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Abstract
Background: Clinicians currently lack an effective means for identifying youth with type 1 diabetes (T1D) who are at
risk for experiencing glycemic deterioration between diabetes clinic visits. As a result, their ability to identify youth who
may optimally benefit from targeted interventions designed to address rising glycemic levels is limited. Although electronic
health records (EHR)–based risk predictions have been used to forecast health outcomes in T1D, no study has investigated
the potential for using EHR data to identify youth with T1D who will experience a clinically significant rise in glycated
hemoglobin (HbA1c) ≥0.3% (approximately 3 mmol/mol) between diabetes clinic visits.
Objective: We aimed to evaluate the feasibility of using routinely collected EHR data to develop a machine learning model
to predict 90-day unit-change in HbA1c (in % units) in youth (aged 9‐18 y) with T1D. We assessed our model’s ability to
augment clinical decision-making by identifying a percent change cut point that optimized identification of youth who would
experience a clinically significant rise in HbA1c.
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Methods: From a cohort of 2757 youth with T1D who received care from a network of pediatric diabetes clinics in the
Midwestern United States (January 2012-August 2017), we identified 1743 youth with 9643 HbA1c observation windows (ie,
2 HbA1c measurements separated by 70‐110 d, approximating the 90-day time interval between routine diabetes clinic visits).
We used up to 5 years of youths’ longitudinal EHR data to transform 17,466 features (demographics, laboratory results, vital
signs, anthropometric measures, medications, diagnosis codes, procedure codes, and free-text data) for model training. We
performed 3-fold cross-validation to train random forest regression models to predict 90-day unit-change in HbA1c(%).
Results: Across all 3 folds of our cross-validation model, the average root-mean-square error was 0.88 (95% CI 0.85‐0.90).
Predicted HbA1c(%) strongly correlated with true HbA1c(%) (r=0.79; 95% CI 0.78‐0.80). The top 10 features impacting model
predictions included postal code, various metrics related to HbA1c, and the frequency of a diagnosis code indicating difficulty
with treatment engagement. At a clinically significant percent rise threshold of ≥0.3% (approximately 3 mmol/mol), our
model’s positive predictive value was 60.3%, indicating a 1.5-fold enrichment (relative to the observed frequency that youth
experienced this outcome [3928/9643, 40.7%]). Model sensitivity and positive predictive value improved when thresholds for
clinical significance included smaller changes in HbA1c, whereas specificity and negative predictive value improved when
thresholds required larger changes in HbA1c.
Conclusions: Routinely collected EHR data can be used to create an ML model for predicting unit-change in HbA1c between
diabetes clinic visits among youth with T1D. Future work will focus on optimizing model performance and validating the
model in additional cohorts and in other diabetes clinics.
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Introduction
Background
Type 1 diabetes (T1D), an immune-mediated chronic disease
that affects more than 1 in 300 youth in the United
States, is characterized by significant to near-total loss of
endogenous insulin production [1,2]. Given insulin’s critical
role in maintaining glucose homeostasis, the most immedi-
ate and pervasive downstream effect of insulin deficiency
is persistent, life-threatening hyperglycemia that must be
identified through frequent glucose monitoring and managed
with lifelong administration of exogenous insulin [1].

Youth with T1D attend routine (often quarterly) diabe-
tes clinic visits where clinicians use glycated hemoglobin
(HbA1c) testing to assess glycemic status [3,4]. Considered
the gold standard for monitoring long-term glycemia in
diabetes, HbA1c testing provides an objective measure of
an individual’s mean blood glucose during the previous
2‐3 months [3,5]. To achieve glycemic goals, youth with
T1D are increasingly being encouraged to adopt sophis-
ticated diabetes technologies, such as hybrid closed-loop
insulin pumps and continuous glucose monitoring (CGM)
systems [6,7]. Concurrent with the rising availability of these
technologies and a strong research base linking HbA1c with
the development of diabetes complications, the American
Diabetes Association has incrementally lowered its recom-
mended HbA1c goals for youth with diabetes [4,8].

Despite increased adoption of advanced diabetes technolo-
gies over time, data from the T1D Exchange indicated that
between 2010‐2012 and 2016‐2018, mean HbA1c in US
youth with T1D rose from 7.8% (62 mmol/mol) to 8.4% (68
mmol/mol); and in 2016‐2018, only 16% (686/4346) of youth
were meeting the American Diabetes Association’s (then)

recommended HbA1c goal of <7.5% (<58 mmol/mol) [6]. A
separate analysis of 2015‐2016 data indicated that fewer than
20% (1817/9685) of US youth with T1D less than the age of
18 years had an HbA1c<7.5% (58 mmol/mol); and fewer than
10% (690/9685) of youth had an HbA1c<7% (53 mmol/mol)
[9]. Previous research has shown that 1 in 5 youth with T1D
experience an increasing HbA1c trajectory between the ages
of 8 and 18 years [10].

Through a phenomenon known as “metabolic memory,”
periods of hyperglycemia are known to increase risk for
diabetes-related microvascular and macrovascular compli-
cations for >10 years following initial exposure [11].
A similar—but beneficial—legacy effect is observed in
individuals with T1D who are exposed to near-normal
glycemia and later experience more favorable long-term
diabetes outcomes, even when glycemic levels later rise [11,
12]. These findings point to a critical need to optimize the
early identification of youth who are candidates for targeted
interventions to improve deteriorating glycemia.

The increasing availability of real-world clinical data
housed in electronic health records (EHR) is generating
opportunities to investigate population-level health outcomes,
develop classification and risk prediction models to aug-
ment clinical decision-making, and accelerate diagnostic
and therapeutic discovery [13-15]. Machine learning (ML)
has been used to meaningfully advance understanding of
numerous clinical outcomes in individuals with diabetes
[16-18], and EHR-based risk predictions have been lever-
aged to generate insights across the health-disease spectrum,
including T1D [19-21].

Given the multifactorial etiology of rising glycemic levels
in youth with T1D, it remains difficult to identify youth
who are at the highest risk of experiencing increased HbA1c
between routine diabetes clinic visits. To date, no study has
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investigated the feasibility of or potential for using EHR data
to develop a predictive model to identify youth with T1D
who will experience a clinically significant rise in HbA1c
between clinic visits. Such a model could augment clinical
decision-making and facilitate initiation of interventions that
increase behaviors known to improve glycemia in high-risk
youth.

Objective
We sought to evaluate the feasibility of using ML to identify
youth (aged 9‐18 y) with T1D who were candidates for
behavioral and care delivery interventions designed to reduce
or prevent a predicted rise in HbA1c. To do so, we used
routinely collected EHR data to develop an interpretable
and clinically actionable ML model to forecast unit-change
(ie, increase or decrease, in % units) in HbA1c in 90 days.
We then evaluated the ability of our model to augment
clinical decision-making by identifying a percent-change cut
point that optimized identification of youth who experienced
a clinically significant rise in HbA1c at their subsequent
diabetes clinic encounter.

Methods
Study Design
We applied the random forest (RF) regression algorithm to
longitudinal EHR data to develop a model to forecast 90-day
unit-change in HbA1c (in % units). We used RF due to its
utility for constructing accurate, noise-resilient ML models
from high-dimensional data [22,23]. To evaluate our model’s
ability to identify youth who, based on predicted rise in
HbA1c, were true candidates for intervention, we evaluated
the sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) of predicted versus
actual change in HbA1c at several cut points: ≥0.3%, ≥0.4%,
≥0.5%, and ≥0.6% (approximately 3 mmol/mol, 4 mmol/mol,
5 mmol/mol, and 7 mmol/mol, respectively).

Source Data and Study Cohort
Using data extracted from Oracle Health EHR (formerly
Cerner Millenium Electronic Medical Record System;
Nashville, Tennessee) [24], we used diagnosis code and
laboratory data to identify a cohort of 2757 youth with T1D
who received care from a network of pediatric diabetes clinics
in the Midwestern United States between January 2012 and
August 2017. Criteria used to identify this T1D cohort are
provided in Multimedia Appendix 1.

HbA1c Measurements and Observation
Windows
For youth with T1D, we identified health encounters that
were associated with HbA1c measurements (ie, laboratory and
point-of-care HbA1c measurements) and HbA1c observation
windows that met inclusion criteria. Each HbA1c observa-
tion window comprised 2 documented HbA1c measurements
(from a single individual) separated by a time interval of
70‐110 days. The 70‐ to 110-day time interval was selected to

approximate the 3-month (ie, 90-day) time interval between
regularly scheduled diabetes clinic visits.

Certain encounters with HbA1c data were excluded from
consideration and therefore not included in any HbA1c
observation windows. HbA1c values documented at or shortly
after T1D diagnosis tend to be more extreme than those
documented at subsequent time points (ie, after an individ-
ual with T1D begins receiving regular insulin injections) [25,
26]. As such, each youth’s first-documented encounter with
an HbA1c value was excluded under the assumption that a
youth’s first HbA1c measurement may have been obtained
at the time of T1D diagnosis. We also excluded data from
encounters where youth were <9 years old, as the incidence of
clinically significant rise in HbA1c is less common in this age
group [6,27].

We excluded observation windows associated with HbA1c
measurements that were separated by <70 days or >110 days,
as well as those where the first encounter for a given HbA1c
observation window (ie, the index encounter) was associ-
ated with an HbA1c of >12% (>108 mmol/mol). The latter
exclusion criterion was used because individuals with an
HbA1c of >12% (>108 mmol/mol) were already considered
ideal candidates for intervention. Encounter-level data from
all HbA1c observation windows that met inclusion criteria
were included in our final dataset, which could include data
from multiple HbA1c observation windows per individual.
Outcome Definition
The forecasted outcome was unit-change in HbA1c (in %
units) at the end of 90 days. After predicting each youth’s
percent change in HbA1c in 90 days (ie, at the time of
the follow-up encounter), we used various thresholds to
determine an HbA1c percent rise cut point that optimized
identification of individuals who were true candidates for
intervention at the time of their index encounter: ≥0.3%,
≥0.4%, ≥0.5%, and ≥0.6% (approximately 3 mmol/mol, 4
mmol/mol, 5 mmol/mol, and 7 mmol/mol, respectively).
We considered these cut points to be clinically relevant
and actionable, given that a long-term decrease of ≥0.3%
(3 mmol/mol) in HbA1c is associated with reduced risk of
long-term diabetes complications [28].
Data Extraction
We used SQL queries to comprehensively extract up to
approximately 5 years (January 2012-August 2017) of
structured and unstructured EHR data for each youth with
index and follow-up encounter data for at least 1 qualifying
HbA1c observation window. These data included demograph-
ics, laboratory results, vital signs, anthropometric measures,
encounter locations, medications, diagnosis codes, procedure
codes, structured clinical vocabulary codes, and free-text
data from diabetes- and non–diabetes-related clinical notes,
messages, and reports.

Demographic data included sex (female, male), age,
ethnicity (non-Hispanic, Hispanic), race (White, Black or
African American, Asian, American Indian or Alaska Native,
Native Hawaiian or Pacific Islander, and other), primary
language (eg, English or Spanish), health plan type; and
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postal code (3- and 4-digit postal code prefixes). Additional
extracted data included up to approximately 5 years of all
available laboratory test results, clinical event and observation
data, vital signs (heart rate, respiratory rate, oxygen satura-
tion, and blood pressure), anthropometric measures (weight,
height, and BMI), and medications (mapped to standard
generic drug names [29]). We also extracted diagnosis codes
(ie, ICD-9 [International Classification of Diseases, Ninth
Revision], ICD-10 [International Statistical Classification of
Diseases, Tenth Revision], and Systematized Nomenclature of
Medicine Clinical Terms [SNOMED CT] codes), procedure
codes (ie, Current Procedural Terminology [CPT] codes); and
other structured clinical vocabulary codes (ie, SNOMED CT).

We chose not to include data generated by diabetes devices
(eg, automated insulin delivery and CGM systems). Early on,
we observed that HbA1c was easiest to predict in youth who
used diabetes devices that generate diabetes data (eg, glucose
levels) in real time. However, since most diabetes centers do
not have broad or ready access to device data in near-real
time, we sought to evaluate the potential of using only EHR
data to predict HbA1c.
Feature Engineering
We engineered features using data documented during
all available historical encounters, as well as during
HbA1c observation window index and follow-up encounters.
Processes used to transform variables into features for ML
varied by data type. In all, our feature engineering processes
generated 17,466 input features for model fitting.
Numeric Variables
For numeric variables (eg, laboratory results, weight, and
vital signs), we created features by calculating summary
metrics (ie, mean, slope, and SD). In general, we created 2
sets of features for each numeric variable, based on proxim-
ity of the measurements to the HbA1c observation window’s
index encounter. One set of features was created using data
documented during the 12 months preceding (and at) the
index encounter. A second set was created using all available
EHR data documented before (and at) the index encounter.
For example, we created 2 features for mean HbA1c: one
calculated using the previous 12 months of HbA1c data (up
to and including the index encounter), and the other calcula-
ted using all available HbA1c data (up to and including the
index encounter). Given the intrinsic insensitivity of RF to
numerical outliers, we did not alter or drop outliers from
the data. Once all numerical features were created, missing
numerical values were imputed using the population median.

Each youth’s diagnostic (ie, first) HbA1c result was
included as a separate feature, as was the HbA1c result
documented at the observation window’s index encounter.
Because research suggests that youth with T1D can be
grouped into one of several HbA1c trajectory clusters [10],
we created an HbA1c trajectory feature by using k-means
clustering [30] to assign youth to 1 of 4 clusters based on their
quarterly HbA1c measurements.

Categorical Variables
We used data documented at the observation window’s index
encounter to create features from demographic data (eg, age,
race, ethnicity, primary language, health plan type, and postal
code). For each categorical demographic variable, we used
the StringIndexer feature transformer to convert the catego-
ries associated with each variable into numeric indices, thus
creating a single feature for each of these variables [31].

We used Clinical Classification Software Revised (CCSR),
developed by the Agency for Healthcare Research and
Quality, to group ICD-10 codes into meaningful categories
[32]. Thereafter, each CCSR category and each ICD-9,
ICD-10, SNOMED CT, and CPT code was treated as a
separate variable. We created 2 sets of features for each of
these separate variables, based on how many times each had
been assigned to the individual relative to the observation
window’s index encounter. One set of features was created by
calculating the frequency that each had been assigned to the
individual during the 12 months preceding (and at) the index
encounter. The second set was created using all available
EHR data documented before (and at) the index encoun-
ter. Absence of diagnosis, procedure, or structured clinical
vocabulary codes was presumed to reflect true absence, rather
than missingness, of these data variables.

Medication variables were similarly transformed into 2
sets of features based on how often each medication had been
prescribed relative to the index encounter. One set of features
was created by calculating the frequency that each medication
had been prescribed to the individual during the 12 months
preceding (and at) the index encounter. The second set
was created using all available medication data documented
before (and at) the index encounter. Encounter frequencies
were similarly calculated and included as separate features.
Absence of medication and encounter data was presumed to
reflect true absence of these data.
Natural Language Processing
We used term frequency–inverse document frequency
(TF-IDF) vectorization, a natural language processing
technique, to process free-text data from clinical notes,
messages, and reports. In TF-IDF vectorization, words (ie,
tokens) are first converted into a matrix of token counts [33].
The matrix is then transformed into a normalized TF-IDF
representation that most heavily weights tokens that occur
infrequently across the entire corpus of available text [33]. As
such, TF-IDF is used to assign the highest weight to words
that have the most discriminating power. After ranking by
weight, we constrained the total number of features generated
via TF-IDF vectorization to 250 single-word terms and 250
two-word terms, each of which had to be present in at least 5
documents.
Model Development and Evaluation
RF uses bootstrap aggregation and random feature sampling
to independently train a series of uncorrelated decision
tree regressors, known as “weak learners” [22,23,34-36].
Predictions from this ensemble of weak learners are averaged
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to produce a single “strong learner” with improved predic-
tion accuracy [23]. Relative to many other ML methods,
the RF algorithm presents several key advantages, including
decreased risk of overfitting, straightforward calculation of
the degree to which individual input features contribute to
model predictions, and robustness to missing data [22,34].

After randomly splitting the entire dataset into 3 nono-
verlapping data subsets, we used 3-fold cross-validation to
recursively fit RF regressors to 2 of the 3 subsets and then

evaluate model performance on the third, held-out subset. We
used 3-fold (rather than 5- or 10-fold) cross-validation due to
the large number of HbA1c observation windows included in
our analysis, as well as our desire to reduce variance in the
estimated performance of our model. Hyperparameters used
for model fitting are presented in Table 1. Model perform-
ance was evaluated by averaging the mean absolute error
(MAE) and the root-mean-square error (RMSE)—the SD of
the residuals [37]—across all 3 cross-validation models.

Table 1. Hyperparameter values used for random forest regressor model training. A complete list of hyperparameter keys accepted by the random
forest regressor algorithm and definitions of each can be found on the web [38]. Hyperparameters not listed below were set to default values.
Hyperparameter Value used Default value
NumTrees 40 20
MaxDepth 7 5
MaxBins 128 32
MinInstancesPerNode 8 1
FeatureSubsetStrategy “onethird” “onethird”
Impurity “variance” “variance”
MinInfoGain 0.0 0.0
MinWeightFractionPerNode 0.0 0.0
SubsamplingRate 1.0 1.0

Decision tree regressors are grown by recursively splitting
on features to maximize impurity reduction [39]. Feature
splits that reduce impurity by maximally reducing variance
are considered important; thus, the features that are split to
maximize reduction in variance are also deemed important
[39,40]. We evaluated feature importance by calculating and
ranking the mean reduction in variance associated with only
those features that were used by all 3 of our cross-validation
models to forecast HbA1c.

We used Python (version 3) and Scala (version 2;
Programming Methods Laboratory at École Polytechnique
Fédérale de Lausanne) to clean and transform the data. ML
analyses were conducted using the Apache Spark MLlib
(version 2) ML library [41].

Statistical Analysis
Pearson r correlations were used to assess the strength and
direction of the relationship between actual and predicted
HbA1c values. We also used sensitivity, specificity, PPV, and
NPV as clinical performance metrics to aid in identifying a
predicted HbA1c percent rise threshold that would facilitate

optimal capture of youth who would experience a clinically
significant rise in HbA1c in 90 days.

Summary statistics, correlations, RMSE, MAE, and
sensitivity, specificity, PPV, and NPV metrics were assessed
using Stata/SE (Stata standard edition) software (version 18.5;
StataCorp) [42].
Ethical Considerations
Clinical and model output data were collected and coded in an
institutional review board–approved research data repository
at Children’s Mercy Kansas City (Kansas City, Missouri; IRB
#11120355) that met the requirements for a waiver of written
informed consent as outlined in 45 CFR 46.116.

Results
Overview
Out of 2757 youth with T1D, 1743 youth (63.2%) had one
or more HbA1c observation windows (n=9643) that met
inclusion criteria (Figure 1).
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Figure 1. Flowchart depicting inclusion and exclusion criteria for the study cohort and for glycated hemoglobin observation windows. Abbreviations:
HbA1c: glycated hemoglobin; T1D: type 1 diabetes.

Characteristics of the entire cohort that met inclusion criteria
are summarized in Table 2. The observed frequencies that
youth experienced a rise in HbA1c that exceeded each
percent change cut points (≥0.3%, ≥0.4%, ≥0.5%, and

≥0.6% [approximately 3 mmol/mol, 4 mmol/mol, 5 mmol/
mol, 7 mmol/mol]) were 40.7%, 35.6%, 30.8%, and 26.5%,
respectively. Characteristics of observations included in each
nonoverlapping K-fold are summarized in Table 3.

Table 2. Demographic and clinical characteristics of 1743 youth with glycated hemoglobin observation windows that met inclusion criteria.

Demographic and clinical characteristics
All HbA1ca observation windows
(n=9643)

Index encounter of each youth’s first HbA1c
observation window (n=1743)

Age (y), mean (SD) 13.8 (2.6) 12.9 (2.7)
Sex, n (%)
  Female 4599 (47.7) 844 (48.4)
  Male 5044 (52.3) 899 (51.6)
  Unknown 0 (0) 0 (0)
Race, n (%)
  White 8196 (85) 1449 (83.1)
  Black or African American 616 (6.4) 133 (7.6)
  Asian 53 (0.5) 12 (0.7)
  American Indian or Alaska Native 42 (0.4) 8 (0.5)
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Demographic and clinical characteristics
All HbA1ca observation windows
(n=9643)

Index encounter of each youth’s first HbA1c
observation window (n=1743)

  Native Hawaiian or Pacific Islander 8 (0.1) 3 (0.2)
  Other 63 (0.7) 10 (0.6)
  Unknown 665 (6.9) 128 (7.3)
Ethnicity, n (%)
  Non-Hispanic or non-Latino 8978 (93.1) 1620 (93.0)
  Hispanic or Latino 656 (6.8) 121 (6.9)
  Unknown 9 (0.1) 2 (0.1)
HbA1c at index encounter (%), mean (SD) 8.6 (1.3) 8.5 (1.5)
HbA1c at index encounter (mmol/mol), mean (SD) 70 (14.2) 69 (16.4)
Change in HbA1cb (%), median (IQR) 0.1 (–0.4 to 0.6) 0.1 (–0.4 to 0.7)
Change in HbA1cb (mmol/mol), median (IQR) 1 (–4 to 7) 1 (–4 to 8)
HbA1c increase, n (%)
  ≥0.3% 3928 (40.7) 763 (43.8)
  ≥0.4% 3435 (35.6) 662 (38)
  ≥0.5% 2966 (30.8) 580 (33.3)
  ≥0.6% 2552 (26.5) 498 (28.6)

aHbA1c: glycated hemoglobin.
bChange in HbA1c: (HbA1c at the observation window’s follow-up encounter)–(HbA1c at the observation window’s index encounter).

Table 3. Demographic and clinical characteristics of youth with glycated hemoglobin observation windows included in each K-fold subset.

Demographic and clinical characteristics
HbA1ca observation
windows: fold 1 (n=3151)

HbA1c observation windows: fold
2 (n=3129)

HbA1c observation windows: fold
3 (n=3363)

Youth, n (%) 1291 (41.0) 1288 (41.2) 1381 (41.1)
Age (y), mean (SD) 13.9 (2.6) 13.8 (2.6) 13.8 (2.6)
Sex, n (%)
  Female 1534 (48.7) 1488 (47.6) 1577 (46.9)
  Male 1617 (51.3) 1641 (52.4) 1786 (53.1)
  Unknown 0 (0) 0 (0) 0 (0)
Race, n (%)
  White 2690 (85.4) 2658 (85.0) 2848 (84.7)
  Black or African American 174 (5.6) 206 (6.6) 236 (7.0)
  Asian 14 (0.4) 16 (0.5) 23 (0.7)
  American Indian or Alaska Native 17 (0.5) 13 (0.4) 12 (0.4)
  Native Hawaiian or Pacific Islander 3 (0.1) 3 (0.1) 2 (0.1)
  Other 17 (0.5) 21 (0.6) 25 (0.7)
  Unknown 236 (7.5) 212 (6.8) 217 (6.4)
Ethnicity, n (%)
  Non-Hispanic or non-Latino 2911 (92.4) 2928 (93.6) 3139 (93.3)
  Hispanic or Latino 236 (7.5) 197 (6.3) 223 (6.6)
  Unknown 4 (0.1) 4 (0.1) 1 (0.1)
HbA1ca at index encounter (%), mean (SD) 8.6 (1.3) 8.6 (1.3) 8.6 (1.3)
HbA1c at index encounter (mmol/mol),
mean (SD)

70 (14) 70 (14) 70 (14)

HbA1c increase ≥0.3%, n (%) 1255 (39.8) 1293 (41.3) 1380 (41)
aHbA1c: glycated hemoglobin.

Model Performance
Across all 3 folds of our cross-validation model, average
RMSE was 0.88 (Figure 2). Thus, in 68% (6557/9643) of

cases (representing one SD), our predictions were within
±0.88% (95% CI 0.85‐0.90) of the true percent change in
HbA1c. The average MAE across all 3 folds was 0.64 (95%
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CI 0.63‐0.65). Predicted HbA1c(%) strongly correlated with
true HbA1c(%; r=0.79; 95% CI 0.78‐0.80).

Figure 2. Distribution of the prediction error (ie, residuals) across all 3 cross-validation K-folds. Root-mean-square error is equal to the SD of the
prediction error. RMSE: root-mean-square error.

Feature Importance
Across all 3 folds of our cross-validation model, the top 10
features identified as having the greatest impact on model
predictions included postal code, various metrics related to
HbA1c, and the number of times that the individual had been

assigned a diagnosis code indicating difficulty with treatment
engagement (Figure 3). The top 30 most important features
used to predict percent change in HbA1c are in Multimedia
Appendix 2.
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Figure 3. Top 10 most important features for predicting 90-day percent change in glycated hemoglobin, assessed via gain-based feature importance.
In random forest regression, gain is a feature importance measure that reflects, for a given feature, the mean increase in node purity (ie, mean
reduction in variance) that the feature contributes across all splits in which it is used. Z91.19 is a diagnosis code from the ICD-10 (International
Classification of Diseases, Tenth Revision), that is used to code for nonadherence to, or noncompliance with, medical treatment. Dx: diagnosis;
HbA1c: hemoglobin A1c.

Percent Change Cut Points
Our cross-validation model’s ability to accurately predict
change in HbA1c at various percent change cut points is
illustrated in Table 4. At each percent change cut point
(≥0.3%, ≥0.4%, ≥0.5%, and ≥0.6% [approximately 3 mmol/
mol, 4 mmol/mol, 5 mmol/mol, 7 mmol/mol]), PPV was
60.3%, 56.4%, 52.7%, and 53.1%, respectively, indicating
an approximately 1.5- to 2-fold enrichment (relative to the

observed frequency of each outcome [Table 1]) for identify-
ing youth who would experience a clinically significant rise
in HbA1c. Sensitivity and PPV improved when predictions
involved smaller changes in HbA1c, whereas specificity and
NPV improved when predictions involved larger changes in
HbA1c. Sensitivity, specificity, PPV, and NPV metrics for
each K-fold are in Multimedia Appendix 3.

Table 4. Sensitivity, specificity, positive predictive value, and negative predictive value of predicted versus true percent change in HbA1c across all 3
cross-validation K-folds.
Model metrics at each percent change cut point Estimate, % (95% CI)
Predicted HbA1ca % change: ≥0.3%
  Sensitivity (True HbA1c% change: ≥0.3%) 28.7 (27.3-30.2)
  Specificity (True HbA1c% change: ≥0.3%) 87 (86.1-87.9)
  PPVb (True HbA1c% change: ≥0.3%) 60.3 (58.1-62.5)
  NPVc (True HbA1c% change: ≥0.3%) 64 (62.9-65)
Predicted HbA1c% change: ≥0.4%
  Sensitivity (True HbA1c% change: ≥0.4%) 17.4 (16.1-18.7)
  Specificity (True HbA1c% change: ≥0.4%) 92.6 (91.9-93.2)
  PPV (True HbA1c% change: ≥0.4%) 56.4 (53.3-59.4)
  NPV (True HbA1c% change: ≥0.4%) 66.9 (65.9-67.9)
Predicted HbA1c% change: ≥0.5%
  Sensitivity (True HbA1c% change: ≥0.5%) 10 (8.9-11.1)
  Specificity (True HbA1c% change: ≥0.5%) 96 (95.5-96.5)
  PPV (True HbA1c% change: ≥0.5%) 52.7 (48.4-56.9)
  NPV (True HbA1c% change: ≥0.5%) 70.6 (69.6-71.5)
Predicted HbA1c% change: ≥0.6%
  Sensitivity (True HbA1c% change: ≥0.6%) 6.1 (5.2-7.1)
  Specificity (True HbA1c% change: ≥0.6%) 98.1 (97.7-98.4)
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Model metrics at each percent change cut point Estimate, % (95% CI)
  PPV (True HbA1c% change: ≥0.6%) 53.1 (47.2-58.9)
  NPV (True HbA1% change: ≥0.6%) 74.4 (73.5-75.3)

aHbA1c: glycated hemoglobin.
bPPV: positive predictive value (it is the probability that the cases predicted to experience clinically significant rise in HbA1c [at or above each
percent rise threshold] did experience that outcome).
cNPV: negative predictive value (it is the probability that the cases not predicted to experience clinically significant rise in HbA1c [at or above each
percent rise threshold] did not experience that outcome).

Discussion
Principal Findings
We used routinely collected EHR data, including both
structured and unstructured data, to establish the feasibility
of constructing an interpretable ML model for predicting
unit-change in HbA1c (in % units) between quarterly diabetes
clinic visits among youth (aged 9‐18 y) with T1D. For those
predicted to experience a ≥0.3% (approximately 3 mmol/
mol) rise in HbA1c during the following 3 months, PPV
was 60.3%, indicating a 1.5-fold enrichment (relative to the
observed frequency [40.7%] of this outcome) for identifying
youth who would experience a clinically significant rise in
HbA1c. This finding, which suggests that EHR data may
be useful for identifying youth who will experience rising
glycemic levels, is clinically relevant given that a long-term
increase of ≥0.3% (3 mmol/mol) in HbA1c is associated with
increased risk for long-term complications of diabetes [28].

Another key finding was that our model’s sensitivity and
PPV were higher when the predicted percent rise thresh-
old was lower (eg, ≥0.3% vs ≥0.4%), whereas specificity
and NPV were increased at higher predicted percent rise
thresholds (eg, ≥0.4% vs ≥0.3%). We hypothesized that using
a higher percent rise threshold would decrease the likelihood
of false positives (ie, identifying a youth as someone who
would experience a corresponding rise in HbA1c when they
did not), and the data supported this conclusion. On the
other hand, using a lower percent rise threshold reduced the
likelihood of missing those who would experience a clinically
significant rise in HbA1c. If confirmed in future studies, these
findings suggest that using the lowest clinically significant
threshold may be useful for guiding clinical decision-making
and subsequent initiation of interventions designed to mitigate
rising glycemic levels.

We also evaluated our model’s ability to augment clinical
decision-making by using PPV and NPV to identify a
percent-change cut point that optimized identification of
youth who experienced a clinically significant rise in HbA1c
at their subsequent diabetes clinic encounter. Although PPV
and NPV are considered the metrics of choice for clinical
decision-making at the level of an individual person, the
selection of desirable PPV and NPV values in a particu-
lar use case depends on numerous factors. These factors
include considerations about short- and long-term burdens
and costs related to over- or undertreatment, associated
psychological impacts on individuals receiving care, and
short- and long-term costs imposed on the health care system

(eg, for increased staffing resources) [43]. Therefore, before
implementing this model clinically, it would be important to
allow clinicians to provide feedback about the most appropri-
ate thresholds for defining clinically significant rise in HbA1c,
along with associated PPV and NPV values. For this work,
we propose using the ≥0.3% cut-point to maximize capture
of high-risk youth who are candidates for behavioral and care
delivery interventions designed to reduce or prevent predicted
rise in HbA1c.

The top features impacting our model’s predictions (ie,
postal code, numerous metrics pertaining to HbA1c, and
history of low treatment engagement) have been shown
in previous studies to be associated with elevated glyce-
mic levels. Ample evidence suggests associations between
geographic location and geographically linked measures of
socioeconomic status (eg, area deprivation, social deprivation,
and child opportunity indices) and T1D outcomes, including
glycemic levels and diabetic ketoacidosis [44-47]. Previous
HbA1c measurements have also been shown to significantly
impact ML-based predictions of future HbA1c, but previous
investigations have only examined this in adults with type 2
diabetes (T2D) [48]. Finally, lower treatment engagement has
been shown to have a substantial impact on HbA1c in youth
with T1D [49,50]. This evidence collectively underscores the
critical need for members of the diabetes care team to partner
with affected youth and families to identify resources and
tailored strategies for optimizing diabetes self-management
behaviors.

Given the widespread use of EHRs in clinical care, as
well as the growing volume and availability of these data,
there exists tremendous potential for using EHR data to
identify and personalize care pathways for improving health
outcomes in T1D. Previous work has applied ML to EHR
data, for example, to predict the onset of T1D in youth
[51], as well as diabetic ketoacidosis in both youth and
adults with T1D [19,20,52]. Recent research has focused
on applying numerous ML classifiers to medical encounter
data to predict HbA1c in individuals with T2D [48]. The
area under the receiver operating curve for each of the top
5 best-performing classifiers in the aforementioned study
was extremely high (>0.95). Of note, however, these model
predictions were binary (ie, HbA1c <7% [<53 mmol/mol]
vs ≥7% [≥53 mmol/mol]) rather than continuous and were
evaluated in a primarily adult Chinese cohort diagnosed
with T2D, limiting generalizability to other populations. Our
approach is designed to predict unit change in HbA1c and to
give clinicians a simple output (ie, HbA1c will or will not
increase by ≥0.3%) for interpretation. This study is the first to
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use EHR data to predict a clinically significant rise in HbA1c
in youth with T1D.

Recent efforts have also explored the use of ML classifiers
that use 2 weeks of CGM data to forecast 90-day HbA1c
in youth with T1D [53]. The first of these studies used
a nested, ensemble learning approach to iteratively predict
HbA1c in stages: (1) HbA1c ≤7.5% (58 mmol/mol) or >7.5%
(stage 1), (2) HbA1c ≤9% (75 mmol/mol) or >9% (stage 2,
after stage 1 was complete), and (3) HbA1c ≤12.5% (113
mmol/mol) or >12.5% (stage 3, after stage 2 was complete)
[54]. A subsequent study used few-shot learning followed
by K-nearest neighbors to classify transformed images of
CGM time series data into multiclass HbA1c intervals [55].
Generalizability of these HbA1c prediction efforts is limited,
however, by these methods’ dependence on CGM data and
by racial disparities in the relationship between CGM metrics
and HbA1c [56].

Currently, CGM systems are neither accessible to nor
used by all individuals with T1D. Recent data from the
T1D Exchange Quality Improvement Collaborative suggest
that only 40%‐50% of US youth with T1D currently use
CGM systems [57,58]. Reasons for this are multifactorial and
can include reluctance to use CGM technologies, financial
constraints, lack of insurance coverage, device-related skin
complications, CGM alarm fatigue, and sociodemographic
and racial or ethnic disparities in access that adversely impact
use of diabetes technologies [58-62]. At this time, CGM data
also remain notably absent from most EHRs, are distributed
across multiple proprietary commercial software, and are
difficult for health systems to access. Although efforts to
integrate CGM data into the EHR remain ongoing [63,64],
large-scale implementation of these efforts will hinge on
the development of CGM-related data standards and a data
architecture that supports this integration [65].

In contrast, EHR data are routinely collected on every
person receiving care from a given health care institution.
These data thus provide a rich, longitudinal source of
individual- and population-level health data that can be
leveraged in near real-time for ML-driven clinical deci-
sion support [13,66]. Even so, the potential for integrat-
ing EHR-based ML-driven analytics in health care remains
largely unrealized. A 2020 systematic review evaluating
the number of clinical prediction models that have been
embedded into EHRs noted that fewer than 45 such exam-
ples have been published [67]. Of note, only 36% (16/45)
of model implementations occurred in outpatient settings,
and none of the embedded models were specific to individ-
uals affected by diabetes [67]. These findings highlight a
critical gap, as well as opportunity, for leveraging real-world
EHR data to facilitate real-time risk prediction and improve
diabetes-related health outcomes.
Limitations and Strengths
A strength of this study is its use of longitudinal EHR data
to predict 90-day unit-change in HbA1c in a large cohort
of youth with T1D. The scale and granularity of these
data facilitated the creation of thousands of data features
that we simultaneously analyzed as potential predictors

for suboptimal glycemic outcomes. Additional strengths of
this study include its use of explainable ML methods for
evaluating model predictions and our use of a clinician-
led, postmodeling decision analysis to enhance clinicians’
understanding and uptake of model predictions. The relevance
of our model is underscored by its ability to forecast 90-day
change in HbA1c for all youth receiving care through our
regional clinic network, and not only for those using CGM
systems.

Several limitations also warrant consideration. The data
used in this study originated from a regional network of
diabetes clinics in the Midwest United States and may
not generalize to other geographic locations or health care
settings, to future cohorts using rapidly evolving diabe-
tes treatment technologies, or to more racially or socio-
economically diverse cohorts. External validation of the
geographic and demographic “transportability” of this and
future iterations of our model will hinge on ensuring that
data from different clinical settings are collected in similar
ways and standardized according to a common data model.
Examples of such data standards include the Observational
Medical Outcomes Partnership Common Data Model [68]
and the T1D Exchange Quality Improvement Collaborative
data specification [69]. As well, EHR data are subject to data
entry errors and missing data that inadvertently occur as a part
of routine clinical care. EHRs are also characterized by data
fragmentation and reflect biases in clinical data collection,
documentation, and decision-making [13]. Therefore, results
from this and all models constructed using EHR data must be
interpreted carefully, given both known and unknown biases
that impact model predictions.

Model generalizability could be enhanced by using
standardized geographic-based features (eg, an area depriva-
tion index or the Child Opportunity Index [45,47]) rather
than zip code, as well as by creating a final prediction
model that includes only a limited number of the “top-
N features identified via cross-validation. Using additional
data preprocessing methods (eg, one-hot encoding) when
transforming categorical demographic features (eg, race and
ethnicity) for ML would facilitate interpretability of model
results pertaining to those features. Model performance
may improve with additional hyperparameter tuning. This
model’s predictive utility could also be compared with that of
models constructed using other ML methods, including other
explainable AI methods and deep learning models. Finally,
for youth who adopt diabetes technologies, such as CGM and
automated insulin delivery systems, the inclusion of diabetes
device data would likely significantly augment our model’s
predictions.

We acknowledge that translation of this work into clinical
practice will be accompanied by various logistical and
practical challenges. This study was designed as an “ini-
tial step” to evaluate the feasibility of using EHR data to
predict change in HbA1c. As previously described, addi-
tional research is needed to address issues related to model
refinement, validation (using data from external organiza-
tions, as well as future EHR data collected from our network
of diabetes centers), and deployment in clinical settings.
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Future work can, for example, evaluate whether a limited
set of standardized features may be useful for developing a
more parsimonious model that can be readily disseminated
to other institutions. Once deployed, ongoing monitoring of
model performance will also be needed.

Furthermore, we acknowledge that refining and success-
fully incorporating this approach into clinical and decision
workflows will hinge on the collection of additional evidence
from future studies with even larger and more diverse patient
cohorts, as well as buy-in and trust from both clinicians and
patients. Although, in this iteration, our modeling approach
yielded a nontrivial number of false positives, we note
as well that our model’s performance represents a substan-
tial improvement over existing capabilities. Compared, for
example, with initiating interventions randomly or initiating
interventions at every diabetes clinic visit (to address youths’
rising glycemic levels, which occurred 40.7% of the time
in our cohort), our modeling efforts facilitated pre-emptive
identification of rising glucose levels three-fifths of the time.
The 1.5-fold risk enrichment demonstrated in this work

represents a meaningfully improved opportunity for more
targeted initiation and delivery of interventions designed to
lower youths’ glucose levels.
Conclusions
Using EHR data to develop an ML-based prediction model
to identify youth who will experience a clinically significant
rise in HbA1c between diabetes clinic visits is both timely
and feasible. Future research should aim to further optimize
model performance, as well as evaluate model performance
in racially or ethnically, socioeconomically, and geographi-
cally diverse cohorts. Future work is also needed to eval-
uate whether model results vary by duration of diabetes,
use of technology (eg, CGM system users vs nonusers),
and insulin delivery modality. Findings from this study may
help to inform risk stratification and resource allocation
efforts and serve as a catalyst for future quality improvement
efforts focused on developing and evaluating personalized
strategies and supports for optimizing diabetes self-manage-
ment behaviors.
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