rocha M. Deep learning for drug response prediction in cancer. Brief Bioinform. Jan 18,
2021;22(1):360-379. [doi: 10.1093/bib/bbz171] [Medline: 31950132]

42. Mienye ID, Sun Y. A survey of ensemble learning: concepts, algorithms, applications, and prospects. IEEE Access.
2022;10:99129-99149. [doi: 10.1109/ACCESS.2022.3207287]

43. Ganaie MA, et al. Ensemble deep learning: a review. arXiv. Preprint posted online on Aug 8, 2021. [doi: 10.48550/
arXiv.2104.02395]

44. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature New Biol. May 28, 2015;521(7553):436-444. [doi: 10.1038/
nature14539] [Medline: 26017442]

45. Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances in deep learning techniques for
electronic health record (EHR) analysis. IEEE J Biomed Health Inform. Sep 2018;22(5):1589-1604. [doi: 10.1109/JBHI.
2017.2767063] [Medline: 29989977]

46. Altman N, Krzywinski M. The curse(s) of dimensionality. Nat Methods. Jun 2018;15(6):399-400. [doi: 10.1038/s41592-
018-0019-x] [Medline: 29855577]

Abbreviations
AI: artificial intelligence
AUC: area under the curve
DL: deep learning
EHR: electronic health record
HbA1c: glycated hemoglobin
ML: machine learning
MLP: multilayer perceptron
RF: random forest
XAI: explainable artificial intelligence

Edited by Naomi Cahill; peer-reviewed by Andreas Holzinger, Gilbert Lim; submitted 24.09.2024; final revised version
received 24.01.2025; accepted 27.01.2025; published 27.03.2025

Please cite as:
Garg S, Kitchen R, Gupta R, Pearson E
Applications of AI in Predicting Drug Responses for Type 2 Diabetes
JMIR Diabetes 2025;10:e66831
URL: https://diabetes.jmir.org/2025/1/e66831
doi: 10.2196/66831

© Shilpa Garg, Robert Kitchen, Ramneek Gupta, Ewan Pearson. Originally published in JMIR Diabetes (https://diabe-
tes.jmir.org), 27.03.2025. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in JMIR Diabetes, is properly cited. The complete bibliographic informa-
tion, a link to the original publication on https://diabetes.jmir.org/, as well as this copyright and license information must be
included.

JMIR DIABETES Garg et al

https://diabetes.jmir.org/2025/1/e66831 JMIR Diabetes 2025 | vol. 10 | e66831 | p. 12
(page number not for citation purposes)

https://doi.org/10.1002/acr.24834
http://www.ncbi.nlm.nih.gov/pubmed/34902228
https://doi.org/10.1016/j.ijcard.2021.09.049
http://www.ncbi.nlm.nih.gov/pubmed/34592246
https://doi.org/10.1038/s41598-023-39179-2
http://www.ncbi.nlm.nih.gov/pubmed/37488424
https://doi.org/10.1093/bib/bbz171
http://www.ncbi.nlm.nih.gov/pubmed/31950132
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.48550/arXiv.2104.02395
https://doi.org/10.48550/arXiv.2104.02395
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1109/JBHI.2017.2767063
https://doi.org/10.1109/JBHI.2017.2767063
http://www.ncbi.nlm.nih.gov/pubmed/29989977
https://doi.org/10.1038/s41592-018-0019-x
https://doi.org/10.1038/s41592-018-0019-x
http://www.ncbi.nlm.nih.gov/pubmed/29855577
https://diabetes.jmir.org/2025/1/e66831
https://doi.org/10.2196/66831
https://diabetes.jmir.org
https://diabetes.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://diabetes.jmir.org/
https://diabetes.jmir.org/2025/1/e66831

	Applications of AI in Predicting Drug Responses for Type 2 Diabetes
	Introduction
	Understanding the Role of AI
	AI in Drug Response Prediction
	Leveraging a Diverse Data Source
	AI Techniques and Their Applications
	Explainable Artificial Intelligence
	Advanced Modeling Techniques
	Ensuring Transparency and Reproducibility
	Model Selection and Performance Evaluation

	Modeling Drug Response Using AI
	AI and Drug Response in Type 2 Diabetes
	AI and Drug Response in Other Disease Areas

	Challenges and Limitations
	Data Quality and Accessibility
	Data Biases and Missingness
	Data Security and Privacy
	Model Interpretability, Validation, and Clinical Integration

	Conclusion


