
Original Paper

Managing Exercise-Related Glycemic Events in Type 1
Diabetes: Development and Validation of Predictive Models
for a Practical Decision Support Tool

Sisi Ma1,2, PhD; Ryan Coopergard2, PhD; Mark Clements3, MD, PhD; Lisa Chow4, MD, MS
1Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
2Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
3School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
4Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN, United
States

Corresponding Author:
Sisi Ma, PhD
Institute for Health Informatics
University of Minnesota
420 Delaware Street SE
Minneapolis 55401
United States
Phone: 1 6126267788
Email: sisima@umn.edu

Abstract
Background: Exercise is an important aspect of diabetes self-management. Patients with type 1 diabetes frequently struggle
with exercise-induced hyperglycemia and hypoglycemia, decreasing their willingness to exercise.
Objective: We aim to build accurate and easy-to-deploy models to forecast exercise-induced glycemic events in real-world
settings.
Methods: We analyzed free-living data from the Type 1 Diabetes Exercise Initiative study, where adults with type 1 diabetes
wore a continuous glucose monitor (CGM) while performing video-guided exercises (30-minute exercises at least 6 times
over 4 weeks), along with concurrent detailed phenotyping of their insulin program and diet. We built models to predict
glycemic events (blood glucose ≤54 mg/dL, ≤70 mg/dL, ≥200 mg/dL, and ≥250 mg/dL) during and 1 hour post exercise with
variables from 4 data modalities, such as demographic and clinical (eg, glycated hemoglobin; CGM (blood glucose value
and their summary statistics); carbohydrate intake and insulin administration; and exercise type, duration, and intensity. We
used repeated stratified nested cross-validation for model selection and performance estimation. We evaluated the relative
contribution of the 4 input data modalities for predicting glycemic events, which informs the cost and benefit for including
them in the decision support tool for risk prediction. We also evaluated other important aspects related to model translation into
decision support tools, including model calibration and sensitivity to noisy inputs.
Results: Our models were built based on 1901 exercise episodes for 329 participants. The median age for the participants was
34 (IQR 26‐48) years. Of the participants, 74.8% (246/329) are female and 94.5% (311/329) are White. A total of 182/329
(55.3%) participants used a closed-loop insulin delivery system, while the rest used a pump without a closed-loop system.
Models incorporating information from all 4 data modalities showed excellent predictive performance with cross-validated
area under the receiver operating curves (AUROCs) ranging from mean 0.880 (SD 0.057) to mean 0.992 (SD 0.001) for
different glycemic events. Models built with CGM data alone have statistically indistinguishable performance compared to
models using all data modalities, indicating the other 3 data modalities do not add additional information with respect to
predicting exercise-related glycemic events. The models based solely on CGM data also showed outstanding calibration (Brier
score ≤0.08) and resilience to noisy input.
Conclusions: We successfully constructed models to forecast exercise-induced glycemic events using only CGM data as
input with excellent predictive performance, calibration, and robustness. In addition, these models are based on automatically
captured CGM data, thus easy to deploy and maintain and incurring minimal user burden, enabling model translation into a
decision support tool.
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Introduction
Exercise refers to intentional physical activity, such as
aerobic, resistance, or high-intensity interval training [1].
It has many benefits, including improving overall health
and longevity [2]. However, patients with type 1 diabe-
tes (T1DM) often struggle to meet recommended exercise
guidelines (≥150 minutes of moderate activity per week) [3].
One contributing factor is that exercise can cause signifi-
cant glycemic variability, with strenuous exercise causing
exercise-associated hyperglycemia and subsequent postexer-
cise hypoglycemia resulting from heightened postexercise
insulin sensitivity [4]. Fear of exercise-associated glycemic
variability presents a significant barrier to regular physical
activity in adults with T1DM [5]. On the other hand, exercise
is an important aspect of diabetes self-management. Less
exercise during the COVID-19 pandemic was associated
with poorer glycemic control in people with T1DM and
type 2 diabetes [6]. Glycemic management peri-exercise
presents an ongoing challenge for patients with T1DM. To
address the needs of patients, we aim to develop models and
decision support tools that predict glycemic events safely and
accurately with minimal user burden.

As indicated in several recent reviews and meta-analy-
ses [7-10], many studies have explored predicting glyce-
mic events (hypo- and hyperglycemia) using statistical and
machine learning methods and demonstrated good predictive
performances. However, there is evidence that a general-pur-
pose glycemic event prediction model has reduced perform-
ance when applied to high-activity conditions [11]. A smaller
set of studies focused on the prediction of glycemic event risk
specifically during and post exercise [12-16] reported highly
promising results. The studies using data collected from
highly structured clinical studies with controlled meal intake
and exercise programs achieved very strong to near-perfect
predictivity for hypoglycemia (blood glucose <70 mg/dL)
during and post aerobic exercise [12,13]. Studies using data
collected in real-world free-living conditions reported highly
promising predictivities, ranging area under the receiver
operating characteristic curve (AUROC) from 0.79 to 0.84,
for predicting hypoglycemia during and post exercise [15,16].

Building on prior work, we aim to address important
remaining questions related to model translation into a
decision support tool for exercise-related glycemic event risk
prediction. Specifically, we used the T1DEXI adult data-
set and constructed models to predict a larger set of glyce-
mic events, including hypoglycemia (≤54 mg/dL and ≤70
mg/dL) and hyperglycemia (≥200 mg/dL and ≥250 mg/dL)
both during and post exercise, expanding the outcome,
that is, blood glucose ≤70 mg/dL during exercise, previ-
ously examined in the study by Bergford et al [16]. There

are three study goals: (1) to build high-quality predictive
models for exercise-induced glycemic events using data from
various modalities, including patient demographics, clinical
data, CGM, carbohydrate and insulin intake, and exercise
characteristics; (2) to assess the contributions of the differ-
ent data modalities for predicting glycemic events to inform
cost-benefit trade-offs for model deployment; and (3) to
refine predictive models with the aim of minimizing user
input while remaining a decision support tool for effective
management of glycemic events.

Methods
Study Cohort
We used data from the Type 1 Diabetes Exercise Initiative
(T1DEXI) study [17]. The T1DEXI was a real-world
study of at-home exercise in adults with T1DM, where
adult participants were randomly assigned to complete 6
structured aerobic, interval, or resistance exercise ses-
sions over 4 weeks. Each exercise was approximately 30
minutes, consisting of a 3-minute warm-up and cool-down.
In addition to study exercises, participants also continued
their typical forms of daily physical activity. Information
regarding carbohydrate intake was collected through the
T1DEXI app. Insulin dosing information was extracted
from the insulin pump. Continuous glucose monitoring
(CGM) data were collected using Dexcom G6 sensors (1
measurement every 5 minutes). Diabetes history, glycated
hemoglobin A1c (HbA1c), and demographics were self-
reported and collected via a portal.
Analysis Design

Overall Design
Figure 1 illustrates the analysis design. We designed our
model to assess the risk for hypoglycemic events at two
critical decision points (Figure 1) for managing exercise-rela-
ted glucose events for patients with T1DM (as marked by
purple dots in Figure 1): (1) prior to the start of the exercise
to evaluate the risk of glycemic events during exercise using
data collected from 1-hour pre-exercise (Figure 1A) and (2)
right after the completion of the exercise to evaluate the
risk of glycemic events for the 1-hour post exercise using
data collected from 1-hour pre-exercise and during exercise
(Figure 1B). With glycemic event risk estimated accurately
at these decision points, patients can make adjustments,
for example, to their exercise plan and carbohydrate and
insulin intake, to avoid glycemic events accordingly. Data
from various data modalities were considered as candidate
predictors, including patient demographics, clinical, CGM,
carbohydrate and insulin intake, and exercise characteristics.
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Figure 1. Design of analytical experiments. Subparts (A) and (B) represent the designs for predicting glycemic events during and post exercise,
respectively. GE: glycemic events.

Targets of Interest
Our targets of interest are binary variables representing
the occurrence of glycemic events during and 1 hour
post exercise. Specifically, we examined 4 glycemic
events, including severe hypoglycemia (glucose ≤54 mg/dL),
hypoglycemia (glucose ≤70 mg/dL), hyperglycemia (glucose
≥200 mg/dL), and severe hyperglycemia (glucose ≥250 mg/
dL). Each of the 4 glycemic events was assessed separately
during the exercise and postexercise period, resulting in 8
outcomes.

Candidate Predictors
We extracted and constructed the following data elements
as candidate predictors. All candidate predictors and their
construction are listed in Table S1 in Multimedia Appendix 1.

1. Demographic data: Age, race, and sex.
2. Clinical data: Height, weight, and BMI at the beginning

of the study. Most recent HbA1c prior to the study
period. Out of the 329 participants in our study, 318
reported an HbA1c within 12 months of the start of the
study.

3. CGM data: For predicting during exercise glycemic
events, we used CGM data 1 hour pre-exercise (Figure
1A). For predicting postexercise glycemic events,
we used CGM data 1 hour pre-exercise and dur-
ing exercise. Up to 12 raw CGM readings prior to
the decision point, as well as the minimum, maxi-
mum, mean, SD, and coefficient of variation of the
CGM reading from the appropriate time period, were
constructed and used as candidate predictors.

4. Carbohydrate and insulin intake: For predicting
glycemic events during exercise, we used carbohydrate
and insulin intake data 1-hour pre-exercise (Figure 1).
For predicting postexercise glycemic events, we used
carbohydrate and insulin intake data 1 hour pre-exer-
cise and during exercise. We used the total amount
of carbohydrates in grams from the appropriate time

period and the total insulin intake, including both basal
and bolus insulin, from the appropriate time period.

5. Exercise data: The study arm (aerobic, interval, or
resistance exercise), the self-reported exercise intensity,
and the exercise time of day were included as candidate
predictors. The time of day of exercise was determined
by the time of day of the start of exercise, split into
the categories morning, afternoon, and night. Morning,
afternoon, and night were defined as the periods of
time between 5 AM and noon, between noon and
5 PM, and between 5 PM and 5 AM, respectively.
For predicting postexercise glycemic events, we also
included self-reported exercise duration as a candidate
predictor for postexercise glycemic event prediction.

Overview of Models and Analysis
To address the three goals mentioned above, we conducted
three sets of analyses.

1. To achieve our first goal, that is, building high-quality
predictive models for exercise-induced glycemic events
using all available data, we built predictive models for
all 8 outcomes of interest using variables from all data
modalities, including patient demographics, clinical
data, CGM data, carbohydrate and insulin intake, and
exercise characteristics.

2. To achieve our second goal, that is, assessing the
contribution of different data modalities for predicting
glycemic events, we built models for all 8 outcomes
of interest using data from each of the following
4 data modalities individually: patient demographics
and clinical data, CGM data, carbohydrate and insulin
intake, and exercise characteristics.

3. To achieve our third goal, that is, refining predictive
models with the aim of clinical translation, we explored
various methods to improve different aspects of model
translation, including building models with variables
that are easier to measure, enhancing model calibration,
and assessing model performance with noisy data.
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Data Processing
To ensure sufficient data were available for each data
modality to enable the comparison among data modalities
(the second study goal), we included participants who had
at least 80 recorded carbohydrate intakes, 6000 CGM reads,
and 200 insulin intakes over the 4-week period (Figure S1
in Multimedia Appendix 1 shows the distribution of number
of carbohydrate intakes, number of CGM reads, and number
of insulin intakes). We did not include participants that are
on multiple daily injections. Regarding exercise events, we
only included study exercises (ie, the video-guided exercise
as part of the TIDEXI study), since the types of exercise were
well defined. To be able to compute candidate predictors, we
included exercise events that had at least 10 CGM measure-
ments 1 hour pre-exercise, 2 CGM measurements during
exercise, and 10 CGM measurements 1 hour post exercise.
Of the 2021 total number of exercises, 120 were filtered out
with the criterion described above, resulting in 1901 exercise
events. Of the 1901 exercise events, 1895 had more than 4
CGM readings. The median number of CGM readings per
exercise was 6 (IQR 4-6 readings; spanning 30 minutes).
The final dataset included 1901 exercise events from 329
participants.

Methods for Predictive Modeling

Model Selection, Performance Estimation, and
Validation
We conducted model selection and performance estimation
using stratified 5-fold nested cross-validation (NCV). The
inner loop of the NCV was used to select the best classifier,
feature selection method, and hyperparameter combinations
while the outer loop evaluated the performance of the selected
models. The NCV procedures were repeated 4 times to reduce
the variation associated with splitting the data into 5 folds.
In our primary analysis, exercise episodes were randomly
distributed into the folds of the NCV, which means that
different exercise episodes from the same participant could
appear in both training and testing folds. We also conducted
a sensitivity analysis where multiple exercise episodes from
the same individual were included in the same NCV fold
to account for person-specific effects (results are similar to
our primary analysis and reported in Tables S2 and S3 in
Multimedia Appendix 1).

Feature Selection
For feature selection, we used all features, support vector
machine recursive feature elimination [18], and generalized
local learning, parent children (GLL-PC with the conditioning
set size parameter K=1, 2, or 3) [19]. In theory, GLL-PC can
select a parsimonious set of variables while retaining maximal
information content regarding the prediction target. GLL-PC
has also been shown to be highly successful in real-world
applications [19,20].

Classification
We considered the following classifiers: logistic regression,
random forest (with mtry=sqrt [number of variables], number

of trees=500), and support vector machines with a polynomial
kernel (with polynomial degree paramter P=1, 2, and the box
constraint parameter C=0.1, 1, 10).

Missing Values
Treatment for missing values was incorporated into the
modeling pipeline to ensure that imputation on the valida-
tion data was performed according to the distribution of the
training data, preventing information leakage. Missing values
for non-CGM predictor variables were handled using median
imputation. Missing CGM values were replaced with the
last nonmissing observation carried forward if available, or
the next value carried backward otherwise. If multiple CGM
values were missing consecutively, the missing value will be
progressively carried forward or backward, if possible. For
example, in the following sequence of measurements {t0, t1,
t2, t3, t4, t5}, if t2, t3, t4 are missing, they will all be imputed
with the value of t1, that is, the last nonmissing observation
carried forward in time. We ensured that observations from
the prediction horizon (ie, during exercise or post exercise)
were never carried backward to be used as features. The
percentage of missing CGM values ranged from 0% to 20%
across different exercise events, with 99.5% of events having
at most 10% missing CGM data.

Performance Metric
We used the AUROC, sensitivity, and specificity to evaluate
the predictive performance of the models. All performance
metrics were estimated within the NCV pipeline to obtain
unbiased estimates. To estimate sensitivity and specificity in
each fold of the outer loop, we first determined the thresh-
olds in the inner loops that maximized the J-index (J=sensitiv-
ity+specificity–1). To compare the sensitivity and specificity
of our model to prior literature, we applied thresholds to
match the sensitivity of the previously reported models. We
then calculated the sensitivity and specificity on the outer
loop fold using the mean of these thresholds. We used the
Brier score to evaluate model calibration.

Information Content Analysis
To examine the predictive performance of the 4 different
data modalities in the dataset (demographics and clinical data,
CGM data, carbohydrate and insulin intake, and exercise
characteristics), we trained classifiers on each modality
individually and compared the predictive performance to the
model trained with all features.
Methods for Improving Model Translation
to Decision Support Tools

Models With Low Complexity for Deployment
and User Burden
When translating models to decision support tools, the
complexity of constructing, diagnosing, and maintaining the
tool is a key consideration. Models that include variables
collected from different sources entail a more complex
decision support tool. This complex decision support tool
is more prone to failure in real-world settings and requires
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more resources to maintain. In addition, variables from data
sources that are not automatically captured (eg, carbohydrate
intake) need to be manually inputted, resulting in increased
user burden. We compare models using all 4 data sources
to assess whether models based on single, easy-to-acquire
data sources performed similarly to models using multiple
data sources (ie, the information content analysis from the
“Information Content Analysis” section).

Model Performance With Noisy Data
To assess the robustness of our models to noise in CGM
data at prediction time, we added Gaussian noise of differ-
ent levels to the outer loop testing data and evaluated the
predictive performance. This approach mimics real-world
conditions where CGM measurements may contain more
noise than the data used for training the model. An issue with
potential noise in CGM measurements has been documented.
A recent study by Skroce et al [21] demonstrated that the
average CGM noise is up to 15% mean absolute relative
difference across all exercise intensities investigated when
compared to capillary glucose. We considered 4 different
noise levels, where Gaussian noise with a mean of x and SD
of p was added to each CGM measurement, with x being the
original CGM value and p representing noise levels of (5%,
10%, 15%, and 20%). This corresponds to mean absolute
relative differences of 4%, 8%, 12%, and 16%, respectively.

Model Calibration
The close correspondence between model-predicted risk and
observed risk is crucial for deploying the model in a real-
world setting [22]. Deviations of predicted risk from the
actual risk can lead to model misinterpretation and misuse.
Therefore, we evaluated the calibration of our models using
the Brier Score [23]. To potentially improve model calibra-
tion, we applied isotonic regression, Platt scaling, and spline
calibration [24] to recalibrate the model predictions.

Analysis Tools
Analyses were conducted using custom scripts in MATLAB
2023b (MathWorks) and R version 3.5.0 (R Foundation for
Statistical Computing).
Ethical Considerations
This study is based on deidentified, publicly available data
and is not human subjects research.

Results
Participant and Exercise Characteristics
Table 1 shows characteristics of participants. The median
age for the 329 participants was 34 (IQR 26‐48) years. The
majority of participants were female (246/329, 74.8%) and
White (331/329, 94.5%). The median HbA1c was 6.5% (IQR
6.1%‐7.0%). The median BMI was 24.8 (IQR 22.86‐27.46).
A total of 326 (>99%) patients were on fast- or rapid-acting
insulin, while the remaining 3/329 (<1%) patients were on
short-acting insulin. Notably, 18/329 (5.5%) participants were
additionally taking metformin. A total of 18,329 (55.3%)
participants used a closed-loop insulin delivery system, while
the remaining 147/329 (44.7%) participants used a pump
without a closed-loop system. The median duration of T1DM
was 16 (IQR 10.75‐24) years. The median total daily insulin
dose was 37.3 (IQR 28.06‐47.96) units. There were similar
numbers of participants in each exercise intervention group:
122/329 (34%) in the aerobic training group, 113/329 (34.3%)
in the interval training group, and 104/329 (31.6%) in the
resistance training group. Over the 4 weeks of the study, the
median number of exercise events per participant was 6 (IQR
4‐6).

Table 1. Participant characteristics reported as median and IQR for continuous variables, and count and percentage for discrete variables.
Variable name Descriptive statistics
Age (years), median (IQR) 34 (26-48)
Sex, n (%)
  Male 83 (25.2)
  Female 246 (74.8)
Race, n (%)
  White 311 (94.5)
  Black 1 (0.3)
  Asian 5 (1.5)
  American Indian or Alaska Native 1 (0.3)
  Other 5 (1.5)
Number of medications, median (IQR) 2 (2-2)
  Insulin delivery method, n (%)
   Closed-loop 182 (55.3)
   Pump without closed-loop 147 (44.7)
Hemoglobin A1c (%), mean (SD) 6.56 (0.66)
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Variable name Descriptive statistics
  Number of participants per exercise type, n (%)
   Aerobic 122 (34)
   Resistance 104 (31.6)
   Interval 113 (34.3)
Number of exercises per participant, median (IQR) 6 (5-6)
  Number of peri-exercise glycemic events per participant, median (IQR)
   ≤54 during exercise 0 (0-0)
   ≤70 during exercise 0 (0-0)
   ≥200 during exercise 1 (0-1)
   ≥250 during exercise 0 (0-0)
   ≤54 post exercise 0 (0-0)
   ≤70 post exercise 0 (0-1)
   ≥200 post exercise 1 (0-1)
   ≥250 post exercise 0 (0-0)

Characteristics of Exercise Events
Table 2 summarizes the characteristics of exercise events. Of
the 1901 exercise events included in the analysis, the median
duration was 30 (IQR 22‐30) minutes, with on average
12.4% (SD 14.7%) of missing CGM measurements during
the exercise, ranging from 0% to 66.7%. Similar numbers
of exercise episodes were observed for each exercise type,
with 649 aerobic exercises, 659 interval exercises, and 593
resistance exercises. A total of 596 (27.8%) of the 1901
exercises started in the morning. Severe hypoglycemia during

and post exercise was observed, and morning exercise was
less frequent. Only 0.17% of morning exercises resulted in
hypoglycemic events (≤54 mg/dL) during exercise, compared
to 1.23% observed during exercises at other times of the
day (χ21=4.1; P=.04). Severe hypoglycemia (≤54 mg/dL) post
exercise occurred in 1.84% of morning exercises, compared
to 4.75% at other times of the day (χ21=8.5; P=.003). There
was no statistically significant difference in the likelihood of
hypoglycemic events (≤54 mg/dL) across different exercise
types (χ22=2.1; P=.35).

Table 2. Exercise characteristics reported as median and IQR for continuous variables, and count and percentage for discrete variables.
Variable names During exercise Post exercise

Hypoglycemia Hyperglycemia Hypoglycemia Hyperglycemia
Total ≤54 ≤70 ≥200 ≥250 ≤54 ≤70 ≥200 ≥250

Number of exercise events,
n (%)

1901 17 (0.9) 88 (4.6) 286 (15) 76 (4) 73 (3.8) 255 (13.4) 315 (16.6) 92 (4.8)

Exercise duration (minutes),
median (IQR)

30 (22-30) 30,
(30-30)

30
(24.5-30)

30 (22-30) 30 (22-30) 30 (22-30) 28 (22-30) 30 (22-30) 30 (24.5-30)

Number of morning
exercises, n (%)

529 1 (0.2) 15 (2.8) 77 (14.6) 14 (2.6) 11 (2.1) 60 (11.3) 92 (17.4) 25 (4.7)

Number of evening
exercises, n (%)

780 10 (1.3) 48 (6.2) 129 (16.5) 36 (4.6) 41 (5.3) 127 (16.3) 136 (17.4) 40 (5.1)

Number of aerobic
exercises, n (%)

649 3 (0.5) 30 (4.6) 102 (15.7) 22 (3.4) 27 (4.2) 97 (14.9) 104 (16) 35 (5.4)

Number of interval
exercises, n (%)

659 7 (1.1) 32 (4.9) 91 (13.8) 31 (4.7) 28 (4.2) 92 (14.0) 111 (16.8) 27 (4.1)

Number of resistance
exercises, n (%)

593 7 (1.2) 26 (4.4) 93 (15.7) 23 (3.9) 18 (3) 66 (11.1) 100 (16.9) 30 (5.1)

Models Forecasting Exercise-Related
Glycemic Events
We built a set of models using variables from all available
data modalities, including patient demographics and clinical
data, exercise characteristics, CGM data, and insulin and
carbohydrate intake data. The forecasting performance for all
glycemic events during and after exercise was excellent, with
mean AUROC values ranging from 0.880 to 0.992 (Table 3).

The AUROCs for predicting glycemic events during exercise
were generally higher compared to those for postexercise
prediction. It is worth noting that, although the modeling
process had access to all 28 variables (for during-exercise
predictions) or all 35 variables (for postexercise predictions)
from the 4 data modalities (patient demographics, clinical
data, CGM data, and carbohydrate and insulin intake), feature
selection was performed to optimize predictive performance.
This process resulted in models that used only a subset of
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the available variables, as shown in Table 3. The number
of variables selected in each model varied from 2 to 35.

We included model coefficients or variable importance of all
models in Table 3 and Table S4 in Multimedia Appendix 1.

Table 3. Predictive performances of models using data from all four modalities for each glycemic event at different prediction horizons (measured by
area under the receiver operating characteristic curve) and number of predictors from each data module that was selected into the model by feature
selection.

Glycemic event
AUROCb Number of predictors
Mean (SD) Total CGMa Clinical and demographics Exercise Carbohydrate and insulin

During
  Hypo
   ≤54 0.880 (0.057) 28 17 7 2 2
   ≤70 0.907 (0.009) 8 7 0 1 0
  Hyper
   ≥200 0.987 (0.001) 2 2 0 0 0
   ≥250 0.992 (0.001) 2 2 0 0 0
Post
  Hypo
   ≤54 0.902 (0.007) 8 7 1 0 0
   ≤70 0.892 (0.006) 14 14 0 0 0
  Hyper

   ≥200
0.901 (0.006) 35 22 7 2 4

   ≥250 0.924 (0.003) 13 11 1 0 1
aCGM: continuous glucose monitoring.
bAUROC: area under the receiver operating characteristic curve.

Models Built Using Only CGM Data
To determine the predictive capability of individual data
modalities, we developed models using each data modal-
ity separately. Figure 2 summarizes the performance of
these models. The left panel shows glycemic events during
exercise, and the right panel represents glycemic event post
exercise. The height and error bar of the bar plots repre-
sent the mean and SD of AUROC. As shown in Figure
2 and Table S2 in Multimedia Appendix 1, the models
constructed with the CGM data resulted in excellent AUROC
ranging from 0.894 to 0.989. The predictive performance

of these models was not statistically significantly different
from models using all data modalities for any glycemic
event outcomes (P>.05). Other data modalities showed low
predictive power (mean AUROCs ≤0.659), with significantly
lower performance compared to the full model (P<.01). When
considered collectively, these results indicate that incorporat-
ing patients’ demographic traits, clinical condition, carbohy-
drate and insulin consumption, and exercise variables, such
as timing and type, fails to furnish additional information
regarding exercise-induced glycemic events beyond what is
provided by the CGM data.
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Figure 2. Predictive performances for the models using data from individual data modalities compared to models that use all 4 modalities for each
Glycemic Event. AUROC: area under the receiver operating characteristic curve; BG: blood glucose; CGM: continuous glucose monitor.

We included the CGM-only model parameters or variable
importance in Table S5 in Multimedia Appendix 1, and we
compared the performance of the CGM-only models with
models trained on a single CGM measurement in Table S8
in Multimedia Appendix 1. We also included an executable
version of these models.
Deployment Advantages of Models Using
Only CGM Features

Deployment Complexity and User Burden
The CGM-only model is preferable for deployment due
to its high predictive performance and lower complexity
of deployment. As stated previously, for all 8 glycemic
outcomes, the model with all data modalities did not perform
statistically significantly better compared to the CGM-only
model, indicating the glycemic outcomes can be predicted
equally well with and without the other variables, such as
demographics, clinical variables, carbohydrate and insulin,
and exercise characteristics. This is advantageous for model
deployment. Since CGM data is automatically captured, it can
be easily fed into the prediction model without user interven-
tion, reducing the burden on patients. In contrast, real-world
carbohydrate data is difficult to measure accurately, and
collecting this data incurs an additional burden on patients.
Data from insulin pumps are automatically documented,

but extracting and integrating insulin pump data also adds
additional complexity to a decision support tool for forecast-
ing glycemic events.

Noise Tolerance
Another consideration of model deployment is the impact
of measurement noise in CGM data. Different individuals’
CGM measurements often exhibit varying levels of noise,
influenced by factors such as sensor calibration, activity
level, and pressure on the sensor [21,25-28]. We empiri-
cally assessed the performance degradation of our models
under different levels of noise (5%, 10%, 15%, and 20%)
to the CGM data at prediction time (Figure 3 and Table
S3 in Multimedia Appendix 1). In Figure 3, the left panel
shows glycemic events during exercise, and the right panel
represents glycemic events post exercise. The height and
error bar of the bar plots represent the mean and SD of the
AUROC. As expected, increased noise led to a reduction in
model performance. However, the degradation was generally
moderate, except for predicting hyperglycemia (blood glucose
≥250 mg/dL) during exercise, where a decrease in AUROC of
0.216 was observed with 20% noise. For the other 7 out of
the 8 glycemic events across different prediction horizons, the
decreases in AUROC were small to moderate (<0.12) even
when up to 20% noise was added.
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Figure 3. Predictive Performance (area under the receiver operating characteristic curve) of Model using only continuous glucose monitoring features
with different amounts of added noise in the continuous glucose monitoring features data. AUROC: area under the receiver operating characteristic
curve; BG: blood glucose.

We also examined whether models built with additional data
modalities (beyond CGM) demonstrated greater resilience to
added noise (Table S3 in Multimedia Appendix 1). We found
no statistically significant difference in the AUROCs between
the CGM-only models and those incorporating additional
data modalities. This suggests that the CGM-only model
has a similar level of noise tolerance compared to the
more complex models using multiple data sources, further
supporting the use of the CGM-only model in real-world
settings due to its simplicity and robustness.

Sensitivity, Specificity, and Calibration
Model sensitivity, specificity, and calibration are crucial
factors for determining how and when a model should be

applied in real-world settings. Table 4 presents the sensitivity,
specificity, and calibration results of the CGM-only model.
Sensitivity and specificity are influenced by the threshold
used to binarize the continuous model predictions. We report
the mean and SD from the NCV outer loop for sensitivity
and specificity using a threshold that maximized the J-index
in the inner loop of the NCV. Generally, our models showed
good sensitivity (>0.76, except for hypoglycemia ≤54 mg/dL)
and high specificity (>0.80 for all outcomes). In compari-
son with other studies, our models demonstrated similar or
better sensitivity at equivalent specificity levels (Table S6 in
Multimedia Appendix 1).

Table 4. Sensitivity, specificity, and calibration results of the continuous glucose monitoring features–only models.

Event type Sensitivity, mean (SD)
Specificity, mean
(SD)

Brier score, mean (SD)
Without recalibration With recalibration

During
  Hypo
   ≤54 0.667 (0.193) 0.893 (0.065) 0.017 (0.008) 0.006 (0.003)
   ≤70 0.770 (0.014) 0.909 (0.011) 0.035 (0.009) 0.034 (0.010)
  Hyper
   ≥200 0.931 (0.005) 0.943 (0.039) 0.040 (0.034) 0.029 (0.006)
   ≥250 0.905 (0.022) 0.978 (0.003) 0.010 (0.000) 0.011 (0.004)
Post
  Hypo
   ≤54 0.799 (0.047) 0.802 (0.016) 0.033 (0.005) 0.033 (0.011)
   ≤70 0.787 (0.018) 0.825 (0.012) 0.077 (0.001) 0.072 (0.014)
  Hyper
   ≥200 0.762 (0.019) 0.867 (0.014) 0.075 (0.001) 0.080 (0.009)
   ≥250 0.790 (0.010) 0.899 (0.024) 0.028 (0.001) 0.023 (0.006)
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We also evaluated the Brier score for model calibration
before and after applying different calibration methods (Table
4). The models achieved excellent calibration performance
without additional calibration methods (Brier score <0.1
for all models). Applying calibration techniques did not
significantly improve calibration for any of the glycemic
outcomes (adjusted P>.05). Table 4 shows the Brier scores
before and after applying the isometric regression. Results
using Platt and spline calibration methods are similar and
reported in Table S7 in Multimedia Appendix 1.

Discussion
Principal Findings
This study has made several key contributions. First, we
leveraged a large and comprehensive dataset capturing
free-living exercise episodes of participants with T1DM and
built high-quality predictive models for exercise-induced
glycemic events. These models used data from multiple
modalities, including patient demographics, clinical data,
CGM data, carbohydrate and insulin intake, and exercise
characteristics. The predictive performance of our models
for all examined exercise-induced glycemic events was
excellent, with mean AUROCs >0.880 (SD 0.057). Second,
we empirically assessed the information content of individ-
ual data modalities. Our results showed that the predictive
performance of models using only CGM data was statistically
indistinguishable from models incorporating variables from
all data modalities. This suggests that a high-quality and
cost-effective decision support tool can be built solely based
on CGM data, resulting in cost savings. Third, we demonstra-
ted the CGM-based models’ good calibration and robustness
to noisy inputs, in addition to excellent predictive perform-
ance. Our CGM-based models have strong potential to be
translated into a decision support tool that is easy to deploy
and maintain, offering support for patients with T1DM.
Comparison to Prior Work
This study is among the few that focus on predicting exercise-
induced glycemic events for the adult T1DM population
in nonlaboratory settings using a large sample size. Our
models demonstrated similar performances for exercise-rela-
ted glycemic events compared to previously reported studies
[12-16] (Table S4 in Multimedia Appendix 1). We made
additional contributions by building models for a larger
variety of outcomes.
Strength
A major strength of this study is that we assessed and
refined the models for translating into decision support tools
that are accurate, robust, and easy to deploy and maintain,
while minimizing the burden on patients. To the best of our
knowledge, this is the first study to examine multiple crucial
aspects of model translation into decision support tools for
managing exercise-related glycemic events in T1DM.

Limitations
The first limitation relates to the dataset. We choose to derive
our models based on the T1DEXI, since it is one of the
largest and most comprehensive datasets available that studies
glucose control peri-exercise in the real-world setting. Despite
its comprehensiveness, the T1DEXI population is relatively
young (median age 34, range 18-69, IQR 26-48 years) years
and predominantly White, which may limit the generaliza-
bility of the models to the broader clinical T1DM popula-
tion. Similarly, the exercise episodes in the T1DEXI were
relatively uniform in duration and self-reported intensity,
which may not reflect the full diversity of real-world
exercise activities. The second limitation relates to the types
of variables examined related to participants and exercise
episodes. Although our findings suggest that CGM data alone
contains similar predictive information compared to all 4
data modalities examined, including additional information,
such as sleep data, more detailed dietary information, and
physical activity data from accelerometers could enhance
model performance and robustness. These data elements were
either not available in T1DEXI or difficult to construct from
available data due to lack of standardized methods. Third,
while our models successfully flag exercise episodes that are
more likely to result in glycemic events, they do not currently
suggest specific interventions to mitigate these risks.
Future Directions
To address the first 2 limitations mentioned previously, future
work can validate models developed in this study and develop
new models de novo based on data that is more compre-
hensive and from a more diverse population. To address
the third limitation, computational causal modeling techni-
ques [29] can be applied to a dataset containing a wide
range of potentially modifiable causal factors for glycemic
events. This approach can uncover personalized interven-
tion strategies to reduce glycemic events both in the acute
period during and after exercise, as well as over a lon-
ger time horizon. Further, we empirically demonstrated that
models using CGM data only have statistically indistinguish-
able performance compared to models using data from all
modalities (Figure 2, Table S2 in Multimedia Appendix 1).
This phenomenon is related to the Rashomon effect and target
information equivalence, that is, there are often a multitude of
models with optimal and near-optimal performance [30,31].
Future work can dissect and catalog the information-equiva-
lent variables for glycemic events. This can potentially lead to
both improved mechanistic understanding of glycemic events
and their care [30,32-34].
Conclusion
We developed multiple predictive models for exercise-
induced glycemic events, achieving excellent predictive
performance. Notably, the models using automatically
captured CGM data exhibited strong performance, are
well-calibrated, are cost-effective, and are robust to noisy
input data. These models can be translated into a high-per-
formance and easy-to-deploy decision support tool. This
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study marks an important first step toward creating a practical
decision support tool for managing exercise-induced glycemic
events in patients with T1DM.
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