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Abstract
Type 2 diabetes mellitus affects over 500 million people globally, with 10%‐20% requiring surgery. Patients with diabetes
are at increased risk for perioperative complications, including prolonged hospital stays and higher mortality, primarily due
to perioperative hyperglycemia. Managing blood glucose during the perioperative period is challenging, and conventional
monitoring is often inadequate to detect rapid fluctuations. Clinical decision support systems (CDSS) are emerging tools
to improve perioperative diabetes management by providing real-time glucose data and medication recommendations. This
viewpoint examines the role of CDSS in perioperative diabetes care, highlighting their benefits and limitations. CDSS can help
manage blood glucose more effectively, preventing both hyperglycemia and hypoglycemia. However, technical and integration
challenges, along with clinician acceptance, remain significant barriers.
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Impact of Type 2 Diabetes Mellitus in
the Perioperative Period
Type 2 diabetes mellitus affects over 500 million individuals
globally with 10%‐20% of these patients requiring surgery
during hospitalization [1,2]. Throughout the whole periopera-
tive period, patients with diabetes need more stringent blood
glucose management, thorough complication evaluation, and
multidisciplinary collaboration to mitigate mortality risk and
enhance recovery, because diabetes is associated with an

increased frequency of surgical interventions and prolonged
hospital stays, with perioperative death rates 50% greater than
those in the population without diabetes [3]. The contribu-
ting factors for these negative outcomes are multiple, but
the main reason is perioperative hyperglycemia [4]. It can
result in severe metabolic and organ dysfunction, exacerbate
organ damage, trigger various disorders, increase infection
risk, and even lead to postoperative death [5]. Although
optimal glycemic control significantly improves postoperative
outcomes in patients with diabetes, particularly in mitigating
the risk of infection [6], there have long been obstacles
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regarding achieving the ideal method for managing blood
glucose levels.

Limitations of Current Perioperative
Blood Glucose Management
Currently, perioperative blood glucose management is
primarily categorized into three phases: preoperative
assessment, intraoperative care and monitoring, and post-
operative medication and diet [7]. Regular blood glucose
monitoring during surgery is essential for effective perioper-
ative control, often necessitating checks every 2 hours [8].
Nonetheless, stress responses, medication interventions, and
several other circumstances can cause significant short-
term elevations and rapid fluctuations in blood glucose
levels [9]. Conventional measurement intervals are inad-
equate for detecting fast fluctuations in blood glucose
levels and the cumulative impact of risk variables, thereby
overlooking critical intervention chances. The American
Diabetes Association’s Standard states that perioperative
patients require more frequent blood glucose monitoring,
particularly when insulin therapy is administered [10]. A
2-hour measurement interval may be insufficient for real-
time control; thus, more frequent or continuous monitor-
ing during surgery is recommended. In addition, blood
glucose variability exposes patients to dual risks of hypergly-
cemia and hypoglycemia. Throughout this period, the Centre
for Perioperative Care recommendations advise maintaining
blood glucose levels between 6 and 12 mmol/L [1], contin-
gent upon the administration of insulin and glucose, while
either stringent or lenient blood glucose management may
easily disrupt this “equilibrium.” Consequently, tools are
required for real-time glucose data monitoring and individual-
ized medication distribution [11].

Potential of Clinical Decision Support
Systems in Perioperative Blood
Glucose Management
Clinical Decision Support Systems
Clinical decision support systems (CDSS) have gained
significant traction due to the widespread adoption of

electronic medical records and electronic health records in
the past decades. These computerized systems may provide
clinicians with a wide range of support, from basic pop-up
warnings for medication errors to sophisticated tools that
offer evidence-based recommendations for certain clinical
situations (Figure 1) [12-14]. During the perioperative period,
surgeons and anesthesiologists must consider multifaceted
care, including blood glucose management, which requires
experience and integrity in practice. The complexity of these
tasks can be challenging for junior physicians and may
create a gap between real-world clinical effectiveness and
the efficacy observed in clinical trials. However, the advent
of CDSS has introduced novel technical advancements to
conventional perioperative management techniques.

A systematic review by Cai and colleagues summarizes
trials and observational studies about the effectiveness of
the CDSS in real-world settings [15]. As the American
Association of Clinical Endocrinology stated in their 2023
Type 2 Diabetes Management Algorithm [16], personalized
care is emphasized through evidence-based tools such as
continuous glucose monitoring and automated insulin dosing
systems. These technologies facilitated the ongoing surveil-
lance of glucose levels and the secure delivery of insu-
lin during surgical procedures. Furthermore, they have the
potential to mitigate the likelihood of perioperative complica-
tions by assuring adherence to optimal glucose management
guidelines [17]. Considering the aforementioned qualities, in
contrast to conventional perioperative blood glucose control
techniques, CDSS can address the challenge of detecting
fast changes inherent in typical 2-hour monitoring intervals
and provide real-time data to seize the critical intervention
opportunities. Simultaneously, CDSS may precisely modify
insulin dose according to real-time blood glucose data and
specific patient situations, mitigating the twin hazards of
hyperglycemia and hypoglycemia, thereby facilitating more
effective and safer blood glucose regulation.
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Figure 1. Application of clinical decision support systems in the perioperative care and management of diabetes mellitus.

Personalized Drug Delivery
Glucommander (Glytec) has set an example as an
electronic glycemic management system since 1984 using
a computer-based algorithm to guide the administra-
tion of intravenous insulin [18]. Glucommander (Glytec)
formulates insulin dosage recommendations by analyzing
patient-specific blood glucose patterns after health care
professionals choose either a personalized dosage or a
weight-based multiplier as the first dosing approach for the
first 24 hours [19]. Until now, after undergoing integration
and evaluation at multiple medical centers, Glucommander
(Glytec) has demonstrated its effectiveness in enhancing
outcomes for surgical patients with both type 1 and
type 2 diabetes. Specifically, it has reduced the occur-
rence of hyperglycemia and hypoglycemia, treated diabetes
ketoacidosis, and increased adherence to the guidelines for
achieving individualized treatment [20-22].
Intraoperative Blood Glucose Level
Monitoring
Similarly, there are CDSS that continuously monitor changes
in perioperative blood glucose levels by providing in-room
pop-up prompts. In a systematic review [15], one of the
included studies [23] designed and evaluated a new CDSS
using Epic’s best practice advisory (BPA) framework. This
tool is designed to remind anesthesia providers to measure
blood glucose levels at specified intervals for patients at risk
of abnormal perioperative blood glucose levels. The research
results found that the implementation of the BPA CDSS
significantly improved intraoperative blood glucose monitor-
ing and management in the postanesthesia care unit (PACU).
The PACU hyperglycemia rate decreased from no CDSS to
the BPA CDSS (10.4% to 7.2%, P=.031).

Dispersion and Untimely Integration
of Data Affects the Functionality of
CDSS
Barriers Hindering the Effectiveness of
CDSS
Notably, several barriers currently hinder the effectiveness
of CDSS, highlighting the call for action. For patients with
type 2 diabetes during the perioperative period, multimodal
data are necessary for the development and maintenance
of an effective CDSS, such as blood glucose monitoring
data, drug information, surgical types, comorbidity, and
more. However, such data are often scattered across various
systems and require manual input. The integration of a
substantial volume of data from many systems and the
necessity for real-time updates in CDSS impose significant
requirements on technical and system compatibility attrib-
utes. Moreover, blood glucose levels change continuously
throughout the whole perioperative period caused by surgery,
stress, or fasting. Without timely integration, decisions
may be delayed or based on outdated information, thereby
adversely impacting patient outcomes. Insufficient integration
between electronic health records and CDSS might compro-
mise the real-time prediction and accuracy of critical data
[24].
Alarm Fatigue and Clinician Skepticism
CDSS-based decisions combine data, algorithms, clinicians’
expertise, and clinical judgment. An estimated 95% of
CDSS alerts were declined by clinicians [25]. The sheer
volume of redundant messages exacerbates the burden in the
practice. Some clinicians may develop “alarm fatigue” and
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become desensitized to all warnings, including those that are
clinically valuable. Nonetheless, placing excessive reliance on
CDSS recommendations is not always appropriate. Despite
the exceptional accuracy of the generated data, CDSS are
fundamentally an opaque system with an internal operational
mechanism that is hard to interpret [26]. If professionals
simply press the button of CDSS without comprehending the
underlying principles, such decisions will be very dangerous.
Assuming that patients with diabetes mellitus experience
hypoglycemia and hyperglycemia crises, professionals should
not only be proficient in how to obtain emergency care advice
through CDSS, but also implement appropriate care measures
based on their own experience and understanding of patient
data. Therefore, what stands out the most is striking a balance
between CDSS and clinicians, or in other words, algorithms
and clinical experience of diabetes management.

Balancing Cost-Effectiveness
The development and maintenance of CDSS require
acknowledging the need for robust data sources, advanced
informatics systems, technical support, and personnel
training. Building CDSS from the ground up to meet
criteria can incur substantial costs, ranging from hundreds of
thousands to millions of dollars. Custom-developed systems
also require ongoing maintenance and upgrades. Maintenance
expense usually varies from 10% to 20% of the original
development expenditure. The annual cost of maintaining
CDSS for diabetes management is approximately US $9500
for one small-sized institute, US $20,600 for medium-sized,
and US $76,000 for large-sized ones [27]. For medical
institutions with limited resources, managers need to weigh
whether the potential improvements in patient outcomes or
compliance with perioperative medical personnel guidelines
are worth the high cost [28]. After rigorous evaluation,
the effectiveness of some CDSS has been found to be
disappointing. Jeffery and colleagues [29] systematically
reviewed 15 randomized trials that assessed the effectiveness
of CDSS in diabetes mellitus management compared with a
non-CDSS control group (usual care, seminars, educational
material, and glucose monitoring systems), but found no
significant outcome that CDSS could reduce hospitalizations
and improve quality of life. Meanwhile, the study found that
in the third month, the pooled estimate of the change in
glycated hemoglobin (HbA1c) was 5 mmol/mol (95% CI –9
to 1; ie, –0.5%, 95% CI –1.0 to 0.1), but it is only a clinically
significant threshold and this result is not significant. Blindly
using CDSS may result in getting half the results with double
the effort.

Future Direction
The number of CDSS specifically designed for diabe-
tes management remains limited. The majority of CDSS
development is directed towards traditional perioperative
patients, emphasizing factors such as surgical type, patient
age, and vital signs; however, limited attention is given
to comorbidities, such as diabetes, in patients undergoing
surgery. A prospective study in 29 countries across Europe
identified diabetes mellitus as the fourth most common
long-term condition (15.4%). Meanwhile, diabetes mellitus

also accounts for a large share of patients with multimor-
bidity, with 19.4% of patients having two long-term health
conditions and 43.8% having more than three long-term
health conditions [30]. The coexistence of multiple diseases
substantially elevates the mortality rate of patients undergoing
surgery, sometimes doubling it. Poorly controlled chronic
diseases, such as those with high American Society of
Anesthesiologists scores, and compromised functional status
(eg, frailty) further heighten these risks. If the database used
for developing CDSS does not cover specific patients (such as
those with complex comorbidities), this deficiency may lead
to the system ignoring the risk factors of specific patients and
providing treatment recommendations with biased risks.

The disparity in diabetes care throughout the world is
becoming worse. The treatment rate of diabetes has remained
low and relatively unchanged for many low-income and
middle-income nations during the last several decades. More
than 90% of people with diabetes in some nations did not
get treatment between 1990 and 2022 [31]. Limited by
the ratio of doctors-to-patients and infrastructure, diabetes
may impose a heavier burden on these low-resource clinical
environments, which may require the introduction of CDSS.
However, its effectiveness in the low-resource environment
remains to be explored [32]. In the presently advanced CDSS
applications, the initial datasets used for development mostly
originate from populations in developed countries, and their
efficacy is often poor when applied to other locations or
populations. A skin cancer diagnostic algorithm developed
using data from White patients may have reduced efficacy
for those with darker skin tones [33]. Prior to implementing
these systems, it is essential to analyze data bias to avert
unjust decision-making and mitigate health disparities among
ethnic minorities or resource-limited regions. Furthermore,
the deployment of CDSS necessitates the integration of
information systems and financial investment, taking into
account the restricted accessibility and technical capacities
in resource-constrained regions. This has prompted demands
for international collaboration, including the implementation
of remote medical platforms or the direct supply of digital
medical assistance [34].

In light of the issues faced by present CDSS implementa-
tions, the following recommendations are anticipated to be
implemented (Table 1). Initially, at the source, deep learning
techniques may be used to extract unstructured data from
multimodal text and combine it into a unified system for
analysis after standardization [35]. This metric enhances both
the frequency of CDSS use and its real-time performance
[36]. A potential innovation is the digital twin, a mathemati-
cal model of a system created from all accessible data. This
technique may generate a virtual personal twin of a perio-
perative patient, capture the patient’s perioperative trajectory
without affecting their physiological condition, and be used
for complication prevention and rehabilitation treatment [37].
Secondly, given that clinical physicians’ adoption of CDSS
and alarm fatigue may arise from their skepticism towards
the system and their proficiency in computer abilities, it
is essential to investigate their requirements and formulate
targeted training programs during the design phase of CDSS
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[36]. The alarm system may be enhanced by applying human
factors engineering principles, hence minimizing false alarms
and overlooked alerts [38]. Lastly, a systematic, step-by-step
strategy is essential. It is advisable to do feasibility studies

and pilot studies prior to real-world implementation, not
only to identify software and hardware difficulties during the
deployment phase but also to assess the long-term cost-effec-
tiveness across various health care settings [39].

Table 1. Functions of clinical decision support systems (CDSS), limitations, and evidence-based solutions.
Functions of CDSS Limitation of CDSS Solutions to break limitations Explanation of solutions
Personalized Drug Delivery
Based on real-time blood glucose
data and the patient’s specific
condition to calculate and
recommend the appropriate
insulin dosage.

Data Integration Defects
The data required for CDSS are
usually scattered across various
systems and require manual input,
which affect the real-time perform-
ance of analysis.

Integrate the required data for
analysis into the same system
adopting new technologies.

Deep learning techniques can extract
and analyze relevant unstructured
information from clinical records,
including single concept extraction,
temporal event extraction，relation
extraction，and abbreviation
expansion [35].

Blood Glucose Monitoring
Real-time monitor changes in
perioperative blood glucose
levels by providing in-room pop-
up prompts.

Alarm Fatigue
Too many unnecessary alerts or
suggestions lead to providers losing
trust or being insensitive to CDSS.

Applying human factors
engineering principles to design the
alarm systems.

A system designed based on human
factors principles may alleviate
alarm fatigue, with specific
strategies including reducing errors
related to availability, delivering
clinical data nearer to the decision
point, and presenting alert text in a
tabular style [38].

Blood Glucose Management
Adherence to clinical guidelines
to perform clinical procedures.

Clinician Skepticism
Clinicians have a resistant or
opposing attitude towards the
opinions or suggestions given by
CDSS.

Consider the needs of clinicians
and develop specific training plans.

Clinicians should be involved in the
design and development of CDSS in
the early stages, and receive hands-
on training and education before
implementation. Clinicians’ negative
attitudes and resistance towards
CDSS can be alleviated during this
process [36].

Complication Prediction
Utilizing patient perioperative
information to predict the
incidence of adverse events (such
as hyperglycemia, hypoglycemia,
etc)

Cost Challenges
The development and maintenance
of CDSS may consume capital or
human resources and cannot
guarantee long-term cost-effective-
ness.

Do feasibility studies and pilot
studies prior to real-world
implementation.
Long term follow-up to collect
cost-effectiveness data.

Feasibility studies and pilot studies
can help determine whether CDSS
can transfer its good performance
from the development phase to real-
world settings, ensuring its correct
and safe use in health care practice
[39].
In addition to collecting cost data,
long-term indicators such as patient
prognosis or quality-adjusted life
years should also be collected to
determine whether the implementa-
tion of CDSS is a good return on
investment for both hospitals and
patients [28].

Conclusion
In summary, CDSS are revolutionizing the paradigm of
perioperative diabetes mellitus care and management in the
real world, shifting from conventional strategies to data-
driven real-time monitoring and individualized treatment.
Given the high volume of surgeries for patients with diabetes
and the elevated incidence of postoperative complications,
these systems are promising in many ways: integrating
patients’ blood glucose monitoring data and providing
real-time blood glucose fluctuation warnings, offering
personalized medication recommendations to prevent drug
interactions or improper dosage adjustments, and assist-
ing health care providers in predicting the surgical risk
based on the patient’s historical data (HbA1c, preoperative
blood glucose control, complications, and other factors).

However, several barriers currently hinder the effective-
ness of CDSS, though the original intention of these
intelligent health intervention measures is to address the
existing difficulties in the management and care of perioper-
ative patients with diabetes mellitus. Thus, future research
on CDSS must prioritize model optimization, particularly
enhancing performance for patients with intricate comorbid-
ities, especially diabetes, and develop techniques to bolster
physicians’ confidence and acceptance. Several randomized
controlled trials and cost-benefit analyses with extended
follow-up durations across various countries to validate
the system’s efficacy, universality, and practicality, and a
pilot study are recommended before implementation. This
will ultimately ensure that the system can cover high-risk
factors and provide evidence-based treatment recommenda-
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tions, reducing the worldwide diabetes care disparity and
advancing health equality.
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