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Abstract
Background: Diabetic ketoacidosis represents a significant and potentially life-threatening complication of diabetes,
predominantly observed in individuals with type 1 diabetes (T1D). Studies have documented suboptimal adherence to diabetes
management among children and adolescents, as evidenced by deficient ketone monitoring practices.
Objective: The aim of the study was to explore the potential for prediction of elevated ketone bodies from continuous glucose
monitoring (CGM) and insulin data in pediatric and adult patients with T1D using a closed-loop system.
Methods: Participants used the Dexcom G6 CGM system and the iLet Bionic Pancreas system for insulin administration
for up to 13 weeks. We used supervised binary classification machine learning, incorporating feature engineering to identify
elevated ketone bodies (>0.6 mmol/L). Features were derived from CGM, insulin delivery data, and self-monitoring of blood
glucose to develop an extreme gradient boosting-based prediction model. A total of 259 participants aged 6-79 years with over
49,000 days of full-time monitoring were included in the study.
Results: Among the participants, 1768 ketone samples were eligible for modeling, including 383 event samples with elevated
ketone bodies (≥0.6 mmol/L). Insulin, self-monitoring of blood glucose, and current glucose measurements provided discrimi-
native information on elevated ketone bodies (receiver operating characteristic area under the curve [ROC-AUC] 0.64‐0.69).
The CGM-derived features exhibited stronger discrimination (ROC-AUC 0.75‐0.76). Integration of all feature types resulted in
an ROC-AUC estimate of 0.82 (SD 0.01) and a precision recall-AUC of 0.53 (SD 0.03).
Conclusions: CGM and insulin data present a valuable avenue for early prediction of patients at risk of elevated ketone
bodies. Furthermore, our findings indicate the potential application of such predictive models in both pediatric and adult
populations with T1D.
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Introduction
Diabetic ketoacidosis (DKA) represents a significant
and potentially life-threatening complication of diabetes,
predominantly observed in individuals with type 1 diabetes
(T1D), although occurrences in those with type 2 diabetes
are not uncommon [1,2]. DKA arises from an inadequate
supply of insulin, leading to dysregulation of blood glucose

levels. Consequently, the body resorts to metabolizing fat
for energy, resulting in the accumulation of ketone bodies
in the bloodstream alongside elevated blood sugar levels.
This metabolic disturbance manifests in symptoms such
as nausea, vomiting, abdominal pain, confusion, excessive
thirst, and frequent urination [1]. If left untreated, DKA can
progress to coma and, in severe cases to mortality, neces-
sitating immediate medical intervention comprising insulin
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administration and fluid replacement to restore normal blood
glucose and ketone levels [3] .

Children and adolescents are particularly susceptible to
DKA due to their ongoing growth and development, which
introduce complexities in diabetes management [4]. Factors
such as missed insulin doses, illness, or infection can rapidly
precipitate DKA in this demographic.

Studies have documented suboptimal adherence to
diabetes management among children and adolescents, as
evidenced by deficient ketone monitoring practices [5-7] . For
instance, a recent study involving 2995 participants revealed
that a significant proportion lacked ketone testing supplies
at home, with a considerable proportion reporting infrequent
ketone checks, particularly in instances of elevated glucose
levels [7].

Closed-loop systems offer a promising approach to
addressing the challenges of diabetes management in both
pediatric and adult populations [8,9]. Leveraging CGM
technology provides real-time feedback on blood glucose
levels, facilitating automated adjustments to insulin deliv-
ery via an insulin pump. By delivering precise insulin
doses tailored to individual glucose fluctuations, closed-loop
systems can reduce the risks of both hypoglycemia and
hyperglycemia, thereby diminishing the likelihood of DKA
development. However, this technology does not eliminate
the risk of DKA [10-12].

A recent study by Cichosz and Bender [13] demonstrated
the potential of CGM data in predicting elevated ketone levels
among adults with T1D. However, such investigations remain
scarce in pediatric populations and have not incorporated
insulin data. Consequently, this study aims to explore the
predictive potential of CGM and insulin data for elevated
ketone bodies in pediatric and adult patients with T1D using a
closed-loop system.

Methods
Data Sources
To ascertain whether patterns derived from CGM and insulin
usage could serve as predictive indicators for elevated ketone
bodies—a potential risk factor for DKA in individuals with
diabetes—data sourced from the intervention arm of The
Insulin-Only Bionic Pancreas Pivotal Trial (NCT04200313)
[14] were analyzed. This trial constituted a multicenter
randomized controlled study comparing an at-home closed-
loop system with the prevailing standard of care.

The participant cohort encompassed individuals diagnosed
with T1D aged 6 to 79 years. Participants used the Dex-
com G6 CGM system in conjunction with the iLet Bionic
Pancreas system for insulin administration for up to 13
weeks. Additionally, participants were equipped with a blood
ketone meter and test strips and were provided instructions
to measure ketone levels if glucose readings surpassed 300
mg/dL. The intervention group comprised 219 patients with
T1D, exhibiting a mean glycated hemoglobin of 7.9 (SD
1.2%); 63 mmol/mol with a mean age of 28 (SD 19) years,

and a female representation of 49% (n=107) within the
cohort.

For this analysis, inclusion criteria required the presence
of ketone measurements along with corresponding CGM and
insulin data within a 12-hour timeframe preceding the ketone
measurements. CGM data periods had to demonstrate a wear
time of ≥50% to be considered for inclusion. Given the
sampling rate of the CGM system of 12 readings per hour,
inclusion mandated a minimum of 72 glucose samples within
the 12-hour observation window.

This study adheres to the recommended guidelines
delineated in the “Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis”
(TRIPOD).
Model Target
In this study, we used a supervised binary classification
machine learning methodology to discern elevated ketone
bodies. It is well established that ketone levels below 0.6
mmol/L fall within the reference range, whereas levels at or
above 0.6 mmol/L pose a significantly augmented risk of
DKA [15]. Therefore, we defined the binary classification
task as the identification of elevated ketone bodies (≥0.6
mmol/L) versus nonelevated ketone bodies (<0.6 mmol/L)
during episodes of elevated glucose readings.
Feature Engineering
Feature engineering is a process within machine learning
wherein new features are generated from raw data through
a series of transformations, aggregations, or extractions of
information from existing variables. The primary objective is
to enhance the performance of machine learning algorithms
by constructing new features that more accurately capture
the underlying relationships in the data, thereby augmenting
prediction accuracy and model effectiveness [16]. To identify
the most relevant predictors of elevated ketone levels in
patients with diabetes, we explored a broad range of potential
features over the preceding 12-hour period. This included
absolute values, summations, and dynamic patterns to capture
temporal variations. Given the limited literature on the most
effective individual features or their optimal combinations for
detecting ketone elevation, our approach aimed to systemati-
cally identify the best subset of predictors.

A total of 26 features were extracted from CGM, insulin
data, and glucose meter readings within a 6- and 12-hour
window preceding the ketone samples, as depicted in Figure
1. Table 1 enumerates the features extracted from each data
source. These features encompassed mathematical transfor-
mations of the signals to characterize their dynamics, range
of variation, cumulative effects, distribution, and extreme
values. The methodology adopted was data-driven and
exploratory, devoid of prior assumptions regarding which
features of the signal that would yield optimal discrimina-
tive information when combined. The dynamics of glucose
levels are intricately shaped by diurnal patterns, influenced
by factors such as dietary intake, basal and bolus insu-
lin administration, endocrine activity, and behavioral habits
including physical exertion and sleep.
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Figure 1. Overview of the data pipeline for predicting ketone levels using machine learning. Data from multiple sources, including the iLet
closed-loop system, continuous glucose monitor (CGM), glucometer, and ketone meter, are collected and processed. A window of CGM, insulin, and
self-monitored blood glucose (SMBG) data is extracted for feature engineering. Various feature subsets, such as the hour of day, SMBG, insulin, and
CGM trends over different timeframes, are used as input to train a model. Stratified cross-validation ensures balanced class distribution, and model
performance is evaluated using receiver operating characteristic (ROC) and precision-recall (PR) curves.

Table 1. Extracted features for CGMa, insulin, and BGMb data. Features marked with “√” indicate inclusion for the respective data type and time
division.
Feature CGM (6h) CGM (12h) Insulin basal (6‐12h)c Insulin bolus (6‐12h)c Insulin meal (6‐12h)c BGM (12h)
Latest √ √
Maximum √ √ √
Minimum √ √ √
Sum √ √ √
Mean √ √
Standard deviation √ √
Time spent when
blood glucose levels
>300 mg/dL

√ √

Decreases ratio √ √
Mean decrease √ √
Hour of the day √

aCGM: continuous glucose monitoring.
bBGM: blood glucose monitoring.
c Insulin features are extracted from both a 0‐6 hour and a 6‐12 hour window.

While many features entailed straightforward mathematical
derivatives such as summations, standard deviations, and the
proportion of time spent above 300 mg/dL blood glucose
levels, we additionally incorporated a metric assessing the
rate of glucose decline relative to preceding measurements to
capture finer-scale dynamics within the glucose signal. The
formulation for this calculation is delineated below:

cgm = [x1,x2,x3 . . .xn]
Decreasesn = i = 1

n − 1 1ifi + 1 − xi < 00otℎerwise
Decreaseratio = decreasesn/cgm/

Model Development
For model development, we used a supervised binary
classification approach using an extreme gradient boosting
(XGBoost) classifier to predict elevated levels of ketone
bodies. XGBoost is a renowned machine learning algorithm
known for its ability to handle intricate datasets by amalga-
mating weak prediction models (decision trees) into a robust
ensemble [17]. It excels in capturing nonlinear relation-
ships, managing missing or imbalanced data, and mitigat-
ing overfitting, thereby typically yielding high predictive
performance. This efficacy has been demonstrated in clinical
prediction models across a spectrum of medical domains
[18-21].

The model was trained using features from each data type
individually and in combination, aiming to ascertain their
predictive capacity for the target variable. We used 5-fold
stratified cross-validation to ensure an unbiased estimation of
the model’s performance and hyperparameter estimation, with
stratification ensuring uniform proportions of events across

JMIR DIABETES Cichosz & Bender

https://diabetes.jmir.org/2025/1/e67867 JMIR Diabetes 2025 | vol. 10 | e67867 | p. 3
(page number not for citation purposes)

https://diabetes.jmir.org/2025/1/e67867


folds [22]. The following parameters were optimized using a
grid search strategy: learning rate (0.01, 0.1, 0.3), number of
estimators (50, 100, 150), max depth (2, 4, 8), minimum child
weight (1, 3, 5), subsample (0.6, 0.8, 1.0), and γ (0, 1, 5).

All analyses were conducted using MATLAB (version
R2021b; MathWorks) and Python (version 3; Python
Software Foundation), leveraging the Scikit-learn package
(version 0.23.2) for machine learning utilities, the SHap-
ley Additive exPlanations (SHAP) package (version 0.43.0)
for interpretability assessment, and the XGBoost package
(version 1.7.5) for implementing the classifier.
Model Assessment and Interpretability
The discriminative performance of the model was assessed
using the computation of the area under the receiver operating
characteristic curve (ROC-AUC) and the area under the
precision-recall curve (PR-AUC) [23]. The uncertainty of
estimates was calculated as the SD across folds. To enhance
model interpretability, SHAP average values across folds
were leveraged for explanatory purposes. These values offer
insights into the contribution of individual features towards
model predictions, thereby enhancing the interpretability and
transparency of the modeling process [24]. .
Sensitivity Analysis
In a sensitivity analysis, we restricted the subgroup to patients
aged <18 years. The objective of this analysis was to assess
the model’s performance in pediatric and adolescent patients,
as these groups have a higher risk of developing DKA [25].
The objective was to test whether any substantial difference
was observed in ROC-AUC performance in patients under 18
years.
Ethical Considerations
This study is a reanalysis of existing and anonymized data
from the Insulin Only Bionic Pancreas Pivotal Trial [14].
According to Danish law (Komitéloven, kap. 4, § 14, stk.
3) on the ethical review of health science research projects
and health data science research projects, this study did not
require approval from an institutional or licensing committee.

The original Insulin Only Bionic Pancreas Pivotal Trial
protocol and informed consent forms were approved by
institutional review boards. Written informed consent was

obtained from each participant prior to enrollment. An
independent data and safety monitoring board provided trial
oversight reviewing unmasked safety data during the conduct
of the study.

We confirm that all methods were carried out in accord-
ance with relevant guidelines and regulations. The data was
accessed and analyzed in an anonymized form.

Results
Participant Characteristics
In total, 259 patients (n=93 for patients aged <18 years)
were included in the analysis. Another 181 patients did not
have qualified ketone measurements with a CGM window
(n=71) or were part of the control group, which did not
use a connected insulin pump (n=110). Among the inclu-
ded patients, 1768 ketone samples were eligible for model-
ing, including 383 event samples with ketone levels ≥0.6
mmol/L. Overall, the patients had over 14,300,000 CGM
measurements, corresponding to over 49,000 days of full-time
monitoring.

Model Performance
The ROC-AUC, PR-AUC, and individual curves are
presented in Figure 2. The plots illustrate the performance of
adding individual datatypes and a combined estimate. Insulin,
self-monitoring of blood glucose (SMBG), and current
glucose measurements, all provided discriminative informa-
tion on elevated ketone bodies (ROC-AUC 0.64‐0.69). The
features derived from the CGM window demonstrated greater
discrimination (ROC-AUC 0.75‐0.76). Notably, extending
the CGM window from6 hours to 12 hours only added
minimal discriminative power, as measured by ROC-AUC.
Combining all feature types yielded an ROC-AUC estimate
of 0.82 (SD 0.01) and a PR-AUC of 0.53 (SD 0.03). In the
sensitivity analysis including only pediatric patients (age <18
years), the ROC-AUC estimate was 0.80 (SD 0.01). The final
selected hyperparameters were a learning rate of 0.2, 100
estimators, a maximum depth of 8, a minimum child weight
of 1, a subsample ratio of 1.0, and a γ value of 1.
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Figure 2. For endpoint 1, (A) ROC-curves for different subsets of features, (B) ROC-AUC for different subset of features , (C) PR-curve for
different subset of features, (D) PR-AUC for different subset of features. AUC: area under the curve; BG: blood glucose; CGM: continuous glucose
monitoring; PR: precision recall; ROC: receiver operating characteristics; SMBG: self-monitoring of blood glucose.

Interpretability
Feature importance analysis including the combined features
showed that data from both CGM and insulin deliveries adds
significant information to the models’ predictive capabilities.
The mean SHAP values for the 10 highest-ranking features
are presented in Figure 3. Furthermore, a SHAP Beeswarm

plot is provided in Multimedia Appendix 1. As expected, the
current CGM value had the highest contribution, followed
by the ratio of decrease in the CGM window. Further,
insulin-related features such as meal bolus and basal insulin
deliveries had significant impacts.
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Figure 3. SHAP bar plot illustrating the 10 features with most important features in the model’s prediction. BGM: blood glucose measurement;
CGM: continuous glucose monitoring; Avg: average; Min: minimum; Decr: decrease; Max: maximum.

Patient Example
An illustrative depiction of the predicted probability,
representing the model output for elevated ketone bodies, is
presented alongside CGM data and insulin delivery records
for a specific patient in Figure 4. Notably, the probability of a
heightened risk of elevated ketone bodies increases around 8
PM, coinciding with a ketone meter measurement confirming
elevated ketones at 9 PM. This example underscores the

potential utility of a predictive model, such as the one
proposed in our study, for identifying impending instances
of elevated ketone levels based on continuous monitoring
of patients’ data. Such a model holds promise for alert-
ing patients to take timely action, thereby mitigating the
progression of adverse developments associated with diabetic
ketoacidosis.

Figure 4. Patient example: (A) Predicted probability for elevated ketone bodies over two days of monitoring; (B) The corresponding CGM and
insulin inputs to the model. CGM: continuous glucose monitoring.
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Discussion
Principal Findings
The objective of this investigation was to formulate and
assess various data sources, including CGM, insulin, and
SMBG, as potential inputs for a prediction model designed
to provide timely alerts regarding the risk of developing
DKA through elevated ketone body levels. The findings
underscore the potential utility of patterns derived from CGM
data obtained from individuals with T1D in identifying and
signaling patients at risk of elevated ketone levels. It is
imperative to note that elevated ketone levels serve as a
precursor to DKA, a critical and potentially life-threatening
complication of diabetes.

We previously showed that CGM data could be used for
prediction of elevated ketone bodies in an adult population
with T1D [13]. The present findings validate this observation
and expand on the initial findings by examining the added
predictive value of insulin and SMBG data. Furthermore,
this study strongly indicates that this approach is applica-
ble to both pediatric and adult individuals. To our knowl-
edge, this study, along with our previously published study,
is the first to explore the potential of predicting elevated
ketone bodies using a combination of CGM and insulin data.
However, numerous studies have reported the usage of CGM
for prediction of other complications related to diabetes and
diabetes treatment, such as hypoglycemia, gastroparesis, and
future glucose levels [26-31].

The clinical implications of implementing a system based
on the proposed model in our study are vividly illustrated
through the patient’s continuous data depicted in Figure 4.
The predicted risk or probability of elevated ketone bodies
offers patients a more nuanced and informative warning
compared to solely relying on glucose levels. This enhanced
information could prompt early intervention to prevent further
progression to DKA. Potential actions triggered by these
alerts may include promptly checking ketone bodies using
a ketone meter, verifying the functionality of the infusion
set to ensure proper insulin delivery, and corroborating CGM
measurements with SMBG readings. By facilitating proactive
measures, such a system has the potential to significantly
mitigate the risk of adverse outcomes associated with DKA.
Limitations
Despite the robust design of our study, which encompassed a
substantial dataset and measures to estimate generalizability,
several limitations warrant acknowledgment. First, while

our analysis involved a sample size of 259 individuals
with numerous measurements of ketone bodies (n=1768),
the number of outcome events (elevated ketone levels ≥0.6
mmol/L) remained relatively small (n=383). This limited
number of outcome events is reflected in the SD of the
estimate observed in the ROC-AUC. Consequently, the
reliability of our model’s performance on new data remains
uncertain, despite indicative evidence of valuable informa-
tion within the dataset. These findings need to be validated
in independent datasets. An avenue for potential improve-
ment lies in the exploration of larger datasets to enhance
predictive performance and further validate these findings.
While our study encompassed a diverse population span-
ning children, adolescents, and adults, the analysis did not
delve into subgroup-specific performance. Consequently, the
efficacy of our predictive model across distinct subgroups
remains unexplored, potentially subject to interindividual
variability. Future investigations could address this limitation
by conducting subgroup analyses to elucidate performance
variations across demographic or clinical strata. Our findings
from patients using closed-loop insulin delivery technology
cannot be extrapolated to other treatment regimens without
further investigation. A key limitation is that participants only
measured ketones during prolonged hyperglycemia, which,
coupled with generally low adherence and possible medica-
tion influences (eg, sodium-glucose cotransporter-2 inhibi-
tors), may introduce selection bias. Importantly, ketone levels
serve as surrogate outcomes and do not necessarily predict
ketoacidosis events.
Conclusion
The innovative methodology used in this study for detecting
elevated ketone levels among individuals with t1D under-
scores the potential of integrating CGM and insulin data
as a valuable resource for early prediction of patients at
risk. Moreover, our findings suggest that such a predictive
model holds promise for application in both pediatric and
adult populations with T1D, particularly within closed-loop
systems.

Future studies are imperative to validate the robustness and
reliability of these findings. Furthermore, there is a need for
comprehensive investigations to assess the real-world impact
of implementing a system based on the proposed prediction
model. Such investigations will be instrumental in eluci-
dating the efficacy and practical implications of leverag-
ing predictive modeling in clinical practice for proactive
management of diabetes-related complications, including
DKA.
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