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Abstract
Background: Managing type 1 diabetes (T1D) requires maintaining target blood glucose levels through precise diet and
insulin dosing. Predicting postprandial glycemic responses (PPGRs) based solely on carbohydrate content is limited by factors
such as meal composition, individual physiology, and lifestyle. Continuous glucose monitors provide insights into these
responses, revealing significant individual variability. The statistical clustering method proposed here balances the number
of clusters formed and the glycemic variability of the PPGRs within each cluster to offer a clustering technique on which
treatment decisions could be based.
Objective: This study aims to develop and evaluate a PPGR clustering method that identifies reproducible meal-specific
glucose patterns in people with type 1 diabetes.
Methods: Blood glucose data from the OhioT1DM dataset were used to assess clustering of PPGR based on the coefficient of
variability (CV) of glucose. Clustering was performed using statistical clustering, with each PPGR isolated into 48 data points
per event. A CV threshold of <36% was used to define clinically similar clusters. This aimed to cluster PPGRs with minimal
glycemic variability. The approach aims to enhance precision in analyzing postprandial glycemic dynamics, assessing cluster
cohesion via standard deviation and CV within meal categories.
Results: The analysis revealed a reproducible set of PPGR clusters specific to meal types and individuals (mean [SD], 2.4
[1.8] for breakfast, 2.7 [0.9] for lunch, and 3.1 [1.0] for dinner), with the number of clusters varying across participants and
meals in the dataset. Carbohydrate intake alone did not affect cluster formation, suggesting a complex relationship between
meal composition and PPGR variability. However, certain individuals showed significant associations between carbohydrate
intake and cluster formation for specific meals.
Conclusions: The meal-based glycemic clustering algorithm provides a promising framework for predicting PPGRs in people
with type 1 diabetes, independent of carbohydrate intake. It emphasizes the need for personalized prediction models to
optimize time in range and enhance diabetes management. Efforts to refine treatment strategies are crucial in reducing
T1D-related complications.
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Introduction
Type 1 diabetes (T1D) is a chronic autoimmune disease that
inhibits the production of insulin, preventing the intrinsic
regulation of blood glucose (BG) [1]. The management of
T1D focuses on the international consensus of achieving BG
levels within the recommended target range of between 3.9
and 10 mmol/L at least 70% of the time [2], while con-
suming a balanced and varied diet [3]. The key to optimal
insulin therapy is minimizing BG fluctuations after meals
[4] (postprandial glycemic response [PPGR]) and keeping
the BG within the target range [2,5]. PPGR management
in people with T1D (PwT1D) is further complicated by the
need to administer the appropriate dose of exogenous bolus
insulin [6], which is commonly determined by the amount
of carbohydrate present in the meal [7]. Current treatment
strategies focus on carbohydrate-based insulin dosing where
people with T1D are required to determine the amount of
carbohydrates present in the meal to calculate the appropri-
ate bolus insulin dose needed [8]. The intricate interplay
of individual physiology, metabolism, behaviors, and the
diverse nature of meals in the real world, which impact the
PPGR, complicates effective insulin therapy management [9].
Despite efforts to refine carbohydrate-based insulin dosing
strategies, factors beyond carbohydrate content significantly
influence the PPGR, including fiber content, exercise, and
metabolic factors [10-12], revealing a nuanced and complex
landscape [3,13-16]. However, to optimize the PPGR and
effectively keep BG levels in range, the bolus dosage and
timing should factor in the speed at which the carbohydrates
are absorbed, which is determined by other nutritional factors,
such as amount of fat, protein, and fiber [17].

The use of continuous glucose monitors (CGMs) allows
for a complete picture of the PPGR to a meal to be seen and
analyzed [18]. It has been shown that PPGRs are reproducible
within individuals (intraindividual) when exposed to meals
of the same nutritional composition [5,15,19]. However,
interindividual variability in PPGRs to identical meals has
been noted in the literature [20,21], suggesting that individual
characteristics influence the PPGR beyond what is expected
from the meal itself [17,22]. However, this intraindividual
reproducibility offers the potential for an effective PPGR
self-management technique in T1D based on the learned
response to the previous PPGR to a given meal [23].
Leveraging this repetitiveness of PPGRs, the ability to isolate
PPGR clusters will allow for meal-based glycemic respon-
ses that exhibit similar patterns to be effectively grouped
together. Being able to understand and predict how one might
respond to a meal based on its composition, the physiology
of the individual, and the lifestyle factors that influence BG
levels allows for reduction in the burden of self-management

and the potential to optimize meal and bolus planning [14,22,
24].

Clustering PPGR data can reveal relationships between
variables and uncover patterns in glycemic responses to
meals, enabling tailored treatment interventions based on
individualized PPGR profiles [14]. In this work, a statistical
clustering approach was developed to balance the number
of clusters with the glycemic variability within each cluster,
using variability as a measure of internal cohesion. The
coefficient of variability (CV) of glucose, which quantifies
glycemic variability over time [25], was adopted as the
primary parameter for assigning PPGR events to specific
clusters. By constraining the CV within each cluster to below
36%, the method aims to identify repeated PPGR patterns
for specific meals, potentially reducing hypoglycemia risk
when applied to guide insulin therapy [25]. The balance
between cluster quantity and clinically relevant measures
of glycemic variability is particularly important given the
individualized nature of PPGR responses, where the optimal
number of clusters may differ between subjects. In evaluating
various clustering strategies, conventional methods, including
Time Series Means Clustering [26,27], standard partitioning
methods [28,29], DBScan [30], and hierarchical clustering
[31], proved unsuitable due to limitations in handling small
datasets, irregular data densities, and the individualized
nature of glucose response patterns. In contrast, the proposed
CV-based clustering method is designed to overcome these
limitations, providing a framework for analyzing personalized
glucose response dynamics.

This work focuses on identifying the repetitive patterns
of PPGRs elicited within specified meal categories (ie,
breakfast, lunch, and dinner) and generates clinically similar
PPGR clusters for people with T1D, which minimize the
glycemic variability and have a low risk of hypoglycemic
outcomes [25,32]. This will provide a categorization system
that captures the reproducibility of everyday PPGR events,
allowing for a personalized and adaptive BG prediction
model that is based on unique PPGR events. This could be
extrapolated to specific meals offering the ability to learn the
appropriate meal-time insulin bolus (bolus targeting solution)
to optimize the time in range (TIR).

The overarching aim is to utilize the PPGR clustering
technique to provide a practical strategy for insulin therapy
treatment adjustments, ultimately improving TIR for people
with T1D.
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Methods
Patient Data
This study evaluated whether PPGRs could be matched and
clustered using the CV of the PPGR. Data were from the
OhioT1DM dataset [23], comprising 8 weeks of CGM and
self-reported lifestyle logs from 12 adults with T1D using

insulin pump therapy and Medtronic Enlite CGM systems.
CGM readings were taken every 5 minutes, alongside insulin
dosages, heart rate, and timestamped dietary and lifestyle
events. Data were aligned to a 24-hour clock and stratified
by day and week. Despite its modest size [33], the dataset
reflects real-world conditions and is widely used in T1D
research [34]. Participant demographics are shown in Table
1.

Table 1. Gender, age range, insulin pump, and insulin used along with the continuous glucose monitors (CGM) for each OhioT1DM participant as
available from the dataset [23].
ID Gender Age range (years) CGM device Pump and insulin used
540 Male 20‐40 Medtronic Enlite 630G (Humalog)
544 Male 40‐60 Medtronic Enlite 530G (Humalog)
552 Male 20‐40 Medtronic Enlite 630G (Humalog)
567 Female 20‐40 Medtronic Enlite 630G (Humalog)
584 Male 40‐60 Medtronic Enlite 530G (Novolog)
596 Male 60‐80 Medtronic Enlite 530G (Humalog)
559 Female 40‐60 Medtronic Enlite 530G (Novolog)
563 Male 40‐60 Medtronic Enlite 530G (Humalog 200)
570 Male 40‐60 Medtronic Enlite 530G (Humalog)
575 Female 40‐60 Medtronic Enlite 530G (Novolog)
588 Female 40‐60 Medtronic Enlite 530G (Novolog)
591 Female 40‐60 Medtronic Enlite 530G (Novolog)

Ethical Considerations
This study is an in silico analysis that relies exclusively on
open-access, publicly available data obtained from recog-
nized repositories. No new data were collected, and no
interaction or intervention with human participants, animals,
or identifiable private information occurred. As such, this
research does not meet the criteria for “human subjects
research” as defined by institutional and international ethical
standards. Ethics approval was not required for this study
as it utilized open-access, deidentified data available in the
public domain. The analysis involved no direct or indirect
contact with human participants or animals, and no identifia-
ble personal data were used [35-39].
Isolating PPGR Process
A PPGR was defined as a 4-hour window (48 readings)
from self-reported mealtime or bolus insulin administration
(see Figure 1). When mealtimes were missing, start times
were imputed from matching events on the same weekday
in other weeks, using the closest average timing. The 4-hour
window was chosen to capture the full glycemic excursion,

given that glucose in nondiabetics typically normalizes within
90 minutes [40], gastric emptying completes within 4‐5
hours [41], and rapid-acting insulin (eg, Novorapid) peaks
at 100‐120 minutes when given 15‐20 minutes before meals
[42]. Events with <2 hours of CGM data (24 points) were
excluded.

PPGRs were categorized as breakfast (06:00-10:00), lunch
(10:00-14:00), snack (14:00-18:00), or dinner (18:00-22:00)
in line with circadian and sociocultural eating patterns [41,
43,44]. Additional carbohydrate intake within the 4-hour
postprandial window was considered part of the original
PPGR. A bolus is classified as meal-related if its start time
falls within a tight window around a logged meal, specifically
from 4 minutes before to 4 hours after the meal; boluses
outside every such window are labeled corrections. Correc-
tion boluses are then summarized by the PPGR categorization
bands (6-10, 10-14, 14-18, 18-22). Where bands did not have
an isolated PPGR from a self-reported meal of mealtime
bolus, the PPGR was isolated, and where the bands contained
meal events, the bolus dose was confirmed to be a correction.
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Figure 1. Example of mealtime postprandial glycemic response (PPGR) isolation from a single day of blood glucose data from a single participant
from the OhioT1DM dataset (544). The different colors and markers represent the distinct meal categories, “x” indicating unassigned BG data,
“  ” indicating breakfast PPGR, “  ” the lunch PPGR and “  ” dinner PPGR. The dashed gray lines indicate the time of the self-reported meal
consumption.

Normalization of PPGR Events
To enable cross-comparison of glucose responses independ-
ent of absolute magnitude, each PPGR was normalized by
centering it around its peak value. Specifically, the peak
glucose reading within each 4-hour window was identified,
and all other values were recalculated by subtracting this peak
value. This process generated a normalized, peak-centered
time series for each event, allowing for uniform trend analysis
across individuals and events.
Calculation of CV
The CV quantified variability by dividing the standard
deviation of each isolated PPGR by the mean of all PPGRs
for the same individual and meal category, then multiply-
ing by 100 (Equation 1). This approach provided a normal-
ized measure of glycemic variability contextualized within
each person’s own physiological response patterns. A CV
threshold of less than 36% was adopted as the criterion
for acceptable variability, consistent with clinical literature
associating lower CV values with reduced risk of hypoglyce-
mia [25,45]. Given that one would expect the PPGR-specific
CV to be significantly higher than the 24-hour CV, using the

24-hour threshold of 36% would ensure the internal cohesion
of the PPGRs is tighter than the clinically recommended
glycemic variability.

(1)CVPPGR = σPPGRμPPGR × 100
• σPPGR is the standard deviation of the isolated PPGR.
• μPPGR is the mean of all the PPGRs in the same meal

category for that individual.
Clustering of Postprandial Glycemic
Responses
Each PPGR was treated as a unique time series and clustered
within the specified meal categories. An iterative pairwise
algorithm began with an unassigned PPGR and added other
unassigned events if the cluster CV remained <36%. Clusters
were expanded until no additional events could be included
without exceeding the threshold. Unassigned events were
reevaluated in later iterations; PPGRs eligible for multiple
clusters were assigned to the largest cluster. Events failing all
inclusion criteria were labeled outliers (Figure 2).
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Figure 2. Methodological framework for assessing the reproducibility of postprandial glycemic responses (PPGRs): an iterative coefficient of
variability (CV)-based clustering approach. BG: blood glucose.

Cluster Evaluation
Each cluster was evaluated using several statistical measures
to assess internal consistency and clinical relevance. The
standard deviation of glucose values within each cluster
was used to estimate dispersion around the cluster mean.
The standard error was calculated by dividing the stand-
ard deviation by the square root of the number of PPGR
events in the cluster, providing a measure of the reliabil-
ity of the cluster mean. An internal CV for each cluster
was also computed, based on the combined glucose values
of the cluster and the overall mean for the corresponding
meal category. The total number of PPGRs per cluster was
recorded to assess distribution across clusters and ensure
adequate representation.
Statistical Analyses
Sample size and power calculations used the TTestInd-
Power function from statsmodels in Python [46], targeting
power=0.8 and α=.05 to minimize type I or II errors [47].
Within each meal category, one-way ANOVA tested for
differences in mean carbohydrate intake between clusters.
Tools and Software
Data preprocessing, normalization, and clustering were
implemented in Python 3.10.7 [48] using Visual Studio Code
1.77.3 [49] and standard libraries. The 36% CV threshold,
though derived from 24-hour glucose variability, was used
to ensure PPGR clusters had tighter internal cohesion than
recommended clinical variability limits.

Results
The 12 participants in the OhioT1DM dataset generated
20635 PPGRs, which reflects the consolidation of 99121685
blood glucose data points. The meal-matched isolated PPGRs
were subjected to the CV-based clustering technique outlined

above. It was found that the available BG data formed
a set number of PPGR clusters for each meal type, with
breakfast having mean (SD) of 2.4 (1.8) clusters identified,
lunch having 2.7 (0.9) clusters, and dinner having 3.1 (1.0)
clusters. An example of the clusters formed across all meals
for a single participant is represented in Figures 3–5 . This
outlines the mean curve, standard deviation, and standard
error of the cluster, in comparison to the standard error of the
CGM device. The number of PPGR clusters present for each
participant across the 3 meals, along with metrics and CV
score, is outlined in Table 2, suggesting the reproducibility of
PPGR events is specific to the individual and type of meal
consumed. In the meal categories where the average CV is
above 36%, this is due to the formation of outlier clusters,
which contain individual PPGRs due to the PPGR-specific
large CV. The cluster-specific metrics can be found in Table
S1 in Multimedia Appendix 1. Along with the set number of
PPGR clusters per meal type within each participant, there
is variation in carbohydrate intake across meal type and
individuals (Table 2). The individual cluster error across all
clusters and all participants falls below the standard CGM
error (0.8 mmol/L) [50] in all but 1 of the clusters formed,
which was composed of outliers (563 lunch). The metrics for
each isolated PPGR cluster, including the number of PPGRs
isolated to each cluster, can be found in Table S1 (Multimedia
Appendix 1).

When assessed on an individual basis, the distribution of
carbohydrate intake was the same across all clusters in all
meal categories barring 2 meals across 2 participants. For
dinner in participant 563, the carbohydrates consumed had a
significant effect on the cluster formation (F(2,42) = 3.48,
P=.04) and lunch for participant 559 F (2,59)=4.66, P=.01.
With the OhioT1DM sample size of 12 participants, the
analysis revealed an effect size (Cohen d) [51] of 1.1968.
The effect size of 1.1968 observed in this study suggests that
the intervention had a strong impact [52].
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Figure 3. A sample of postprandial glycemic response (PPGR) clusters formed for a single participant. The plots reflect the mean blood glucose (BG)
value of each formed cluster with the meal category breakfast, with indication of the standard deviation, error of the clustering technique, and the
inherent error of the blood glucose sensor.

Figure 4. A sample of postprandial glycemic response (PPGR) clusters formed for a single participant. The plots reflect the mean blood glucose
(BG) value of each formed cluster within the meal category lunch, with indication of the standard deviation, error of the clustering technique, and the
inherent error of the blood glucose sensor.

Figure 5. A sample of postprandial glycemic response (PPGR) cluster formed for a single participant. The plots reflect the mean blood glucose (BG)
value of each formed cluster within the meal category dinner, including outliers (c), with indication of the standard deviation, error of the clustering
technique, and the inherent error of the blood glucose sensor.
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Discussion
Principal Findings and Comparison With
Previous Works
In this study, data from 12 people with T1D were analyzed.
Each participant contributed 9900 BG measurements, which
were used to generate and cluster over 200 isolated PPGRs
per person. CV-based clustering identified stable, participant-
specific PPGR patterns, averaging 2.4 for breakfast, 2.7 for
lunch, and 3.1 for dinner with most cluster errors below
the CGM’s intrinsic error. Carbohydrate intake was largely
consistent within clusters, with significant variation in only
2 of 36 meal-participant combinations. The large effect size
(Cohen d=1.20) underscores the robustness of this approach.
These findings demonstrate the intraindividual reproducibil-
ity of the PPGRs within a meal category under free-living
conditions in people with T1D, highlighting the possibility
to predict the PPGR to a given meal in an individual, a
concept already validated in healthy individuals [15] and
people living with type 2 diabetes [5]. Using PPGR clusters to
highlight how an individual responds to a specific meal type
provides insight into the overall meal metabolism without
requiring onerous additional information from the people with
T1D. This could outline appropriate insulin doses for each
PPGR cluster that would optimize TIR. Enhancing the PPGR
clustering framework presented here without increasing the
burden of disease management, through the utilization of
meal tags associated with each PPGR event, could ease the
burden of nutrition reporting.

Using the CV as a clustering metric for PPGRs is
clinically advantageous because a PPGR-specific CV would
be expected to be significantly higher than a 24-hour CV,
meaning that applying the 24-hour clinical threshold of
36% ensures tighter internal cohesion than the recommended
glycemic variability limit. In a comparative analysis, k-means
clustering with dynamic time warping produced moderate
cohesion, with 50% (6/12) of participants forming clusters
across at least 1 time-of-day period when set to 3 clusters
(59% of these meeting the CV threshold) and 58% (7/12)
when set to 4 clusters (61% meeting the threshold). By
contrast, our proposed method achieves markedly superior
performance: in all clusters containing more than 1 PPGR,
100% meet the clinical CV threshold, and cluster formation
covers all meal categories for every participant, ensuring both
clinical relevance and complete coverage.

In the dataset observed within this work, carbohydrate
intake alone does not typically predict which cluster
a corresponding PPGR would align to, highlighting the
importance of overall meal composition and the physiological
factors of the individual in determining the PPGR outcome.
In those meals where the average PPGR clusters do not meet
the target CV, there is a large discrepancy in the number of
PPGRs isolated to each cluster, with many of the clusters
resulting from outliers that skew the average CV (as seen
in Table S1 in Multimedia Appendix 1). Outliers are to be
expected given the real-world setting of the dataset.

The limitations of using carbohydrate alone to predict
the PPGR are evident and reflect the known limitations of
carbohydrate counting, with studies showing a 20% mean
error in carbohydrate estimates in people with T1D [53]. The
complexity of carbohydrate-based insulin dosing is compoun-
ded by the varying rates of glucose absorption from different
types of carbohydrates or meals with multiple components,
making them nutritionally complex [53,54]. The absorption
of digestible carbohydrates in comparison to simple glucose,
known as the glycemic index (GI), is well researched [4,20,
54]; however, when used in the real world, with complex
mixed meals, the prediction of the PPGR using solely GI has
shown low precision [13,55]. The unpredictable interaction of
several factors, dietary and otherwise [56-58], contributes to
the complexity and interpersonal nature of the management of
the PPGR [59].

The number of clusters formed per meal type varies with
time of day, highlighting the significant impact of meal
timing on the PPGR. The PPGR response to meals with
the same nutritional breakdown, consumed at different times
of day, is expected to be greater during the night versus
during the day [60]. Current treatment guidelines considering
insulin-to-carbohydrate ratios, which fluctuate throughout the
day, support the argument that carbohydrate content alone
should not dictate the PPGR [61,62]. This enhances the
argument reflected in this work that carbohydrate content of
a meal alone should not be the only determining factor of
the PPGR [59,63]. The work here suggests that the PPGR
is decided by a combination of the complete nutritional
intake and the individual’s physiology, which is supported
by the intraindividual PPGR reproducibility to identical meals
shown in 800 people [15]. Overall, this highlights the need for
the development of a personalized prediction model based on
unique PPGR events [58].

Meal timing, along with nutritional composition, has a
marked effect on the PPGR [17,24,63], resulting in meals of
identical nutritional profiles eliciting different PPGRs when
consumed at different times of day (ie, breakfast vs dinner).
The treatment relevance of the reproducibility of a PPGR to
similar meals at a similar time of day is exacerbated by the
fact that habit is a proven driver of food consumption [64,65],
both in the type of food and in portion size [66]. To enhance
this identified habitual human nature, people with T1D are
encouraged to “establish a routine” in the early stages after
diagnosis [40]. These factors that enhance the repetitive
nature of PPGRs offer the possibility to streamline treat-
ment plans through clustering the PPGRs based on pattern
recognition. The traditional treatment strategies of carbohy-
drate-based insulin dosing have limitations, especially for the
case of high fat, high protein foods, which are consistently
problematic to manage, along with breakfast cereals possibly
due to the high fiber and sugar content [67]. It has been
indicated that a person with T1D will use previous experi-
ence as a determinant for the bolus dose needed to cover a
meal [68]. The optimal indicators of the PPGR in a person
with T1D are the carbohydrate and fat content of a meal [20,
69]. However, reporting multiple macronutrients compounds
the burden on people with T1D, increasing the likelihood
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of reporting errors. Due to the complexity of PPGR predic-
tion, along with the limitations of carbohydrate counting as
a predictor alone, it has been reported that the bolus insulin
dose needed to cover the meal consumed was inaccurately
estimated in 64% of cases [70]. Therefore, assigning PPGRs
to clusters based on an individual’s unique response to a meal
would simplify treatment planning and reduce the reliance
on determining meal carbohydrate content. The presented
PPGR-focused clustering algorithm offers an alternative to
traditional evaluation methods, such as area under the curve
based on GI, which fail to capture individual physiological
responses to meals [59].

The clear establishment of PPGR clusters reflects the
recurrent behaviors of people with T1D, potentially offering
clinical insights for insulin dose decisions and treatment
adjustments to optimize TIR. Utilizing PPGR clusters to
predict BG values from the PPGR of a previously con-
sumed meal could offer a reduction in patient anxiety and
diabetes burden, due to the foreknowledge of upcoming
glycemic fluctuations, ultimately easing the management of
T1D. Although this work investigates real-world scenarios,
the outcomes are supported by the discernible correlation
between PPGRs shown to standardized meals [71]. The
assessment of CGM data for patterns shows that interday
similarities tend to be higher in older people with T1D [18],
which reflects the population in the Ohio dataset used here,
whose average age is in the range of 30.9‐56.4 years. The
presence of repeatable PPGRs in the real world, as seen
in this work, may be attributed to factors such as insulin
utilization and the habitual nature of dietary intake and
lifestyles. This habitual nature of people’s eating patterns,
along with the encouraged ritualistic nature of disease
management in T1D, will allow the use of PPGR clusters
to enhance a feedback loop to better predict BG levels.
The work presented here provides an initial framework for
prediction that is independent of the initial BG level and
not solely reliant on identifying the amount of carbohydrates
consumed, suggesting a more physiological-based glycemic
response to food. A bolus targeting solution algorithm based
on the PPGR-focused clustering algorithm presented here
would allow for an insulin adjustment plan to optimize time
in range for each isolated PPGR cluster.
Limitations and Future Work
This study presents a PPGR clustering method that incorpo-
rates the full 4-hour BG profile, enabling reduced glycemic
variability and contextual insights into individual respon-
ses to specific meal types. While promising, limitations
include reliance on self-reported meals including carbohy-
drate intake, which is prone to consistent under- or overre-
porting within individuals [72], and omission of insulin dose,
insulin-on-board, and carbohydrates-on-board, all of which

influence PPGR. The dataset was derived from multiple
clinical studies with nonstandardized insulin regimens, and
insulin sensitivity was treated as an independent variable.
Future work will address these factors by incorporating
dose, timing, and administration data to improve modeling
accuracy.

Even with reproducible PPGR clusters, translating findings
into insulin dosing strategies remains complex due to
the highly individualized nature of bolus timing and
dose optimization [3,73]. In both research datasets (eg,
OhioT1DM) and real-world contexts, inconsistent meal
logging presents challenges. To mitigate this, we propose a
meal-tagging mechanism to link PPGRs via pattern recog-
nition rather than precise carbohydrate counts (Lubasinski
et al, unpublished data, 2025) [68], enabling clusters to
form based on similar nutritional profiles. This will reduce
reporting burden, align with natural logging habits, and
provide proactive predictions for upcoming meals, including
tailored bolus recommendations aimed at optimizing TIR
while lowering cognitive load.

Limitations also include a small sample size, reducing
statistical power and generalizability. This work is explor-
atory and should be interpreted with caution due to poten-
tial sampling bias. Broader validation is essential, and our
methodology has already been applied to a larger public
dataset [74] and replicated in follow-up work (Lubasinski et
al, unpublished data, 2025). Future multicenter studies with
more diverse populations are recommended to strengthen
statistical power, enable subgroup analysis, and support the
development of scalable, individualized glycemic prediction
and adaptive insulin dosing models.
Conclusions
The clinically relevant and safe PPGR clustering technique
developed in this study categorizes PPGRs into distinct PPGR
clusters based on the participants’ unique response to a
meal. This offers a framework for a more personalized and
adaptable way to manage PPGRs, independent of initial BG
levels or carbohydrate consumption. The reproducibility of
PPGRs offers clinical significance through insights for insulin
dosing decisions and treatment adjustments to optimize TIR,
which may indicate priming insulin doses to flatten the
PPGR spike. This will alleviate patient anxiety by providing
advance knowledge of glycemic fluctuations and by learning
from the past behaviors and outcomes within each cluster.
Notably, this work challenges the conventional notion that
carbohydrate intake alone determines PPGRs. In summary,
we found that PPGRs are reproducible, resulting from a
complex interplay of an individual’s unique physiology and
their overall nutritional intake, underscoring the need for
personalized prediction models.
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