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Abstract
Background: Basal rate (BR) adjustment is crucial for managing type 1 diabetes mellitus, accounting for 30% to 50% of total
daily insulin needs. All current closed-loop systems revert to the user’s usual pump BR (known as manual mode) in the event
of closed loop failure. Furthermore, access to closed-loop systems remains relatively low in low- and middle-income countries
and among those without suitable health insurance. Accurately adjusting the BR remains challenging, leading to hypo- or
hyperglycemia, and research on optimizing the BR is limited.
Objective: This study proposed an adaptive algorithm that uses continuous glucose monitoring data to identify BR inaccura-
cies without requiring meal intake information.
Methods: The OhioT1DM dataset formed the basis for implementing this methodology. Each composite day was generated
by excluding bolus insulin profiles lacking meal intake information and by calculating hourly blood glucose (BG) relative
levels along with their corresponding reliability measures, enabling assessment of deviations from the recommended BR (ie,
a BG relative change of 0 mg/dL). Both a noninferiority analysis and a classification precision metric were used to assess the
practicality of this approach compared to using meal data.
Results: Data from 12 participants showed noninferiority of the no-meal method: using a 20% noninferiority margin on
absolute BG relative change, 9 of 12 participants met the criterion (1-sided P<.05). Classification precision was 73.9%
(139/188) of meals correctly classified on average per participant (SD 11.8%; 95% CI 67.2%-79.7%). The daily cumulative
BG average was 200.6 mg/dL (SD 61.7 mg/dL; 11.1 mmol/L, SD 3.4 mmol/L; 95% CI 161.4–239.8 mg/dL), with peak
values reaching 270.15 mg/dL (14.99 mmol/L). Furthermore, 99.3% (286/288) of the BG relative values (SD 0.5%; 95% CI
97.5%‐99.8%) that were unaffected by external factors were associated with incorrect BR settings, with deviations ranging
from −25.5 to 46 mg/dL (−1.58 to 2.59 mmol/L).
Conclusions: Current strategies to optimize BR settings are inadequate, and our approach of a personalized basal tuner (PBT)
helps better analyze BR without relying on meal intake information. Indeed, without an optimally set BR, in the event of the
closed loop reverting to manual mode, patients may be exposed to persistent hypo- or hyperglycemia, leading to safety and
efficacy issues. Future work will focus on generating BR recommendations through the application of this algorithm in clinical
practice to assist clinicians in setting BR in low- and middle-income countries, where closed-loop systems are not prevalent, to
help increase time in range.
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Introduction
Background
The current state of the art in insulin delivery is automatic
insulin delivery, also known as closed-loop systems [1].
In real-world settings—such as with the open source loop
system—these have been shown to improve both glycemic
control and quality of life [2]. However, all existing closed-
loop systems revert to the user’s preset pump basal rate (BR)
manual mode in the event of system failure. Specific closed-
loop systems also use the pump BR for other reasons, such as
serving as an integral part in the control algorithm functional-
ity (Tandem t:slim) [3] or as a safety backup (reverting to
manual mode) if the user has been hyperglycemic for a set
time (Omnipod 5) [4].

While high-income countries are transitioning to closed-
loop systems, those in low- and middle-income countries
(LMICs) and without suitable health insurance have limited
access to closed-loop systems [5,6]. Therefore, without an
optimally set BR, a closed-loop system reverting to manual
mode may expose patients to persistent hypo- or hyper-
glycemia, compromising both safety and efficacy. This is
particularly crucial as basal insulin contributes approximately
30% to 50% of total daily insulin use in individuals with type
1 diabetes mellitus (T1DM) [7,8].

Recent evidence indicates that insulin requirements,
including BR, do not always follow predictable circadian
or clinically assumed patterns, with unexpected deviations
occurring as frequently as expected ones [9]. Such variability
underscores the need for regular assessment and adjustment
of BR settings to ensure stability across different opera-
tional modes and clinical contexts. Accordingly, the proposed
algorithm is clinically relevant in several scenarios: (1) when
a closed-loop system fails and reverts to manual mode; (2)
in devices that incorporate fixed basal profiles as part of
their control strategy (eg, the Tandem t:slim); (3) when safety
protocols trigger a manual mode reversion after sustained
hyperglycemia (eg, the Omnipod 5); and (4) in settings where
closed-loop technology is unavailable due to cost, insurance
coverage, or regulatory constraints, such as in many LMICs.
In all these cases, an accurately set BR remains essential for
maintaining glycemic stability.
Challenges in BR Optimization
Traditionally, establishing BR has involved a series of fasting
tests, each lasting 6 to 12 hours and conducted at different
times of the day. The results are used to fine-tune, retest,
and record BR settings. While effective, this method can
be challenging for both patients and clinicians [10] and is
less commonly used in routine practice, where adjustments
are often made based on continuous glucose monitoring
(CGM) or finger-prick blood glucose (BG) values. Once

the initial BR is determined, the clinician’s recommenda-
tions remain unchanged for several months between clinic
visits. This approach is particularly concerning for children
and adolescents, whose physiological needs evolve rapidly,
making it difficult to ensure that their requirements are
adequately adjusted and addressed [11-14].
Objective
The objective of this study was to evaluate whether accu-
rate assessment of basal insulin rates can be achieved
without requiring meal information. Using 45 days of CGM
and basal insulin delivery data, the algorithm generates a
composite 24-hour basal profile designed to support stable
and safe glycemic control, particularly in scenarios in which a
closed-loop system fails and reverts to manual mode. Current
guidelines recommend a time in range (TIR) of at least 16.8
hours per day (70%), corresponding to BG levels between
70 and 180 mg/dL (3.9‐10 mmol/L) for that proportion of
time [15,16]. While this work focused on demonstrating the
nonnecessity of meal data for such assessments, the appli-
cation of these results to guide BR adjustments will be
addressed in future research.
Related Work
Several studies have explored strategies to set up basal insulin
delivery for improved glycemic control in individuals with
T1DM. Run-to-run adaptive control strategies using model
predictive control dynamically adjust basal insulin based
on daily glycemic patterns to enhance glucose stability and
reduce hypoglycemia risk [17]. Similarly, iterative learning
control has been applied to optimize basal insulin in multiple
daily injection therapy, leveraging historical BG data to
personalize and refine dosing over time [18]. Additionally,
a multivariate learning framework has been proposed for
artificial pancreas systems, allowing for continuous adapta-
tion of basal insulin rates in response to individual variability
and long-term changes in glycemic behavior [19]. Finally, a
multiagent reinforcement learning method has been used to
adjust both basal and bolus insulin dosing [20].
Study Contribution
Unlike methods that depend on complex models and real-time
adjustments, the personalized basal tuner (PBT) algorithm
provides a simpler, more practical solution for evaluating
BR without the need for meal data. Additionally, updating
calculations on a 45-day basis may improve the perform-
ance of certain closed-loop systems that incorporate BR as
a key component of their algorithms. This approach could
also enhance the safety of these systems when reverting to
manual mode. Furthermore, it supports clinicians in LMICs,
where closed-loop systems are less common, by aiding in BR
adjustments to improve TIR and better manage BG fluctua-
tions unrelated to meal intake.
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Aim and Hypothesis
The primary aim of this study was to develop and evaluate an
algorithm capable of identifying and removing BG excursions
caused by mealtime insulin boluses without requiring meal
information. The hypothesis was that this approach would be
noninferior and reasonably precise compared with methods
using meal data, thereby supporting its use in scenarios in
which meal information is unavailable or unreliable.

Methods
Ethical Considerations
This study used the OhioT1DM dataset [21], originally
collected under Institutional Review Board approval at
Ohio University (National Institutes of Health grant
1R21EB022356). Access to the dataset requires a data use
agreement signed between Ohio University and the requesting
institution, as stated in the dataset descriptor. In this work,

access was provided to the research team at the University
of Manchester under such an agreement, and all records
were fully deidentified before release. As this was a sec-
ondary analysis of anonymized data, no additional ethics
approval was required locally in accordance with University
of Manchester policy on the use of anonymized secondary
data.
Participants
This study used data from 12 adults with T1DM included in
the OhioT1DM dataset [21]. For each participant, approxi-
mately 45 consecutive days of CGM, insulin delivery, and
self-reported life event information were available. Partici-
pant demographics are summarized in Table 1. Although
the cohort was modest in size, each record provided a
rich multimodal profile that included CGM, insulin ther-
apy, and contextual events. This level of longitudinal detail
supports reproducible analyses and methodological develop-
ment despite the limited number of participants.

Table 1. Demographic characteristics of participants in the OhioT1DM dataset relevant to the personalized basal tuner algorithm.
ID Sex Age group (y) Pump model Cohort yeara Activity reportedb

540 Male 20‐40 630G 2020 No
544 Male 40‐60 530G 2020 No
552 Male 20‐40 530G 2020 No
567 Female 20‐40 630G 2020 No
584 Male 40‐60 530G 2020 No
596 Male 40‐80 530G 2020 No
559 Female 40‐60 530G 2018 Yes
563 Male 40‐60 530G 2018 Yes
570 Male 40‐60 530G 2018 Yes
575 Female 40‐60 530G 2018 Yes
588 Female 40‐60 530G 2018 Yes
591 Female 40‐60 530G 2018 Yes

aThe dataset includes patients from different cohorts and with different pump models.
b“Activity reported” indicates whether the participant provided physical activity data.

Materials
Each participant’s dataset includes 20 distinct variables
viewable through the open-source OhioT1DM Viewer (Ohio
University) [21]. For the scope of this study, the follow-
ing specific variables were extracted and analyzed for each
individual: BG, BR, bolus insulin doses, meal data, and
baseline step count.
Main Algorithm
The current algorithm functions as a sequential pipeline
designed for the analysis of T1DM data, with distinct stages
designed to identify inaccuracies in historical BR (Figure 1).

The first stage involves parsing CGM and insulin delivery
data, which are downloaded from the corresponding devices.
The second stage applies a peak detection algorithm to
filter out BG readings influenced by meal intake, preserv-
ing readings from fasting periods as much as possible. The
primary goal is to remove meal-related peaks even when

the meals are not recorded. This process is applied to all
historical data, and relative changes in BG are then calculated
on an hourly basis to quantify deviations from the optimal
target of 0 mg/dL, which serves as the conceptual baseline.
In clinical practice, once the clinician determines the optimal
basal insulin dose, it is expected that fasting glucose will
remain stable or show minimal deviation. Afterward, box
plots are generated to analyze and visualize the distribution of
BG relative changes. Finally, a metric based on the number
of data points is calculated to assess the reliability of the
obtained values. The final stage focuses on displaying results
and evaluating the findings (see the Results and Discussion
sections for further reference).

In summary, this variant of the algorithm takes a dif-
ferent approach by avoiding the necessity of meal infor-
mation. Instead, it leverages historical data to characterize
BG peaks, effectively removing them and, thus, providing
clear BG readings unaffected by external factors such as
meals or mealtime insulin bolus delivery. This method offers
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an approach to evaluating BR in historical BG readings
adaptable to any patient.

Figure 1. The developed algorithm is organized into 3 stages: one focused on preprocessing blood glucose (BG) data, another focused on peak
detection and evaluation of basal rate (BR), and the final stage focused on display and analysis. The main objective was to highlight and evaluate
aspects related to BR.

Peak Detection Analysis
Peak detection serves the purpose of identifying and
removing the influence of mealtime insulin bolus on
BG levels in reaction to meal metabolism. The process
commences with the examination of the BG information

available for each sampled patient as a function of date
and time (algorithm 1 in Textbox 1). Meal information in
this study was used for annotation purposes (ie, to evaluate
whether the BG peaks found were due to meals).

Textbox 1. Peak detection algorithm (algorithm 1).
Require: N ← BG files sorted by date;
 for i in len(N) do
  Apply low-pass filter to Ni to avoid noise;
  {P1, P2, P3, ..., Pi} ← peaks;
  {W1, W2, W3, ..., Wi} ← widths of peaks
  Obtain percentiles 95th of peak heights and widths;
  for j in len({P1, P2, P3, ..., Pi}) do if Pj or Wj ≥ P95
   then
    Tini ← TPeak j − 1hr; ▷ Obtain initial times to remove.
    T f in ← TPeak j + 3hrs; ▷ Obtain final times to remove.
    if T f in ≥ 23 : 59 : 59 then
     T f in ← T f in − 00 : 00 : 00; ▷ Obtain value to be removed next day.
     Read Ni+1 file;
     CleanBGFile ← Cut BG values ∈ (00 : 00 : 00, T f in);
   end if
  end if
  CleanBGFile ← Cut BG values ∈ (Tini, T f in)
  end for
end for

Algorithm 1 is specifically crafted to process BG data
associated with a patient. In each iteration, the algorithm
uses a low-pass filter to eliminate potential inaccuracies from
reading errors in a CGM system. Once the filter is applied
to the data, algorithm 1 takes on the task of detecting what
is considered a BG peak for this study. This involves using
algorithms for peak detection, height calculation, and width
estimation, all based on standard signal processing techni-
ques. The peak’s height (mg/dL) is calculated geometrically

by measuring height relative to neighboring minima. Once
the minima on each side of the peak are located, the height
corresponding to the deeper valley is selected. The width
(hours) is determined via linear interpolation at a specified
height [22]. After identifying all peaks, an outlier detection
method leveraging either height or width is used to pinpoint
peaks potentially associated with meal intake. A threshold
corresponding to the 95th percentile is established to filter
out peaks likely linked to meals. The outcome of this process
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is illustrated in Figure 2, where panel A displays all detec-
ted peaks and panel B shows the filtered peaks following
the application of the threshold. Similar approaches for
outlier detection using peak characteristics such as height
and width have been discussed in the literature, including
robust regression and outlier detection methods [23], anomaly
detection techniques [24], and event detection with outlier
handling in biological time-series data [25]. Research shows
that different macronutrients (carbohydrates, proteins, and
fats) affect glucose peak profiles in distinct ways. Carbohy-
drates typically cause a rapid rise in BG, leading to a sharp
increase followed by a quick, often asymmetrical decline.

In contrast, proteins and fats slow gastric emptying and
glucose absorption, resulting in a more delayed and flatter
peak. These observations suggest that glucose peak curves are
better modeled using skewed distributions such as log-normal
or gamma distributions rather than the traditional symmetric
Gaussian curve [26]. Furthermore, one study indicated that
glucose use begins soon after a meal, with peak glucose use
and insulin action typically occurring within 3 to 4 hours after
a meal [27]. Therefore, for this study, if peaks were identified,
a 4-hour window was excluded from the BG readings around
each peak time (extending from 1 hour before to 3 hours after
the peak).

Figure 2. (A) This example illustrates a series of purple peaks identified by the algorithm over a single day. (B) After applying the outlier detector
with threshold criteria based on the 95th percentile for width (hours) and height (mg/dL), only the peaks that meet these criteria are removed. In both
examples, widths are shown in red, and heights are shown in blue. Meal information is highlighted in orange, offering visual guidance to help the
reader better understand the phenomena evaluated by the algorithm. BG: blood glucose.

If the temporal subtraction extends into the early hours of
the subsequent day, this adjustment is carried over to the
following reading. Consequently, the outcome is daily BG
data in which any regions influenced by significant peaks in
BG are effectively removed. It is essential to acknowledge

that this step may be susceptible to inaccuracies as there could
be instances in which peaks are not precisely obtained and
some peaks may be attributed to factors other than meals. The
effect of removing BG peaks using algorithm 1 is illustrated
in Figure 3.
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Figure 3. Example application of algorithm 1: (A) 45 blood glucose (BG) readings for patient ID 588 over a day; (B) segments of BG readings
removed due to external influences; and (C) remaining BG levels after removal, representing periods without external interference.

After removing BG intervals influenced by meal absorption,
the algorithm consolidates the results into a unified table
using a 24-hour pivot structure with 1-minute increments.
This approach is selected to accommodate the irregular
intervals at which measurements are recorded—typically
every 5 minutes. The primary objective is to create a
comprehensive daily composite, which serves as input for
calculating BG relative change values.

Once the cleaned BG data are consolidated, they are
divided into 24 one-hour segments for more detailed and

thorough analysis. This segmentation aims to assess the
stability of BG levels throughout the day. The underlying
hypothesis is that, if the start and end points show no
significant change, indicated by a relative BG change of 0
mg/dL (0 mmol/L), the BR is considered appropriate, and
no further adjustments are needed. However, if differences
are detected, further evaluation is required to determine the
significance of these changes. The results of implementing
this approach are shown in Figure 4.

Figure 4. Hourly box plots depicting relative changes showcase the median distribution’s behavior over a composite 24-hour period. Values outside
the blue-shaded range indicate greater fluctuations during those time slots; however, this range is intended solely for visualization purposes. BG:
blood glucose.

The blue shading in Figure 4 represents a fixed range of
–36 to +36 mg/dL (–2 to +2 mmol/L), serving as a vis-
ual reference for hourly fluctuations in relative BG levels.
However, as the computation of box plots depends on the
number of data points within each interval, some intervals

exhibiting substantial variability require further analysis to
assess the accuracy of these values.

To address this, a personalized reliability measure—based
on the number of data points—was incorporated into the
analysis. Percentiles were used as thresholds determined
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through exploratory analysis of the hourly data, with the 50th
and 70th percentiles identified as points of notable separation
in the dataset [28]. The resulting composite day representa-
tion illustrates relative changes in BG categorized using a
3-level reliability measure, as shown in the Peak Detection
Analysis Results section, and is intended to evaluate the
current deviation of the BR.

Finally, to assess whether this procedure serves as a viable
alternative to the use of meal data, 2 tests were conduc-
ted. First, a noninferiority test was conducted to evaluate
whether the cumulative deviation of BG relative changes
captured by this method was comparable to that obtained
using meal information. This metric was chosen because BG
deviations are critical for assessing the current state of BR.
Second, precision was calculated to measure the accuracy
with which the method classified peaks as meal-related

events. An interindividual analysis was also conducted to
identify general patterns across participants.
Noninferiority Test
To determine whether the peak detection algorithm can be
used as an alternative to traditional meal announcements, it
was compared against historical meal data. Specifically, once
a meal was announced, the subsequent 4 hours of BG data
were excluded from the analysis, as recommended in prior
studies [26,27]. The new method must demonstrate noninfer-
iority by exhibiting comparable cumulative BG relative level
deviations. As BG relative levels can fluctuate above and
below the target value of 0 mg/dL, the absolute value of
the deviation was used. A comparative distribution of BG
deviations is shown in Figure 5.

Figure 5. Box plot comparing the deviation in blood glucose (BG) between the method using meal data and the peak detection algorithm.

Precision
To further evaluate the method’s performance, precision was
calculated to determine the proportion of detected peaks that
were correctly attributed to meal events [29]. The analy-
sis assessed whether the peak detection algorithm correctly
identified a BG peak associated with a meal event occurring
within a flexible window, from 1 hour before the estimated
base starting point (defined as peak-width/2) to 1 hour after
the peak. This window was defined based on exploratory data
analysis, which revealed variability in the timing and quality
of meal annotations (see the Precision Results section). The
95% CIs for these proportions were calculated using the
Wilson score method.

Interindividual Analysis
To identify general patterns across participants, the BG
relative change data from all individuals were pooled into
a single dataset, and each 24-hour composite day was divided
into 1-hour intervals. For each interval, values were classi-
fied into 1 of 3 categories: excessive insulin (<0 mg/dL),
insufficient insulin (>0 mg/dL), or optimal insulin (±0 mg/
dL). For each category, the range (minimum and maximum),
the average daily cumulative value, and the peak value
across all participants were computed. Additionally, variance
was compared between the excessive and insufficient insulin
categories to assess consistency in glycemic deviations. The
proportion of inappropriate BR settings was calculated as
the number of hourly intervals classified as “excessive”
or “insufficient” insulin divided by the total number of
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hourly intervals (n=288) after excluding periods influenced
by meals.

Results
Overview
The results of the analysis are structured into 4 key stages of
evaluation. First, the phenomena observed in all patients were
identified and described, highlighting the detected patterns
(see the Peak Detection Analysis Results section). Second,
the noninferiority test was conducted for each individual
to evaluate the safety of using this methodology compared
with using meal data (see the Noninferiority Test Results
section). Third, the precision of the method was assessed
(see the Precision Results section). Finally, an interindividual
analysis was conducted to evaluate the general state of BR
across participants and whether they shared a common issue

with their actual BR (see the Interindividual Analysis Results
section). This 4-stage approach enabled a deeper understand-
ing of the findings and their implications.
Peak Detection Analysis Results
The analysis of BG relative levels across multiple patients
revealed consistent patterns of reliability issues in the BG
data. For most patients, higher reliability in BG relative
changes was observed during early-morning hours, periods
between meals, and late-night intervals. In contrast, meal-
times were associated with lower reliability, often accompa-
nied by the presence of outliers. Patient ID 588 in Figure
6 serves as a representative example, where “A” shows BG
levels with high reliability during early hours and between
meals, “B” shows low-reliability BG values around meal-
times, and “C” highlights occasional outliers during periods
of low reliability.

Figure 6. Blood glucose (BG) relative changes and reliability for the patient with ID 588. “A” indicates that BG levels demonstrated high reliability
during early hours and periods between meals. “B” indicates that low-reliability BG values were observed around mealtimes. “C” indicates that
occasional outliers were observed during periods of low reliability.

Noninferiority Test Results
The results of the noninferiority test, which compared the
level of deviation from optimal BG levels for each individual
using this method and meal data, are shown in Table 2. There
is no accepted standard for the noninferiority margin, but
for this analysis, a threshold of 20% was established as a

reasonable starting point. Using this margin, the majority of
participants satisfied the noninferiority test. This indicates
that the cumulative deviation of BG relative values as a
metric was not worse when comparing this method to using
meal information.

Table 2. Results of the noninferiority test for each participant in the OhioT1DM dataset.
ID t test (df) P value
540 3.381 (460) <.001
544 –4.510 (980) <.001
552 3.673 (1025) <.001
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ID t test (df) P value
567 4.344 (263) <.001
584 6.955 (1336) <.001
596 0.591 (854) .277
559 0.663 (1101) .254
563 3.345 (1299) <.001
570 –2.219 (983) .013
575 –7.310 (1080) <.001
588 –3.192 (1140) <.001
591 –1.396 (915) .081

Precision Results
The results, summarized in Table 3, indicate precision
values ranging from 46.8% (88/188) of meals to 84%
(158/188) of meals, with an average of 73.9% (139/188;
SD 11.8%) of meals correctly classified per participant
(95% CI 67.2%‐79.7%, calculated using the Wilson score

method) when low-quality data, denoted by the “1” in the
“low quality” column, were excluded. Notably, missing data
(ie, instances in which no meal events were annotated in
the dataset) impacted precision outcomes as the absence of
reference points prevented meaningful comparisons.

Table 3. Summary of precision across multiple individuals. Low-quality data significantly impacted performance as the large proportion of missing
information negatively affected the resultsa.
ID Precision (%) Low qualityb Missing meal files, n/N (%)
540 56 1 29/46 (63)
544 71 0 3/41 (7)
552 47 1 15/38 (39)
567 47 1 36/47 (77)
584 49 1 12/46 (26)
596 79 0 9/46 (20)
559 73 0 7/42 (17)
563 63 0 4/46 (9)
570 73 0 6/41 (15)
575 81 0 4/46 (9)
588 84 0 1/46 (2)
591 70 0 6/46 (13)

aPrecision values ranged from 47% (88/188) to 84% (158/188) of meals, with an average of 74% (139/188) of meals in the filtered dataset.
bLow quality: binary indicator; 1=low-quality data, 0=high-quality data.

Interindividual Analysis Results
Figure 7 shows that 99.3% (286/288) of the BG rela-
tive values (SD 0.5%; 95% CI 97.5%‐99.8%) fell into
the categories of either insufficient or excessive insulin,
presenting a stark contrast to the relatively sparse occurren-
ces of optimal insulin levels, averaging approximately 0.166
hours per day across the study group.

Figure 8 shows that BG relative levels seemed to exhibit
diverse patterns when either too little or too much insulin was

administered, with noticeable variations among individuals,
ranging from −28.5 to 46.7 mg/dL (−1.58 to 2.59 mmol/L).
Data analysis indicates that, on average, individuals show
lower variability when more insulin than optimal is adminis-
tered compared to other dosing conditions. When computing
the daily cumulative average from the data of all individuals,
the analysis revealed an average value of 200.6 mg/dL (SD
61.7; 11.1 mmol/L, SD 3.4; 95% CI 161.4–239.8 mg/dL),
with peak values reaching 270.15 (SD 14.99) mmol/L.
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Figure 7. Histogram illustrating the distribution of hours during which individuals experienced insufficient, excessive, or optimal insulin levels,
corresponding to blood glucose relative values that were below or above the optimal target or at the optimal target, respectively. Across 12
participants (24 hours each; total=288 values), 99.3% (286/288; SD 0.5%) of the values fell into the categories of either insufficient or excessive
insulin. Optimal insulin levels were rare, averaging approximately 0.166 hours per day across the study group.

Figure 8. Box plots showing blood glucose relative levels under conditions of insufficient and excessive insulin administration, with interindividual
variability ranging from −28.5 to 46.7 mg/dL (−1.58 to 2.59 mmol/L). Daily cumulative averages across all individuals revealed a mean of 200.6 (SD
61.7) mg/dL (11.1, SD 3.4 mmol/L; 95% CI 161.4–239.8 mg/dL), peaking at 270.15 (SD 14.99) mmol/L.

Discussion
Principal Results
This study introduced a meal-independent approach for
assessing the adequacy of BR using historical CGM and
insulin delivery data. Unlike prior work focused on BR as an
input for BG prediction models, our method directly evaluates

BR performance over time and identifies when adjustments
are needed.

Peak detection analysis across participants revealed
consistent patterns in data reliability—higher reliability was
generally observed during early-morning hours, between
meals, and late at night, whereas mealtimes tended to show
lower reliability and more frequent outliers.
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Using a predefined 20% noninferiority margin on absolute
BG relative change, the no-meal method showed compara-
ble behavior to the meal-based approach in 9 of 12 par-
ticipants (1-sided P<.05). These findings indicate that the
method may achieve comparable performance without relying
on meal information, although individual differences and
data variability may explain the few nonsignificant results.
Precision averaged 73.9% (139/188) of meals correctly
classified per participant (SD 11.8%; 95% CI 67.2%‐79.7%),
indicating reasonable accuracy in excluding meal-related BG
excursions.

Interindividual analysis showed that 99.3% (286/288)
of BG relative values (SD 0.5%; 95% CI 97.5%‐99.8%)
fell into the excessive or insufficient insulin categories,
with deviations ranging from −25.5 to 46 mg/dL (−1.58
to 2.59 mmol/L). These findings highlight the prevalence
of suboptimal BR settings and suggest that the proposed
approach could support BR adjustments without the burden
of collecting meal data, reducing patient effort and device-
related strain [30] and supporting future calibration in both
closed-loop and stand-alone pump use.

Although CGM-derived glucose trends formed the primary
analytical focus, basal insulin delivery data were central to
interpreting these results. The composite 24-hour BG profile
for each participant was generated directly from their CGM
data, and relative BG changes were assessed in the context
of BR. Given that 99.3% (286/288; SD 0.55%) of the BG
relative values fell into the excessive or insufficient catego-
ries rather than the optimal 0 mg/dL range, these deviations
strongly indicate that the current BR configurations were
inadequate. In this way, insulin delivery data were not only
included but also essential for linking glucose deviations to
inaccuracies in BR setup.

Comparison With Prior Work
Extensive research in BG prediction for T1DM has been
conducted in recent years [31]. Approaches have ranged from
data-driven models to physiological models and combinations
of both, often using advanced machine learning techniques,
related algorithms, or mathematically complex differential
equations [32,33]. This work contributes to that body of
knowledge by introducing an algorithm that may help assess
whether current BR settings are appropriate without requiring
meal data. This is clinically relevant because incorrect BR
inputs—whether in closed-loop systems that revert to manual
mode or in stand-alone insulin pumps—can lead to inaccurate
adjustments and suboptimal BG management.

Previous research efforts have predominantly revolved
around BR as an input variable rather than it being the
central subject of investigation. Few studies have tackled
this challenge directly. Certain works have applied cluster-
ing methods, grouping new patients based on characteristics
such as age or diabetes duration [34]. Several studies have

used traditional machine learning methods for prediction
tasks [35]. However, test outcomes have been suboptimal
[36]. Recent research [37,38] has documented the effec-
tive performance of automatic insulin delivery systems in
real-world operation. While they offer significant clinical
benefits, these systems still have calibration challenges and
emerging cybersecurity considerations [5].

In addition to the previous examples, some studies have
examined the characterization of BR profiles. Such stud-
ies have examined the previously noted variables [10,39-
41] alongside factors including the dawn phenomenon and
age-related effects on these profiles. However, these studies
do not provide guidance on how to accurately determine the
appropriate BR for an individual, nor do they address how
these rates may change over time for the same person.

In the landscape of meal detection research, the consulted
examples hinge on the computation of rates of change using
sophisticated mathematical approaches such as Kalman filters
[42-45] or the validation of probabilistic methods through
testing in in silico environments [46-48].
Limitations
This work acknowledges several limitations. First, it relies
on the assumption that mealtimes align with the attributes
defined in the methodology—specifically, that BG peaks
exceed the 95th percentile for either width (hours) or height
(mg/dL). Second, the dataset was constrained by a limited
sample size (N=12) and its demographic characteristics and
data quality, which inherently impacts the precision and
generalizability of the analysis. Third, the algorithm has
only been evaluated on the dataset used for its develop-
ment; therefore, validation in independent external datasets
will be necessary to establish robustness and applicability
across broader populations. Finally, while this study did not
assess the clinical significance of the observed variations and
changes in BG levels, this will be comprehensively addressed
in future clinical investigations.
Conclusions
This paper highlights the preliminary potential of the
proposed algorithm, which relies solely on CGM data to
approximate the timing of meal-related glucose excursions.
By excluding these instances, the algorithm may help provide
a clearer assessment of relative BG deviations and the
current state of BR. These findings should be interpreted
cautiously as preliminary evidence, and validation in larger
and independent cohorts will be required before any clinical
application can be considered. Therefore, future work will
focus on refining the method and assessing its utility for
supporting BR adjustments aimed at reducing BG deviations
and extending TIR, particularly in LMICs, where advanced
systems are less common.
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