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Abstract

Background: Gestational diabetes mellitus (GDM) is a prevalent chronic condition that affects maternal and fetal health
outcomes worldwide, increasingly in underserved populations. While generative artificial intelligence (AI) and large language
models (LLMs) have shown promise in health care, their application in GDM management remains underexplored.

Objective: This study aimed to investigate whether retrieval-augmented generation techniques, when combined with knowledge
graphs (KGs), could improve the contextual relevance and accuracy of AI-driven clinical decision support. For this, we developed
and validated a graph-based retrieval-augmented generation (GraphRAG)–enabled local LLM as a clinical support tool for GDM
management, assessing its performance against open-source LLM tools.

Methods: A prototype clinical AI assistant was developed using a GraphRAG constructed from 1212 peer-reviewed research
articles on GDM interventions, retrieved from the Semantic Scholar API (2000‐2024). The GraphRAG prototype integrated
entity extraction, KG construction using Neo4j, and retrieval-augmented response generation. The performance was evaluated
in a simulated environment using clinical and layperson prompts, comparing the outputs of the systems against ChatGPT (OpenAI),
Claude (Anthropic), and BioMistral models across 5 common natural language generation metrics.

Results: The GraphRAG-enabled local LLM showed higher accuracy in generating clinically relevant responses. It achieved
a bilingual evaluation understudy score of 0.99, Jaccard similarity of 0.98, and BERTScore of 0.98, outperforming the benchmark
LLMs. The prototype also produced accurate, evidence-based recommendations for clinicians and patients, demonstrating its
feasibility as a clinical support tool.

Conclusions: GraphRAG-enabled local LLMs show much potential for improving personalized GDM care by integrating
domain-specific evidence and contextual retrieval. Our prototype proof-of-concept serves two purposes: (1) the local LLM
architecture gives practitioners from underserved locations access to state-of-the-art medical research in the treatment of chronic
conditions and (2) the KG schema may be feasibly built on peer-reviewed, indexed publications, devoid of hallucinations and
contextualized with patient data. We conclude that advanced AI techniques such as KGs, retrieval-augmented generation, and
local LLMs improve GDM management decisions and other similar conditions and advance equitable health care delivery in
resource-constrained health care environments.

(JMIR Diabetes 2026;11:e76454)   doi:10.2196/76454
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Introduction

The growing use of electronic medical records linking diverse
patient characteristics and prescription choices with positive
treatment outcomes in large-scale use cases has resulted in
platforms that guide optimal treatment options. For example,
Sharma et al [1] presented an approach for delivering

personalized health care as a means of effectively using scarce
medical resources in underserved regions and populations,
supporting the value of artificial intelligence (AI)–driven
systems in such settings. While machine learning (ML) and data
analytics have generated individualized treatment
recommendations for improving outcomes, “these works focused
on making broad [largely drug class level] treatment
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recommendations independently of specific drug and dose
considerations... [whereas] guidelines and landmark trials
highlight important drug- and dose-dependent variations in
treatment efficacy, safety, and risk profiles” [2]. In short,
personalized medicine should account for contextual variations
in seeking more effective, cost-efficient treatments with better
outcomes. This study presents an approach to clinical support
to time- and resource-constrained practitioners using a
generative artificial intelligence (GenAI) approach to treat a
serious medical condition afflicting young mothers and their
children with increasing alacrity. Such a need is particularly
acute in the socioeconomically disadvantaged regions of the
world.

Gestational diabetes mellitus (GDM) is a significant global
health concern affecting many pregnancies [3]. Defined as
glucose metabolism imbalance first detected during pregnancy,

the International Association of Diabetes in Pregnancy Study
Group reports that “GDM is not only related to perinatal
morbidity but also to an increased risk of diabetes and
cardiovascular disease in the mother in later life, and childhood
obesity in the offspring” [4]. The pooled global prevalence was
14% in 2021, with the highest occurrence in the Middle East -
North Africa (27.6%), Southeast Asia (20.8%), and among
high-income countries (14.2%) [5]. There is considerable
agreement among medical practitioners that the development
of GDM could be influenced by various risk factors, including
maternal age, obesity, family history of diabetes, previous
occurrences of GDM, and specific ethnic backgrounds [6,7].
This is illustrated in Figure 1 (data sources: [3,8-10]) as the
medical characterizations of GDM comprising factors such as
diagnosis, risks, prediction, management, complications, and
postpartum care.

Figure 1. Medical characterization of gestational diabetes mellitus. GDM: gestational diabetes mellitus.

Also, of concern to the WHO is that GDM leads to various
complications for both affected mothers and their offspring,
such as increased risks of cesarean delivery, pre-eclampsia, and
type 2 diabetes (T2D) for mothers. Children are at higher risk
of macrosomia, hypoglycemia, respiratory distress syndrome,
and an increased likelihood of developing obesity and T2D later
in life [11]. The long-term health risks include elevated chances
of developing T2D and cardiovascular diseases for both mother
and child [12]. In the Global South and developing countries
[8,13], GDM presents significant challenges due to:

1. Higher prevalence rates in certain regions, particularly
South Asia and the Middle East.

2. Limited health care resources for screening, diagnosis, and
management.

3. Genetic factors in certain ethnic groups increase GDM risk.
4. Rapid urbanization and lifestyle changes leading to

increased obesity rates.

5. Potential underdiagnoses due to lack of routine screening.

Effective GDM treatment requires multiple diagnostic tests,
including oral glucose tolerance tests, random plasma glucose
tests, and fasting plasma glucose tests. The treatment options
include regular blood glucose monitoring, dietary modifications,
lifestyle changes, and, when necessary, pharmacological
interventions such as insulin or oral hypoglycemic agents [9].
The recent advancements in AI-driven tools, such as the AI
Drug Mix and Dose Advisor developed for T2D [2], have shown
potential in optimizing pharmacological interventions by
customizing drug and dose recommendations to individual
patient profiles. Similar approaches could be valuable in
improving glycemic management in GDM cases, enhancing
personalized care in postpartum treatment, drug discovery with
therapy, and reducing long-term risks of developing chronic
diseases in general.
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Despite growing interest in AI-driven clinical support, current
models often struggle to integrate diverse, multisource medical
data into actionable insights, especially in conditions such as
GDM, where missing information and diagnostic delays
contribute to less desirable outcomes. These limitations are
particularly prominent in resource-constrained settings, where
systemic challenges, such as insufficient screening tools, lack
of standardized care protocols, and limited provider training,
complicate effective diagnosis and treatment [8,13]. As a result,
the timely and effective treatment of GDM remains difficult,
further endangering maternal and fetal health.

In such contexts, the unavailability of specialized professionals,
economic constraints, and cultural challenges also influence
treatment adherence and engagement [14,15]. The limited
awareness between both the public and health care providers
continues to contribute to improper management of GDM [16],
reinforcing the urgent need for robust, context-sensitive clinical
decision support [17,18].

To address these gaps, we propose a novel solution using
specialized GenAI techniques for GDM management.
Specifically, we develop a proof-of-concept (PoC) of a clinical
support system that uses a knowledge graph (KG) supporting
a local large language model (LLM). This system extracts and
integrates intervention strategies from peer-reviewed research

to support physicians in making contextually relevant treatment
decisions.

Standalone local LLMs, however, face known limitations,
including hallucinations and reduced reliability when handling
domain-specific, complex queries [19]. To address these issues,
we introduce a retrieval-augmented generation (RAG)
mechanism that improves the accuracy and relevance of outputs
by supplementing the LLM with contextual data [20,21]. This
hybrid approach could elevate the clinical utility of GenAI for
complex, low-resource health care scenarios such as GDM.

By generating structured, evidence-informed recommendations
in real time, our system lays the foundation for scalable and
explainable AI support tools customized to maternal health.
The following section reviews previous ML and LLM-based
approaches to GDM detection and prediction, positioning our
work within this evolving research landscape. It is stated at this
juncture that while the distinction between LLMs and local
LLMs is clear, it is less so between local LLMs and small
language models (SLMs). The prototype developed in this study
assumed a local LLM architecture but could be repurposed as
SLMs, particularly in resource-constrained locations of the
Global South. A concise feature comparison of LLMs, local
LLMs, and SLMs is provided in Textbox 1.

Textbox 1. Feature comparison of large language models, local large language models, and small language models.

Large language models

Large language models (LLMs) are typically based on deep learning, trained on massive amounts of text and increasingly multimedia data to understand,
generate, and manipulate human language. LLMs work by learning to predict the next word in a sequence based on the context of the input prompt,
using billions of parameters to refine these predictions. They excel at natural language processing tasks such as text completion, translation,
summarization, question-answering, and content generation.

Local LLMs

Local LLMs run inside the private data center of an entity or organization. Local LLMs are fine-tuned with the organization’s data (eg, patient records
or standard rules) and can provide specific context to a query or prompt that general-purpose chatbots cannot or should be legally allowed to deliver.
Particularly in the domains of sensitive and confidential data (such as a patient’s medical conditions), such prompts may have to be subject to rigorous
access, authentication, and accounting controls.

Small language model

A small language model is designed to understand and generate natural language, similar to LLMs, but on a much smaller scale, with fewer parameters
and a simpler architecture. Small language models are optimized for efficiency and can be deployed on resource-constrained devices like smartphones
or local servers, offering benefits such as faster training and execution, lower energy consumption, and improved privacy by allowing for on-device
processing and less reliance on cloud connectivity. A use case could be first responders in emergency room situations.

Recent advances in ML have shown promise in improving the
early diagnosis and personalized management of chronic
conditions such as GDM. These models identify high-risk
individuals during pregnancy, customize treatment plans, and
ultimately enhance maternal and neonatal health outcomes.
Several studies have developed ML algorithms that account for
demographic variations, for example [22,23], present models
customized to Asian women [10] used decision trees and
ensemble learning for early GDM detection, reporting high
sensitivity and specificity. However, these models often fail to
capture the full complexity of GDM-related factors.

The efforts to improve model interpretability include research,
such as meta-reviews of clinical studies on complications during
pregnancy and their treatments [24], on clinically explainable
ML approaches for blood glucose monitoring [25,26], and the
use of extreme gradient boosting to identify key risk factors
[27]. However, several studies [25,26,28,29] note limitations
in integrating high-quality datasets, supporting real-time
interventions, or embedding models within clinical systems.
Table 1 presents these representative models, underscoring the
trade-offs between accuracy, interpretability, and practical
usability.
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Table . Representative research deep learning or machine learning models for predicting gestational diabetes mellitus.

Key contributions and limitationsModelYearStudy

Demographic-specific MLa model2024Kokori et al [22] and Kumar et al
[23]

• KCsb: Accurate predictions for
specific demographics (Asian
women).

• Limits: Limited integration in-
to health care systems.

Decision trees and ensemble2023Kurt et al [10] • KCs: High sensitivity and
specificity.

• Limits: Fails to capture all

GDMc-related factors.

Clinically interpretable ML2024Wu et al [29] • KCs: Emphasized interpretable
models for GDM.

• Limits: Limited real-time appli-
cation.

ML-based models2022Wu et al [25] • KCs: Importance of high-qual-
ity datasets.

• Limits: Lacks interpretability
and integration.

aML: machine learning.
bKC: key contribution.
cGDM: gestational diabetes mellitus.

These limitations highlight the need for models that go beyond
static risk prediction to support context-aware clinical
decision-making. In this regard, LLMs offer transformative
potential as they generate patient-specific recommendations by
synthesizing heterogeneous clinical data. When augmented with
retrieval techniques, such models become more effective.

Several recent studies have discussed the expanding role of
LLMs across health care domains[30]. For example, an AI

system developed for liver diseases [31] provided personalized
treatment strategies that improved diagnostic outcomes.
Graph-based retrieval-augmented generation (GraphRAG)
integration has shown benefits in nephrology by increasing
output precision and reliability [20], while LLMs have supported
psychotherapy automation [32] and administrative workload
reduction in personalized medicine [33]. Some of these use
cases are captured in Table 2, reinforcing the applicability of
RAG-augmented LLMs in clinical practice.

Table . Representative use cases of artificial intelligence in clinical health care.

Key contributionsModelYearStudy

Enhanced diagnostic accuracy and
patient management tailored for
liver diseases.

AIa model for liver diseases2024Ge et al [31]

Improved clinical decision-making

with RAGb-enhanced LLMsc, offer-
ing precise predictions and treat-
ments.

Clinical decision support system2023Ong et al [34]

Improved accuracy and reliability
in nephrology advice by integrating
RAG with LLMs.

LLM-RAG for nephrology2024Miao et al [20]

Explored the potential of LLMs to
support and potentially automate
aspects of psychotherapy.

LLMs in psychotherapy2024Stade et al [32]

Demonstrated how LLMs can auto-
mate administrative tasks, reducing
clinicians’workload from electronic
medical records.

Personalized medicine AI model2024Tripathi et al [33]

aAI: artificial intelligence.
bRAG: retrieval-augmented generation.
cLLM: large language model.
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Noting the above, this paper proposes a novel architecture for
GDM care that integrates (1) a local LLM for domain-specific
control and privacy, (2) an RAG engine for contextual
grounding, and (3) a domain-specific KG to capture interrelated
medical evidence.

This combination enables real-time generation of explainable,
evidence-informed treatment recommendations for GDM
management, even in resource-constrained settings. As
compared with previous studies, such as those by Nambiar et
al [2] and Tripathi et al [33], which focused on general dosing
automation or task simplification, this study addresses a critical
gap: the need for adaptive, fine-grained, and explainable
intervention support in the prenatal context.

From a technical standpoint, our contributions are (1) the
construction of a GDM-specific KG derived from peer-reviewed
literature; (2) the use of RAG-enhanced local-LLMs to retrieve,
contextualize, and generate targeted care pathways; and (3) a
PoC system architecture that is interpretable, domain-grounded,
and designed for offline, privacy-preserving environments.

The PoC will support timely intervention and align with the
practical realities of underserved clinical contexts; consider the
plight of a rural doctor in the Global South, where internet
connectivity, specialist clinician availability, and cutting-edge
expertise may be limited. It represents a step toward deploying
technically robust and clinically meaningful AI to applications
of acute need.

Following this introduction, the remainder of this paper is
organized as follows. The next section addresses the methods,

and specifically, a description of developing design artifacts for
a PoC. In the Results section, we put the system through
simulated scenarios and test the responses for accuracy, bias,
and performance benchmarking. In the Discussion section, we
present the principal findings along with an analysis of key
contributions of the research. The paper ends with a section on
Conclusions, which also covers limitations and suggestions for
further research.

Methods

Prototyping a PoC
Health care professionals, particularly those in densely populated
and resource-constrained regions of the Global South, often
face significant challenges in accessing timely, evidence-based
medical insights. Attending training sessions or reviewing vast
volumes of literature under time pressure is impractical,
especially in scenarios where specialist expertise or standardized
guidelines are lacking. Our approach uses computational
methods to extract, structure, and contextualize medical
knowledge using GenAI and KG technologies to address this
need.

Our primary objective was to develop a PoC of a clinical AI
assistant that would support the management of GDM. This
GraphRAG-based architecture combines entity extraction from
published research, KG construction, and RAG to generate
clinically grounded, context-aware responses. As illustrated in
Figure 2, the PoC framework follows a 5-stage pipeline.

Figure 2. Process flow of the proposed graph-based retrieval-augmented generation approach, showing data collection, entity extraction, knowledge
graph construction, and retrieval-augmented generation for AI-assisted clinical support for gestational diabetes mellitus. API: application programming
interface; GDM: gestational diabetes mellitus; LLM: large language model; PRISMA: Preferred Reporting Items for Systematic Reviews and
Meta-Analyses.
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• Data collection and preparation: The Semantic Scholar API
retrieved relevant research articles on GDM interventions.
A PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses)–guided filtering process was
applied to ensure that inclusion criteria were met, resulting
in a refined corpus of 1212 high-quality articles.

• Entity extraction: Using GPT-3.5 Turbo (OpenAI) and
few-shot prompting, entities such as treatments, outcomes,
risk factors, and disease indicators were extracted from
full-text articles. Semantic consolidation (eg, grouping
“low-carb diet” and “reduced carbohydrate intake”) ensured
terminological consistency.

• KG construction: Extracted entities and their relationships
were encoded into a Neo4j graph database. The graph
allowed efficient traversal of clinical pathways, such as
connecting interventions to outcomes and risk profiles.
Each node and edge pair was annotated with medical
metadata, such as intervention strength, evidence level, or
prevalence.

• Query processing and graph retrieval: When a user query
is submitted (eg, “What treatments control GDM?”), the
system was designed to retrieve relevant subgraphs using
Cypher queries. These results are then passed to the LLM
for augmentation and contextual response generation by
incorporating patient records.

• Response generation: The final output is a clinically
coherent and relevant response integrating retrieved

evidence and a generative explanation. For example, based
on retrieved data, the model might respond: “Insulin therapy
controls GDM by lowering blood sugar levels and
preventing complications.” If asked why, the system might
explain: “Insulin enables glucose uptake by cells throughout
the body, particularly muscle and fat cells, by facilitating
glucose transport across cell membranes. Without adequate
insulin, glucose accumulates in the bloodstream while cells
are starved of this essential energy source.”

This multistep process would allow the system to access
reputable and current medical research to produce explainable,
evidence-grounded outputs for clinical decision support. Each
component of this workflow is further detailed in the following
subsections.

Data Collection
To develop a high-quality domain-specific KG for GDM, we
conducted a systematic search using the Semantic Scholar API
[35], a widely used biomedical research platform. The query
term “gestational diabetes interventions” was selected to target
studies focused on treatment strategies and clinical outcomes.
The search was restricted to articles published between January
2000 and May 2024, to cover both foundational and
contemporary research. The data collection and filtering process
adopted PRISMA guidelines, as illustrated in Figure 3.
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Figure 3. PRISMA flow diagram showing the systematic data collection and filtering process, detailing identification, screening, eligibility assessment,
and inclusion of research articles for knowledge graph construction.

• Identification: The initial search produced 2305 journal
articles. No records were found from registers. Automated
filters removed 638 ineligible records based on metadata
mismatches or irrelevant domains. No duplicate entries
were detected.

• Screening: The remaining 1667 articles were screened by
2 reviewers (FR and SB) based on titles and abstracts. This
stage ensured that only articles related to GDM diagnosis,
treatment, management, or intervention outcomes were
retained.

• Eligibility: A total of 1212 full-text articles were deemed
eligible based on the inclusion criteria. Articles were
excluded at this stage (n=455) due to full-text unavailability,
access limitations, or insufficient clinical relevance.

• Inclusion: The final corpus consisted of 1212 peer-reviewed
studies, all of which were used to extract entities and
construct the GDM-focused KG.

While Semantic Scholar provided comprehensive coverage and
metadata-rich access, reliance on a single source introduces
potential limitations, such as limited representation of

non-English or region-specific research and sensitivity to
keyword variations. Future work could explore multilingual
database integration and broader query strategies to reduce
potential selection bias.

Nonetheless, for developing our PoC, the selected dataset
offered sufficient diversity and clinical validity to enable
meaningful experimentation and system development.

Entity Extraction
Following the curation of the GDM research corpus, the next
step involved extracting clinically relevant concepts, including
treatments, risk factors, and outcomes, from the published
research. This process was executed using OpenAI’s GPT-3.5
Turbo 16K API [36], which supported advanced natural
language processing for domain-specific knowledge extraction.
Rather than relying on pretrained biomedical ontologies, we
adopted a lightweight prompting-based approach aligned with
our PoC’s experimental and modular goals.
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A few-shot prompting strategy was applied to guide the language
model in identifying and structuring entities of interest in a
usable format. Guided by 3 medical doctors, the prompts were
manually engineered to show expected outputs, such as
intervention types (eg, insulin therapy, diet, and physical
activity), intervention parameters (eg, frequency, duration, and
dosage), and associated maternal and infant outcomes. This
enabled the model to consolidate synonymous or semantically
related expressions (such as “low carbohydrate diet” and
“reduced carb intake”) into a unified entity representation. The
same prompts also encouraged disambiguation of overlapping
terms and discouraged the duplication of entities across articles.

The outputs were parsed into structured formats, which included
both individual entities and the semantic relationships among
them, for example, linking “insulin therapy” as a treatment that

“controls” GDM, or connecting “smartphone-based lifestyle
interventions” to enhanced “maternal outcomes.” These entities
and their connections were then directly integrated into the KG
in the next stage of development.

This stage of entity extraction was led by the coauthor (FR),
who specializes in bioinformatics and uses a technique we
describe as “medical prompt engineering.” The objective was
to simulate how future clinical AI assistants might extract
structured knowledge from unstructured medical literature
autonomously. However, we acknowledge that such extractions
would require validation by specialist health care professionals
to ensure accuracy and reliability for clinical deployment.

The overall entity extraction workflow, including prompt design,
model guidance, semantic structuring, and preparation for graph
integration, is visualized in Figure 4.

Figure 4. Entity extraction workflow using large language models. The diagram is an example of the process for extracting interventions, risk factors,
and relationships, which produces structured and context-aware knowledge representation for gestational diabetes mellitus management. GDM: gestational
diabetes mellitus; LLM: large language model.

Construction of the KG
Upon completion of the entity and relationship extraction, the
structured data were integrated into a KG using Neo4j, a widely
used open-source graph database [37]. Neo4j is optimized for
representing interconnected biomedical data, making it
well-suited for capturing the multifactorial nature of GDM
management, which involves dynamic relationships between
interventions, risk factors, outcomes, and complications [38].

The KG construction process involved linking each extracted
entity, such as insulin therapy, dietary strategies, or risk factors
like obesity, to its semantically relevant mappings using
directional edges labeled with relationship types (eg, “controls,”
“contributes to,” and “enhances”). Each node was annotated
with descriptive labels and properties derived from the literature,

and relationships were encoded with metadata such as source
references or study types, when available.

All nodes and edges were imported into Neo4j through a
structured ingestion pipeline, enabling clinicians or researchers
to query the KG using the Cypher query language. This
functionality allowed for exploratory clinical queries, such as
identifying interventions most frequently associated with
improved maternal outcomes in high-risk GDM cases or tracing
evidence paths for specific treatment combinations.

The resulting KG facilitated context-aware clinical decision
support by surfacing specific evidence-informed insights. For
example, a clinician’s query, such as “What are the best
interventions for GDM in patients with a BMI over 30?” could
retrieve targeted graph segments linking relevant interventions
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(eg, low glycemic index diet and structured exercise regimens)
to outcomes validated in the literature. This dynamic capability
is depicted in Figure 5, which illustrates a representative graph

traversal initiated by a clinician’s question, leading to
personalized treatment recommendations based on the structural
relationships captured in the KG.

Figure 5. Knowledge graph–powered clinical support system for gestational diabetes mellitus. The graph-based search retrieves relevant interventions
and relationships, giving treatment recommendations. GDM: gestational diabetes mellitus; KG: knowledge graph.

The KG serves as the core reasoning backbone of the prototype
clinical assistant, consolidating distributed medical evidence
into a queryable visual knowledge substrate that can be updated
as new medical evidence emerges.

KG-Based RAG
To enhance the clinical utility of the constructed KG, we then
implemented an RAG approach [39]. This hybrid architecture
combines traditional retrieval mechanisms with generative
LLMs to produce contextually grounded and medically sound
responses. In clinical settings, where decision-making depends
on subtle interpretation and evidence-based insights, this
integration mitigates the limitations of standalone generative
systems like SLMs.

While LLMs, such as ChatGPT (OpenAI), can produce fluent
and context-aware responses, they are prone to hallucinations,
outdated knowledge, and domain-specific inaccuracies [19].

Conversely, RAG addresses these gaps by coupling LLMs with
reputable (peer-reviewed) external knowledge sources. For
example, no medical claim, such as bleach being a valid
treatment for COVID-19, would have gone into the KG. In our
PoC, entity-aware retrieval from the Neo4j-based GDM KG
provides factual context, which the LLM then uses to generate
a tailored response. This integration significantly improves
factual grounding and interpretability, essential in critical
domains, such as maternal health [20,21].

Using the PoC follows a 5-stage pipeline, visualized in Figures
6 and 7. Beginning with an initial clinical query, the system
encodes the user input and dynamically retrieves semantically
matched information from the KG. This process accounts for
risk factors, interventions, and patient-specific context, including
medical records and socioeconomic profiles, thereby aligning
output with real-world variability in treatment planning.
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Figure 6. End-to-end process flow of the graph-based retrieval-augmented generation solution. The pipeline processes medical literature and patient
data, integrating them into a structured knowledge graph for AI-driven clinical decision support. GDM: gestational diabetes mellitus; KG: knowledge
graph; LLM: large language model.

Figure 7. Structured retrieval and response generation process in graph-based retrieval-augmented generation. The diagram shows how clinician queries
interact with medical knowledge sources, pattern matching, and graph-based retrieval to enhance artificial intelligence–generated responses. GDM:
gestational diabetes mellitus; LLM: large language model.

JMIR Diabetes 2026 | vol. 11 | e76454 | p.11https://diabetes.jmir.org/2026/1/e76454
(page number not for citation purposes)

Evangelista et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6 shows the underlying LLM-KG pipeline, including
entity extraction, relationship linking, and graph query
generation. Figure 7 offers a complementary perspective by
emphasizing end-to-end data flow, from patient query and
literature matching to LLM response generation, thus
highlighting how both structured (graph-based) and unstructured
(textual) data are integrated to yield context-aware, personalized
responses.

Although Figures 6 and 7 present a simplified overview of
system functionality, the development process required iterative
prompt engineering, guided tuning, and manual validation to
align LLM outputs with the domain-specific vocabulary and
relationships obtained from GDM research literature [32,33].
This iterative refinement helped ensure that the GraphRAG PoC
consistently produces clinically meaningful recommendations
rooted in the KG, avoiding spurious correlations and unverified
claims.

Evaluation Framework and Metrics
The evaluation of the GraphRAG-powered local LLM for GDM
was conducted through a structured framework designed to
assess both technical performance and clinical relevance.
Applications of AI in health care require rigorous validation
beyond prompt engineering. This study used a multidimensional
evaluation process using a combination of quantitative metrics
and clinician-generated prompts.

Evaluation Objectives
The primary objective of the evaluation was to measure the
effectiveness of the proposed PoC in three “fit for purpose”
criteria: (1) generating clinically relevant, context-aware
responses to queries on GDM management; (2) comparing its
performance against widely used open-source LLMs in terms
of accuracy and interpretability; and (3) assessing whether the
retrieval-augmented approach of GraphRAG significantly
improves response quality in medical decision support. These
criteria reflect the critical nature of clinical decision-making,
where AI-generated content’s clarity, accuracy, and contextual
relevance directly affect patient safety and clinical outcomes.

Testing Environment
The evaluation was conducted in a simulated environment,
without the involvement of live patients or human participants.
The GraphRAG-powered local LLM was deployed on an offline
computing environment, ensuring that no external API calls or
third-party cloud services influenced the test outcomes. The
KG was prepopulated with medical research articles, as

described in the “Prototyping a PoC” section, and served as the
contextual knowledge base for all retrieval-augmented queries.

Prompt Design and Benchmark Models
The prompts used in the evaluation were carefully crafted to
simulate realistic clinical and layperson queries. These prompts
were generated from two user groups: (1) laypersons represented
by 5 contributors (the authors) simulating patient queries,
verified for clarity and simplicity; and (2) clinicians comprising
2 general practitioners (GPs) and 1 specialist physician, who
created queries based on typical clinical decision-making
scenarios.

Furthermore, 2 independent medical practitioners reviewed all
prompts to ensure clinical relevance (were the prompts aligned
with real-world GDM management scenarios?) and content
clarity (did the prompts avoid ambiguous phrasing or unrealistic
edge cases?)

The GraphRAG system was then benchmarked against 3
open-source LLMs commonly used in medical AI research. The
comparison is intended to analyze the performance of a
domain-augmented local model (our PoC) against both
general-purpose and specialized health care LLMs.

• ChatGPT [36]: A versatile, general-purpose LLM.
• Claude [40]: Known for generating coherent, contextually

rich responses.
• BioMistral [41]: A domain-specific medical LLM optimized

for health care contexts.

Our benchmarking compares the GraphRAG-enabled local LLM
against the above 3 LLM models to assess clinical relevance,
contextual accuracy, and terminological consistency. These
models were selected based on availability, health care domain
relevance, and ease of integration into our evaluation pipeline.
While we acknowledge the increasing prevalence of open-source
LLMs such as LLaMA 3 (Meta AI), due to hardware
compatibility constraints and inference framework differences
at the time of testing, we could not integrate LLaMA 3 within
the test environment. LLaMA 3 and other emerging open-source
models, such as Mistral 7B (Mistral AI) and Phi-3 (Microsoft),
should be included in future benchmarking updates to expand
our comparative analysis, which is suggested as future work.

Evaluation Metrics and Rationale
Following established practices in evaluating health care AI
models [42,43], we used 5 complementary metrics, each
addressing a distinct dimension of AI-generated response
quality. These are presented in Table 3.
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Table . Metrics and their clinical significance in evaluating artificial intelligence–generated responses.

SignificancePurposeMetric

Critical for clinical decision support, where irrel-
evant or off-topic answers compromise safety.

Measures alignment between response content
and user query.

Relevance score

Ensures AIb responses replicate validated medi-
cal language without distortion.

Evaluates syntactic similarity and phrase struc-
ture match against reference answers.

BLEUa score

Captures preservation of clinical terminology

essential in GDMc management.

Quantifies overlap in key medical terms between
model response and reference.

Jaccard similarity

Evaluates whether model responses capture the
intended clinical meaning beyond surface text.

Assesses semantic similarity using deep contex-
tual embedding.

BERTScore

Ensures clarity and interpretability for both clin-
icians and patients.

Evaluate fluency and coherence in response
generation.

METEOR

aBLEU: bilingual evaluation understudy.
bAI: artificial intelligence.
cGDM: gestational diabetes mellitus.

Together, these metrics comprehensively address the precision,
contextual relevance, and interpretability of an AI model’s
outputs, which are key requirements for clinical use cases.

Evaluation Process
The evaluation adopted the following steps:

First, each LLM, including GraphRAG, was presented with the
same curated set of 20 prompts (10 from simulated layperson
queries and 10 from clinicians), covering core aspects of GDM
management, such as risk factors, diagnostics, treatment, and
complications. The 5 coauthors (EE, FR, SB, AN, and RS)
jointly drafted the layperson prompts, while clinical prompts
were contributed by 2 practicing GPs and reviewed by a third
medical specialist.

Second, the system’s responses were compared against reference
answers, curated from clinical guidelines and expert consensus
statements.

Third, evaluation was conducted in a zero-shot
retrieval-augmented setting. No supervised training or
fine-tuning was performed. The local LLM operated on a
preconstructed KG as the contextual grounding source.

Fourth, automated evaluation metrics (bilingual evaluation
understudy [BLEU], Jaccard Similarity, BERTScore, and
METEOR) were computed using standard natural language
processing evaluation libraries. These scores reflect surface-level
accuracy, overlap in medical terminology, and semantic
similarity.

Fifth, manual relevance scores were assigned by 2 independent
medical reviewers on a 1‐5 scale, based on clinical
applicability, specificity, and usefulness of responses.

Finally, results were averaged across all prompts and models
and reported for comparative analysis in the Results section.
While performance scores are high (eg, BLEU=0.99
approximately), this reflects a small, curated test set and should
not be considered generalizable. CIs and interrater agreement
were not calculated in this phase of the research.

Benchmarking Scope and Qualifications
The evaluation was designed to show the technical feasibility
and domain relevance of the GraphRAG framework, rather than
to establish clinical deployment readiness for deployment.
Consequently, the following qualifications would apply:

First, all responses were evaluated in a simulated, offline
environment without involvement of human patients, real-time
electronic health record data, or live clinical workflows.

Second, no supervised training or dataset splitting was involved,
as the system uses RAG rather than end-to-end training. All
prompts were presented statically to each LLM.

Third, as recorded in our research logs, the KG was constructed
from a curated corpus of 1212 peer-reviewed, English-language
articles on GDM interventions, extracted via Semantic Scholar
API (2000‐2024). The KG contains approximately 2750 nodes,
5800 edges, and 18 entity types, including risk factors, therapies,
dietary interventions, and outcomes.

Fourth, the evaluation prompt set, while medically validated,
remains small and nonrandomized. No demographic
stratification, multilingual testing, or subgroup fairness analysis
was performed.

Fifth, performance metrics assessed linguistic and contextual
quality only. There has been no empirical validation of clinical
efficacy, patient safety, or decision-making utility.

Finally, future iterations should expand prompt diversity,
compute interrater reliability scores, and explore prompt-based
fairness auditing. Prospective clinical trials and
feedback-integrated deployment pipelines are also planned.

Ethical Considerations
This study involved the development and technical validation
of a PoC clinical AI assistant for GDM management. The
research was conducted entirely in a simulated environment
without involving human participants, personal health data, or
clinical interventions. Accordingly, formal ethics board approval
was not required for this PoC phase of the research study.
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More specifically, this was in accordance with ethical research
standards for early-stage AI system development in health care.
We ensured that no human participants, no personal health data,
and no real-time clinical interventions resulted from this PoC
phase. While fairness across subpopulations was not evaluated
in this version, future efforts shall explicitly address this
dimension.

Data Source Transparency
The data used in this study were drawn exclusively from
public-domain, reputable academic research, collected through
the Semantic Scholar API. All articles retrieved were from
peer-reviewed scientific publications, ensuring no private,
sensitive, or patient-level data were accessed or processed. The
use of publicly available literature aligns with ethical practices
in computational biomedical research, where datasets are
preferably in the public domain.

Simulated Testing Environment
The PoC was evaluated using simulated prompts designed by
the research team and reviewed by independent clinicians. No
real patient interactions, medical records, or clinical
environments were involved in the testing. This approach was
explicitly chosen to focus on the feasibility of the proposed
GraphRAG-powered knowledge retrieval and response
generation approach.

All comparisons against open-source LLMs (ChatGPT, Claude,
and BioMistral) were also conducted offline, with no data sent
to external servers during evaluation, ensuring data security and
compliance with our concern that we do not train such models
with our research data.

Responsible AI Development
The design and development of the GraphRAG framework
adhered to ethical AI principles, emphasizing:

1. Transparency: Clear explanation of methods and evaluation.
2. Safety: Avoidance of deploying untested AI systems in live

clinical environments.
3. Explainability: Use of a KG for contextual reasoning and

improved interpretability.
4. Bias awareness: Although no patient data were used, future

iterations will integrate fairness auditing to minimize
algorithmic bias.

Fairness and Demographic Representation
The development of the PoC used a small set of curated prompts
authored by the research team and clinicians. Hence, no
demographic, linguistic, or regional diversity was represented
in the evaluation. This limitation may impact the generalizability
of the system’s recommendations across patient populations.
Future prototyping iterations will integrate fairness-aware
evaluations, including prompt diversity across age, gender,
geography, and language, to improve equitable performance
across clinical contexts.

Results

System Demonstration Scenarios
The PoC beta testing in a simulated environment highlighted
the feasibility of the GraphRAG-powered clinical support system
for GDM management. The PoC generated personalized,
clinically relevant responses to GDM-related queries, simulating
interactions between patients, health care professionals, and the
system.

Figures 8 and 9 present an illustrative scenario displaying how
the GraphRAG local LLM could support clinical consultations.
In this example, a patient presents a question regarding the top
risk factors for GDM. A health care professional, such as a GP
or maternity nurse, uses the GraphRAG-enabled clinical support
system to process the query into a prompt.
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Figure 8. GraphRAG-based clinical support system for gestational diabetes mellitus - iconographic representation. AI: artificial intelligence; GDM:
gestational diabetes mellitus; genAI: generative artificial intelligence.
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Figure 9. GraphRAG-based clinical support system for gestational diabetes mellitus - process flow diagram. AI: artificial intelligence; GDM: gestational
diabetes mellitus; GP: general practitioner.

As illustrated in Figure 8, the system processes the initial query.
It generates a concise, contextually relevant response (ie, with
the benefit of the patient’s medical records), listing key GDM
risk factors such as maternal weight, family history of diabetes,
and maternal age. The process flow highlights how the system
integrates domain-specific medical literature and patient-related
contextual data through its underlying Neo4j KG, enabling it
to deliver evidence-based, patient-centered recommendations.

Figure 9 further elaborates on the underlying process. The
patient’s query initiates a series of steps where the system
retrieves relevant interventions and relationships from the KG.
The local LLM then generates a response with context-aware
medical knowledge. The final advisory to the health care
professional integrates the patient’s specific context and
up-to-date medical research, avoiding potential inaccuracies
and hallucinations.

This demonstration shows how GraphRAG can streamline
clinical consultations by providing up-to-date, evidence-backed
responses. Beyond basic patient interactions, the system can
address more advanced clinical questions, such as identifying
appropriate screening tests for GDM or evaluating intervention
effectiveness. With explanation features, these capabilities
support informed decision-making for health care providers and
patients, enhancing the overall quality of care for GDM.

The detailed results of the system’s performance in various
scenarios are presented in the following 3 subsections. The first
examines the system’s responses to layperson prompts. The one
that follows analyzes its performance with clinically oriented
queries from 2 GPs. The third presents the comparative analysis
of model performance using standard evaluation metrics across
GraphRAG and 3 other LLMs.
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GraphRAG Local LLM Response to Prospective
Patients’ Prompts
The GraphRAG Local-LLM generated clear, clinically relevant
responses to patients’ queries related to GDM management.
These prompts were designed to simulate questions that a
general audience might ask during health consultations with
their health care provider. The system’s responses highlighted

its ability to simplify complex medical concepts while
maintaining factual accuracy and clinical relevance.

Table 4 presents example prompts and the corresponding
GraphRAG-generated responses. For example, when asked
about the top 3 factors determining gestational diabetes risk,
the system correctly identified key risk factors such as weight,
family history of diabetes, and maternal age.

Table . Responses to patient prompts.

ResponsePrompt

What are the top 3 factors determining gestational diabetes risk? • Weight: Being overweight or obese increases your risk of gestational
diabetes.

• Family history: Having a family history of diabetes or a personal
history of gestational diabetes in a previous pregnancy can increase
the risk.

• Age: Older women, especially those over 25, are at higher risk of
developing gestational diabetes.

How can we safeguard a baby’s health and wellness for gestational diabetes
patients?

• Monitor blood sugar levels, follow a healthy meal plan, engage in
regular physical activity, take prescribed medications, attend prenatal
check-ups, and follow healthcare guidance.

What nutrition is recommended to prevent gestational diabetes? • Eat a balanced diet high in fiber and low in added sugars and un-
healthy fats. Include fruits, vegetables, whole grains, lean proteins,
and healthy fats.

Are gestational diabetes patients more likely to have a cesarean or a stan-
dard delivery?

• Women with gestational diabetes are more likely to have a cesarean
delivery due to risks like macrosomia, shoulder dystocia, and birth
trauma.

What neonatal screening should a couple with a family history of diabetes
undergo before planning to have a baby? Are there precautions they could
take?

• Consider genetic counseling and testing. Preconception counseling
can help identify risks and precautions, with personalized plans de-
veloped alongside health care professionals.

These results show the system’s capacity to convey medical
information in a manner accessible to nonspecialist users. The
responses accurately addressed the queries using medically
appropriate language, ensuring clarity for a general audience.

Responses to GP Prompts
The GraphRAG system was evaluated using clinically relevant
prompts provided by GPs. These prompts simulated real-world
clinical queries related to the diagnosis, management, and
long-term planning of GDM. The system generated medically
valid responses as assessed by the participating GPs and
diabetologists, addressing both basic and advanced aspects of
GDM care.

Responses to Prompts From GP 1
Table 5 presents the responses generated by GraphRAG for the
first set of prompts from GP 1. These prompts covered
foundational aspects of GDM diagnosis and management. For
example, when asked how to diagnose GDM, the system
recommended the glucose challenge and tolerance tests,
reflecting standard clinical guidelines. The responses addressed
both diagnostic procedures and recommended clinical
management steps.

The responses provided clear, evidence-aligned answers
covering diagnostic tests, management strategies, fetal
monitoring approaches, and long-term complications.
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Table . Responses to prompts from general practitioner 1.

ResponsePrompt

Gestational diabetes is typically diagnosed through a glucose challenge
or glucose tolerance test. A sugary solution is consumed, and blood sugar
levels are tested. If results are high, a more detailed glucose tolerance test
is done. A health care provider must confirm the diagnosis and guide
management.

How do I diagnose gestational diabetes?

Monitor blood sugar regularly, follow a health care–guided meal plan,
engage in physical activity, attend prenatal care visits, take prescribed
medications, and stay in contact with your health care team.

What measures would you advise me to take once I am diagnosed with

GDMa?

Monitor fetal growth via regular ultrasounds, track amniotic fluid and fetal
movements (kick counts), and consult health care providers for ongoing
prenatal assessments.

What fetal changes should I monitor (and how) in gestational diabetes?

Use technologies like continuous glucose monitors and personalized insulin
therapy. Also, nonmedical options such as tailored diets, physical activity,
and stress reduction should be applied, ideally with specialist consultation.

What are the cutting-edge medical and non-medical interventions I could
take to control GDM in pregnant mothers?

GDM increases the risk of type 2 diabetes in mothers and raises the chance
of obesity, metabolic syndrome, and diabetes in children. Long-term fol-
low-up is essential for both.

What are the long-term complications for GDM mothers and their off-
spring?

aGDM: gestational diabetes mellitus.

Prompts From GP 2 and GraphRAG Local LLM
Responses
Further evaluation was conducted using prompts from GP 2,
which explored broader clinical topics, including screening

tests, genetic factors, and emerging therapies. Table 6
summarizes the system’s responses.

According to the medical practitioners, the GraphRAG system
generated contextually appropriate responses, addressing
established clinical practices and emerging medical topics in
GDM care.

Table . Responses to prompts from general practitioner 2.

ResponsePrompt

Standard tests for screening and monitoring GDM include:What basic screening tests for GDMa should I perform and monitor regu-
larly? • Glucose challenge test (GCT) – a one-hour blood test after consuming

a sugary drink.
• Oral glucose tolerance test (OGTT) – a follow-up fasting test with

multiple blood draws.
• Glycated hemoglobin (A1C) – reflects average glucose levels over

the past months.
• Regular blood glucose monitoring – daily checks using a glucometer.

Consult a healthcare provider for tailored testing schedules.

Both parents can genetically influence the risk of DM. The extent varies
by DM type and individual genetic profiles. Environmental factors also
play a key role.

On balance, does medical evidence suggest a greater genetic influence of

the father or the mother for DMb?

Medical interventions include:If the patient and her husband decide to go ahead with starting a family,
what medical interventions can I prescribe to alleviate the risk of GDM? • Healthy diet and lifestyle habits.

• Regular blood glucose monitoring.
• Medications such as metformin, if required.
• Referral to a nutritionist or diabetes educator.
• The provider should personalize recommendations.

There is no direct link between oral care and GDM prevention. However,
good dental hygiene supports overall pregnancy health. Recommendations
include brushing twice daily, flossing, and routine dental visits.

Can proper oral and dental care alleviate GDM during pregnancy? What
are some effective measures?

Stem-cell and epigenetic research show potential, but are still in the early
stages. Patients should consult reproductive specialists for the latest updates
and personalized advice.

Are there promising stem-cell or epigenetic treatments that could ease my
patient’s hesitance to start a family?

aGDM: gestational diabetes mellitus.
bDM: diabetes mellitus.
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Comparative Model Performance

Overview of Benchmarking Procedures
The GraphRAG system was benchmarked against 3 widely used
LLMs, BioMistral, ChatGPT, and Claude, using a standardized
set of clinical prompts focused on GDM management. The
models’ responses were evaluated using 5 quantitative metrics
that assessed relevance, linguistic precision, terminology
consistency, contextual understanding, and coherence.

Benchmarking Results
Figure 10 presents a comparative analysis of the models’average
performance across 5 evaluation metrics. GraphRAG achieved
the highest scores in BLEU, Jaccard Similarity, and BERTScore,
indicating strong alignment with clinical phrasing, preservation
of key medical terms, and deep contextual accuracy. Relevance
Score and METEOR also reflect competitive performance across
all models.

Figure 11 shows a radar chart (also known as a Kaviat diagram)
of the same results, highlighting GraphRAG’s balanced strengths
across multiple evaluation dimensions.

Figure 10. Comparative performance of GraphRAG, BioMistral, ChatGPT, and Claude across evaluation metrics. BLEU: bilingual evaluation understudy.
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Figure 11. Radar chart visualizing model performance across key metrics. BLEU: bilingual evaluation understudy.

Key Observations
1. Relevance Score: GraphRAG and BioMistral showed

comparable results, aligning well with the clinical intent of
queries.

2. BLEU Score: GraphRAG outperformed all other models,
reflecting precise replication of validated clinical
expressions.

3. Jaccard Similarity: GraphRAG highlighted superior
consistency in medical terminology usage across responses.

4. BERTScore: The model achieved the highest semantic
similarity, indicating deep contextual understanding.

5. METEOR: GraphRAG generated coherent and fluent
responses suitable for clinical communication, comparable
with ChatGPT and Claude.

These findings demonstrate the technical feasibility of the
proposed GraphRAG-enabled local LLM. However, we stress
that as a PoC evaluated in a simulated environment, the
prototype is not ready to be deployed in real-world clinical
settings. Even so, these results show that the GraphRAG
approach effectively balances linguistic precision, contextual

depth, and clinical relevance in GDM decision support scenarios.
Besides BioMistral, ChatGPT, and Claude, new open-source
LLMs such as LLaMA 3, Mistral 7B, and Phi-3 are becoming
prevalent in health care AI. Although hardware and framework
limitations prevented their inclusion in this study, we recognize
their importance as baselines. Future work will add these models
to expand our comparative analysis.

Discussion

Principal Findings
This study demonstrates that the GraphRAG-enabled local LLM
consistently produces clinically relevant, contextually grounded,
and medically precise responses for managing GDM. Through
a rigorous benchmarking process against established
open-source models, BioMistral, ChatGPT, and Claude, the
GraphRAG approach achieved top-tier performance across all
key evaluation metrics: BLEU Score, Jaccard Similarity, and
BERTScore. The radar chart (Figure 11) illustrates
well-balanced strengths of the model across multiple evaluation
dimensions. Notably, first, GraphRAG matched BioMistral in
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Relevance Score, indicating strong alignment with the clinical
intent behind queries of the health care providers. This score
reflects how accurately the system understands and responds
to the specific clinical context of the user, which is critical in
decision support. Second, GraphRAG outperformed all models
in BLEU Score and Jaccard Similarity, showcasing its ability
to reproduce clinical phrasing with syntactic accuracy and
maintain consistency in key medical terminologies, a vital factor
for preserving the meaning of technical medical advice. Third,
it achieved a superior BERTScore, showing deep semantic
understanding. This reflects the capacity of the model to
generate responses that not only match expected language
structures but also accurately convey complex clinical
relationships within GDM care. Finally, the superior
performance across these diverse metrics stems from the
architectural design of GraphRAG. By integrating
domain-specific KGs with RAG, the system grounds its
responses in verified clinical evidence rather than relying solely
on probabilistic language patterns. This integration mitigates
common challenges of general-purpose LLMs, such as
hallucinations and domain irrelevance, ensuring that responses
are both medically accurate and context-aware.

These findings validate the core hypothesis that combining
structured medical knowledge and patient-specific information
with GenAI significantly enhances the quality, safety, and
reliability of AI-generated clinical recommendations.

Implications for AI-Driven Clinical Decision Support
The empirical results of this study highlight the transformative
potential of GraphRAG-powered local LLMs in advancing
AI-enabled clinical decision support systems. This is particularly
the case within specialized domains, such as GDM management,
where expertise is scarce and uneven. By combining structured
retrieval from a domain-specific KG with contextual generation,

the system addresses the longstanding gap between unstructured
clinical queries and structured evidence-based medical
knowledge.

The GraphRAG approach addresses a critical limitation of
general-purpose LLMs, such as ChatGPT and Claude, which
often prioritize linguistic fluency over clinical accuracy. While
these models can generate coherent responses, they frequently
lack the domain specificity needed for accurate clinical
guidance. In comparison, the responses of GraphRAG
consistently align with established clinical guidelines, reflecting
a deep understanding of current medical standards and practices.
For example, when prompted to hear about GDM diagnosis,
GraphRAG accurately recommended the glucose challenge and
tolerance tests, mirroring clinical best practices. This indicates
that the system is not merely generating plausible text but
retrieving and contextualizing domain-specific evidence to
support clinical decision-making.

The clinical utility of such contextually enriched responses is
profound. In healthcare, where treatment decisions directly
affect patient safety and outcomes, factual accuracy and
contextual relevance are not optional but essential. The ability
of GraphRAG to consistently deliver these qualities positions
it as a valuable tool for supporting health care providers,
particularly in low-resource or high-pressure clinical
environments where access to specialist knowledge may be
limited.

The practical utility of GraphRAG is further illustrated in
Textbox 2, which presents a representative response to a
clinically relevant query about managing insulin resistance in
patients with GDM. Unlike generic language models,
GraphRAG provides structured, evidence-aligned
recommendations grounded in recent clinical guidelines.

Textbox 2. GraphRAG response to a clinical query on managing GDM.

Query: What are the latest recommendations for managing insulin resistance in GDM patients?

GraphRAG response: Recent studies suggest a multi-faceted approach to managing insulin resistance in GDM patients, including:

1. Personalized low glycemic index diets, emphasizing complex carbohydrates and fiber-rich foods.

2. Structured exercise programs combining aerobic and resistance training for at least 150 minutes per week.

3. Early initiation of metformin where lifestyle modifications are insufficient, as per the 2023 guidelines.

4. Continuous glucose monitoring to optimize insulin dosing and adjust lifestyle recommendations.

5. Regular screening for comorbidities such as hypertension and dyslipidemia, which contribute to insulin resistance.

The above sections highlight the ability of GraphRAG to
transform unstructured clinical questions into actionable,
guideline-compliant insights. By synthesizing evidence from
domain-specific KGs, the system avoids unsupported claims
and produces responses aligned with best clinical practices,
supporting its role as a trustworthy clinical decision support
tool.

Contributions to AI in Health Care
This study advances the field of health care AI by presenting a
scalable, contextually enriched clinical support system
specifically designed for GDM management. We believe that
our key contribution lies in the system’s ability to empower

GPs and nonspecialist clinicians, particularly in underserved
and resource-limited health care environments with limited
access to endocrinology specialists and up-to-date clinical
knowledge. By using a KG-driven retrieval process, the system
surfaces context-specific clinical insights without requiring
clinicians to conduct exhaustive manual literature reviews or
consult multiple sources. Here, a word of caution is in order.
We reiterate that the PoC works best as a clinical assistant; that
is, a health practitioner must be in the loop. This is important
given the dangers of unsupervised AI agents, which may usurp
the role of a human caregiver without human oversight [44]. It
is concerning that a recent, peer-reviewed (and in our view,
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misguided) study actually normalizes a doctor versus machine
“Turing-test of authenticity” [45].

Furthermore, this study shows domain-specific superiority over
general-purpose LLMs. While models such as ChatGPT and
Claude can produce coherent responses, they lack the fine-tuned
contextual sensitivity and clinical precision essential for
specialized health care domains. In comparison, the architecture
of GraphRAG is optimized to capture the complex relationships
inherent in GDM management, such as patient history with risk
factors, availability of interventions, and outcome pathways for
follow-up medical care, thereby enhancing both response
accuracy and clinical applicability.

This study contributes to a novel retrieval-augmented GenAI
architecture that translates domain-specific medical knowledge
into clinically actionable insights. It serves a need; namely,
access to the latest, credible medical research in time- and
resource-constrained environments. In health care, timely and
science-based interventions are crucial.

Technical Innovations Driving Performance Gains
The robust performance of the GraphRAG-enabled local LLM
stems from the integration of 3 core technical innovations that
address longstanding limitations in clinical AI systems.

First, the KG integration allows for the structured representation
of complex clinical relationships between risk factors,
interventions, symptoms, and outcomes. Unlike flat text
embedding, the KG enables the system to reason over
interconnected entities and contextual dependencies, ensuring
that recommendations are grounded in the complete clinical
scenario rather than isolated data points.

Second, the RAG framework of the system addresses the gap
between static model knowledge and dynamic, evolving medical
evidence. The system mitigates temporal gaps by integrating
retrieval from an up-to-date domain-specific KG. It reduces the
risk of hallucinated or outdated responses, a common flaw in
general-purpose LLMs trained on static corpora.

Third, the domain-specific adaptation of the model through
targeted prompting strategies and fine-tuning on GDM-related
interventions enhances its ability to understand and accurately
apply specialized clinical terminology in localized contexts.
This adaptation ensures that the system’s responses reflect the
nuanced requirements of GDM management, capturing both
the syntactic precision and semantic depth necessary for
high-stakes clinical situations like emergency room triage.

We believe that these innovations enable the system to move
beyond generic language generation, delivering interpretable,
actionable, and clinically validated responses. This advancement
represents a meaningful step toward reliable AI-assisted clinical
decision-making, especially for chronic disease management
scenarios where timely and context-aware recommendations
are essential.

Conclusions

Limitations and Challenges for Clinical Deployment
While the initial results from this PoC study are promising,
several critical limitations must be addressed before GraphRAG

can be translated into clinical practice. Intended as a PoC, the
system has not undergone field validation. Future studies
involving real-world patient interactions, clinician feedback,
and longitudinal follow-up are essential to establish the model’s
safety, reliability, and usability in live health care environments.

A second major consideration concerns data privacy and
protection. Although this PoC did not involve patient-level data,
real-world deployments would necessitate strict adherence to
data protection frameworks. The integration of
privacy-preserving learning paradigms, such as federated
learning, would allow models to be trained on decentralized
clinical data without exposing sensitive patient information.
Complementary techniques, such as blockchain for differential
privacy and secure multiparty computation, could further protect
patient confidentiality.

The interpretability of AI-generated clinical responses remains
a pressing challenge. While GraphRAG uses structured retrieval
to enhance contextual grounding, clinicians must be able to trust
and explain its outputs. Future iterations of the system should
integrate explainability frameworks such as Shapley Additive
Explanations or Local Interpretable Model-agnostic
Explanations, enabling clinicians to trace and retrieve evidence
on how specific KG pathways contribute to a given clinical
recommendation.

In addition, seamless workflow integration will be critical for
adoption. Clinical decision support systems must embed
naturally within existing electronic health record platforms,
minimizing disruption to physician workflows. Without such
integration, even the most accurate systems risk being underused
in clinical practice.

As with many multistage AI pipelines, GraphRAG is also
subject to the risk of error propagation, where inaccuracies in
earlier stages, such as entity extraction or graph construction,
may be compounded in downstream response generation. While
our current prompt engineering and domain-specific graph
design reduce this risk, future versions will integrate
intermediate validation checkpoints, feedback loops, and
retrieval-failure auditing to ensure response fidelity and system
transparency.

Another key limitation is the reliance on English-language
peer-reviewed articles from a single aggregator (Semantic
Scholar). This has excluded regional or non-English medical
literature with culturally adapted GDM interventions. Future
work should incorporate multilingual and regionally diverse
corpora to improve the model’s generalizability and contextual
sensitivity, particularly in Global South health care settings.

Finally, the computational demands of GraphRAG’s RAG
architecture present scalability challenges. The latency and
resource consumption must be optimized to support real-time
inference in time-sensitive clinical settings, especially in
environments where computational capacity may be limited.
Addressing these challenges is essential for transitioning
GraphRAG from an academic PoC to a clinically viable,
ethically responsible AI system.
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Broader Implications and Future Research Directions
Building on the demonstrated feasibility of our PoC, our future
research agenda is designed to advance the GraphRAG
framework along 2 primary axes: strategic domain expansion
and core technical refinement. First, we propose to strategically
adapt the framework for other data-intensive clinical areas,
including cardiovascular disease, oncology, and mental health,
where evidence-grounded decision support is crucial. Second,
we will enhance the core retrieval engine by integrating
advanced algorithms, such as contextual BM25 and
embedding-based summarization, to improve precision. To
improve robustness and transparency, we propose implementing
new retrieval-specific metrics, such as recall and failure rates.
We have established a roadmap and aim to pursue these
enhancements in our next research cycle, solidifying the
GraphRAG pipeline as a viable tool for real-world clinical
decision support.

The legal, ethical, and intellectual property considerations will
also shape future deployments. To ensure transparency and
reduce legal risks, future iterations will prioritize training on
open-access datasets such as PubMed Central, adhering to
responsible AI development practices and open science
principles.

To protect patient privacy and mitigate algorithmic bias will
remain core ethical imperatives. The federated learning and
anonymized blockchain solutions could support decentralized

training across institutions without compromising patient
confidentiality. Bias audits, fairness-aware modeling, and
hallucination mitigation strategies, such as reranking retrieved
evidence and diversifying training datasets, will improve the
reliability and equity of the system’s clinical recommendations.
In such a trusted platform, integrating GraphRAG with real-time
patient data could enable personalized clinical decision support,
customizing recommendations to individual genetic profiles,
lifestyle factors, and environmental exposures. This evolution
toward precision medicine would represent a significant leap
forward in AI-driven health care delivery.

To overcome the limitation of computational costs, the enhanced
system will require architectural optimizations to enable
scalability in resource-constrained clinical settings. Techniques
such as prompt caching, adaptive chunking of graph queries,
and hybrid retrieval strategies will reduce computational costs
and response latency. This will support deployments in
low-bandwidth environments, such as rural clinics and
community health centers.

In the long term, retrieval-augmented LLMs, such as
GraphRAG, are envisioned not as autonomous clinical agents
but as clinical copilots, supporting, rather than replacing human
clinicians. Their evaluation in live clinical workflows will be
critical to determining their optimal role as decision-support
systems. A reflective perspective on this motivation is presented
in Textbox 3, showing the personal origins of our research
question.

Textbox 3. Closing vignette on gestational diabetes.

“I do not wish to alarm you, Mrs. Sharma, but you have been diagnosed with gestational diabetes and your baby is 10 pounds at birth. Both of you
need to be careful.”

[Ward Nurse in Singapore’s Kandang Kerbau Maternity Hospital to the mother of the last author, circa 1961]

In 2022, the mother passed away peacefully at the age of 88, her diabetes controlled with insulin injections for decades. The “baby” (the last author
and principal investigator of this study [RS]) was diagnosed with type 2 diabetes at the age of 60, giving rise to our research question of whether a
graph-based retrieval-augmented generation solution could change the outcome for both with timely, relevant best practices.

In closing, this paper sought to establish the feasibility of a
GraphRAG-enabled local LLM architecture for generating
clinically relevant, context-aware responses in the management
of diseases, such as GDM [46]. By integrating domain-specific
KGs with RAG, the system outperformed general-purpose LLMs
across multiple evaluation metrics, offering evidence-grounded
and terminologically precise clinical recommendations. While
this work serves as a technical PoC, future research will need
to focus on (1) prospective clinical validation involving real-time

patient interaction, (2) multimodal agents to improve
accessibility and cultural sensitivity, and (3) integration of
explainable AI modules, such as Shapley Additive
Explanations–based KG traceability, resulting in enhanced trust
and transparency for the 2 key humans in the loop – the patient
and her doctor. Ultimately, we believe the transformative
potential of AI-powered decision support tools will personalize
care and improve clinical outcomes, particularly in underserved
societies.
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Abstract

Background: Diabetic kidney disease (DKD) is a major complication of diabetes and the leading cause of end-stage renal
disease globally. Artificial intelligence (AI) technologies have shown increasing potential in DKD research for early detection,
risk prediction, and disease management. However, the landscape of AI applications in this field remains incompletely mapped,
especially in terms of collaboration networks, thematic evolution, and clinical translation.

Objective: This study aims to perform a comprehensive bibliometric and translational analysis of AI-related DKD research
published between 2006 and 2024, identifying publication trends, research hotspots, key contributors, collaboration patterns, and
the extent of clinical validation and explainability.

Methods: A systematic search of the Web of Science Core Collection was conducted to identify English-language original
articles applying AI technologies to DKD. Articles were screened following PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) 2020 guidelines. Bibliometric visualization was performed using CiteSpace and VOSviewer to
assess coauthorship, institutional and country collaboration, keyword evolution, and citation bursts. A qualitative review was
conducted to evaluate clinical validation, model explainability, and real-world implementation.

Results: Out of 1158 retrieved records, 384 studies met the inclusion criteria. Global publications on AI in DKD increased
rapidly after 2019. China led in publication volume, followed by the United States, India, and Iran. Keyword analysis showed a
thematic transition from early biomarker and proteomic research to deep learning, clinical prediction models, and management
tools. Despite methodological advances, few studies included external validation or explainability frameworks. Notable translational
efforts included DeepMind’s acute kidney injury predictor and a chronic kidney disease prediction model developed by Sumit,
yet widespread real-world integration remains limited.

Conclusions: AI research in DKD has grown substantially over the past 2 decades, with expanding international collaboration
and diversification of research themes. However, challenges persist in clinical applicability, model transparency, and global
inclusivity. Future research should prioritize explainable AI, multicenter validation, and integration into clinical workflows to
support effective translation of AI innovations into DKD care.

(JMIR Diabetes 2026;11:e72616)   doi:10.2196/72616
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artificial intelligence; diabetic kidney disease; bibliometric analysis; clinical validation; explainable AI; global collaboration

Introduction

Diabetic kidney disease (DKD) is the most prevalent
microvascular complication of diabetes mellitus and a leading
cause of end-stage renal disease globally, accounting for a
substantial proportion of dialysis and transplantation burdens
worldwide [1]. The pathophysiological progression of DKD is
complex, often involving chronic hyperglycemia-induced
glomerular injury, hemodynamic changes, inflammation, and
fibrosis. Early-stage DKD is typically asymptomatic, and by
the time clinical markers such as proteinuria or a decline in
glomerular filtration rate become apparent, irreversible kidney
damage may have already occurred [2]. Therefore, early

detection and individualized risk stratification are essential for
improving patient outcomes and alleviating long-term health
care burdens.

In this context, artificial intelligence (AI) has emerged as a
transformative approach in biomedical research and clinical
practice. With capabilities in data-driven pattern recognition,
predictive modeling, and real-time decision support, AI
techniques—including machine learning, deep learning, and
neural networks—have been increasingly explored to address
key challenges in DKD research and management [3,4].
Applications range from biomarker discovery and disease
classification to risk modeling and personalized treatment
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optimization. Despite the growing enthusiasm for AI, there is
wide variability in the methodological rigor, clinical
applicability, and translational maturity of these studies.

While several narrative and systematic reviews have highlighted
specific AI models used in nephrology, there remains a lack of
comprehensive evaluation of how the field has evolved
thematically over time, which countries and institutions are
leading its development, how collaborative efforts are shaping
knowledge production, and to what extent the proposed AI
solutions are being validated and implemented in real-world
clinical settings. Moreover, important dimensions such as model
explainability, equity in global research representation, and
translational readiness are often underexamined.

This study aims to address these gaps by conducting a
bibliometric and translational landscape analysis of AI-related
DKD research published from 2006 to 2024. By integrating
quantitative bibliometric mapping with qualitative evaluation
of translational attributes—including clinical validation, model
transparency, and implementation potential—we aim to provide
a comprehensive overview of this rapidly evolving field and
offer insights to inform future research, clinical integration, and
policy development.

Methods

Literature Search and Eligibility Criteria
A systematic literature search was conducted using the Web of
Science Core Collection to identify studies related to the
application of AI in DKD from January 1, 2006, to April 30,
2024. The search strategy included combinations of terms for
DKD (“diabetic kidney disease,” “diabetic nephropathy,”
“DKD,” or “DN”) and AI (“artificial intelligence,” “machine
learning,” “deep learning,” or “neural network”). Only
English-language articles were considered. The search was
limited to original research articles involving human-related
data, excluding reviews, editorials, letters, conference abstracts,
and purely experimental or theoretical reports without clinical
relevance.

Eligible articles were those that applied AI techniques to DKD
in a clinical, translational, or predictive context. Studies that
involved image processing, signal detection, or statistical models
unrelated to DKD-specific diagnostic or prognostic tasks were
excluded. To ensure the reliability of inclusion, 2 reviewers
(XL and FY) independently screened titles and abstracts for
relevance, followed by full-text assessment. Discrepancies were
resolved by consensus or consultation with a third reviewer
(LX).

Bibliometric Mapping and Analysis Tools
Bibliometric data were exported from the Web of Science
platform (Multimedia Appendix 1) and analyzed using
CiteSpace (v6.1.R6) and VOSviewer (v1.6.18; Leiden
University's Centre for Science and Technology Studies;
Multimedia Appendix 2). These tools enabled visualization and
quantification of publication trends, author and institutional
productivity, international collaboration networks, and thematic
keyword clusters. CiteSpace was used to generate timeline

visualizations and detect emergent research topics through
keyword burst detection. VOSviewer was applied to construct
network maps illustrating coauthorship patterns and
co-occurrence frequencies. Centrality scores and citation
frequencies were used to identify influential authors, institutions,
and countries within the research landscape.

Translational and Thematic Evaluation
In addition to bibliometric analysis, a qualitative assessment
was performed to evaluate the translational significance of the
included studies. This review focused on identifying whether
AI models were externally validated or tested across different
cohorts, whether explainable AI methods were incorporated,
and whether any studies reported or discussed clinical
integration or real-world implementation. Studies that mentioned
the use of interpretability frameworks such as SHAP (Shapley
Additive Explanations) or LIME (Local Interpretable
Model-Agnostic Explanations) were noted. The presence of
multicenter datasets, ethnically diverse populations, or
cross-national data integration was also considered as indicators
of generalizability and applicability. This dual
approach—combining quantitative mapping with thematic
content analysis—allowed for a multidimensional perspective
on both the scientific growth and translational depth of AI
research in DKD.

Ethical Considerations
This study involved no human participants, animals, or patient
data, and therefore did not require ethical approval. The data
used were retrieved from publicly available bibliographic
databases and do not involve any sensitive or identifiable
personal information.

Results

Study Selection
A total of 1158 records were initially identified following the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) 2020 framework. After the removal of 0
duplicates, 1158 records were screened based on their titles and
abstracts. Of these, 251 records were excluded as irrelevant.
The remaining 907 full-text articles were assessed for eligibility,
resulting in 384 articles included in the quantitative synthesis,
and an additional 78 articles included in the qualitative thematic
review. Ultimately, these articles were included in the
subsequent bibliometric and qualitative synthesis.

Publication Growth Over Time
The global volume of publications related to AI in DKD
remained low and relatively stagnant between 2006 and 2016.
A notable increase in research output began in 2019, followed
by a rapid rise during the years 2022 to 2024 (Figure 1). This
pattern reflects the growing integration of AI techniques into
biomedical research and the rising urgency of addressing DKD
in the context of the global diabetes epidemic. The sharp upward
trend in recent years suggests an increasing recognition of AI
as a valuable tool for advancing DKD risk prediction, diagnosis,
and management (Figure 2A).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram for literature screening. AI: artificial
intelligence; DKD: diabetic kidney disease.
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Figure 2. Analysis of the publication trends in artificial intelligence research on diabetic kidney disease from 2006 to 2024: (A) timeline of annual
publications, (B) co-occurrence network of research countries, (C) co-occurrence network of research institutions, and (D) co-occurrence network of
authors.

Geographic and Institutional Contributions
China emerged as the leading contributor in terms of publication
volume, accounting for nearly half of all included studies. Key
institutions such as Beijing University of Chinese Medicine,
Sun Yat-sen University, and Central South University were
among the most prolific. The United States ranked second, with
prominent contributions from institutions such as the Icahn
School of Medicine at Mount Sinai. India, Iran, and Australia
also made notable contributions, reflecting a broader
international interest in the intersection of AI and nephrology.
Collaboration patterns showed that high-output countries often
published independently, although intercontinental
partnerships—particularly between East Asia, North America,
and parts of Europe—have been increasing in frequency and
visibility (Figure 2B-D).

Keyword Evolution and Research Hotspots
Analysis of keyword co-occurrence and burst terms revealed
distinct phases in the thematic development of the field. During
the early period (2006‐2012), research was focused primarily
on pathology, biomarker identification, and proteomic analysis,
often using conventional statistical tools. Between 2013 and
2018, machine learning began to emerge as a prominent
analytical method, with keywords such as “support vector
machine” and “feature selection” gaining prominence. From
2019 onward, deep learning became a dominant theme, as
reflected by the increasing frequency of terms such as
“convolutional neural network,” “risk prediction,” and “decision
support system.” Thematic clustering and citation bursts also
indicated a growing interest in explainability, model integration,
and individualized risk stratification, marking a shift toward
clinical application and interpretability (Figure 3A-D).
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Figure 3. Co-occurrence analysis of keywords in bibliometric studies: (A) keyword co-occurrence network, (B) keyword clustering, (C) keywords
with the strongest citation bursts, and (D) timeline of keyword trends in artificial intelligence research on diabetic kidney disease from 2006 to 2024.

Collaboration Networks Among Authors and
Institutions
Coauthorship network visualization demonstrated that the field
remains highly fragmented, with a large number of small,
loosely connected research groups. The most central nodes in
the institutional network were located in China, the United
States, and Singapore, reflecting both productivity and
cross-institutional engagement. Although multicenter projects
were occasionally identified, most AI models were developed
and tested within single-center or regional datasets.
Cross-national research, while increasing, often lacked shared

validation protocols or harmonized data structures, limiting
direct comparisons and large-scale model generalizability.

Model Validation, Explainability, and Translational
Readiness
A review of the included studies showed that only a limited
proportion of AI models underwent external validation using
independent cohorts. Most models were based on retrospective
data from a single institution or health system, with internal
cross-validation as the primary method of evaluation. Very few
studies implemented explainability frameworks such as SHAP
or LIME, and even fewer offered insights into how model
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outputs could be integrated into clinical decision-making
processes. Notable exceptions included studies that incorporated
prospective testing or demonstrated integration with electronic
health records, although these remained rare. DeepMind’s acute
kidney injury prediction system, while not DKD-specific, was
often cited as a prototype for nephrology-focused AI
applications [5]. Similarly, Sumit’s [6] deep learning–based
model for chronic kidney disease risk prediction represented an
example of real-world implementation relevant to diabetic
populations. However, the lack of consistent attention to
explainability, real-time integration, and regulatory
considerations suggests that most AI-DKD research remains in
a pretranslational stage.

Discussion

Principal Findings
This bibliometric and thematic analysis presents a
comprehensive overview of research trends, international
collaborations, and translational depth in the application of AI
to DKD from 2006 to 2024. The temporal trend reveals a slow
developmental phase lasting more than a decade, followed by
a surge in research activity from 2019 onward. This acceleration
corresponds with the broader adoption of AI in medicine and
the urgent need for precision tools to combat the rising global
burden of diabetes-related complications.

China and the United States have emerged as the primary
contributors to this field, with China leading in publication
quantity and institutional productivity. However, the dominance
of single-country studies and weak international collaboration
networks suggests a lack of unified global efforts in AI-DKD
research. While some cross-border cooperation exists, it has not
yet reached the level necessary to support large-scale model
generalization or multiethnic validation. Future research should
prioritize open data sharing, transnational model calibration,
and harmonized validation protocols to promote reproducibility
and clinical readiness across diverse populations.

Keyword analysis and thematic clustering indicate a clear
evolution in research focus. Early studies emphasized molecular
and pathological mechanisms of DKD, typically using traditional
regression models or biomarker discovery tools. From 2015
onward, a shift occurred toward applying machine learning
algorithms to structured clinical data, including risk prediction
and feature selection. Since 2019, the field has seen a rapid
proliferation of deep learning–based applications, especially
convolutional neural networks for imaging and time-series data
analysis. However, the transition from computational innovation
to clinical implementation remains incomplete. Most studies
prioritize model development and internal validation, while
relatively few undertake real-world testing or prospective
evaluation.

One major limitation identified is the scarcity of externally
validated and clinically integrated AI models. Despite rapid
algorithmic progress, few studies reach the level of clinical
translation demonstrated by landmark systems such as
DeepMind’s acute kidney injury prediction algorithm, which
was prospectively validated and tested in hospital settings [5].

Similarly, the work by Sumit [6], which developed and validated
a deep learning model for predicting chronic kidney disease
progression, represents an exemplar of real-world application.
These examples underscore the importance of incorporating
prospective design, external datasets, and health system
integration early in the research pipeline to ensure that AI tools
can transition beyond proof-of-concept stages.

Moreover, the “black box” nature of many AI models presents
a significant barrier to clinical trust and regulatory approval.
Although explainable artificial intelligence methods such as
SHAP and LIME have been proposed and applied in other
medical domains, they are seldom used in DKD-related research.
This gap not only limits interpretability but also hinders
integration into clinical workflows where explainability is
essential for physician adoption and patient safety. The
increasing interest in interpretable models and hybrid
systems—combining clinical rules with machine learning
outputs—may offer a promising path forward.

Another noteworthy observation is the underrepresentation of
research from low- and middle-income countries, apart from
China and India. Given the global prevalence of diabetes and
its complications, this imbalance may reflect disparities in AI
infrastructure, research funding, and access to large-scale clinical
data. Efforts to democratize AI research—such as open-access
datasets, international consortia, and capacity-building
initiatives—are critical to avoid reinforcing health inequities
through algorithmic bias.

Limitations and Future Work
This study also has limitations. The analysis was based solely
on the Web of Science database, which, while comprehensive,
may omit relevant studies indexed elsewhere, such as in Scopus
or PubMed. The decision to focus on English-language articles
may have further excluded important regional research.
Additionally, bibliometric tools such as CiteSpace and
VOSviewer, while effective in mapping research landscapes,
cannot capture the full context or nuance of each study’s
methodological rigor or clinical relevance. Therefore, the
qualitative thematic analysis presented here serves as a
complementary lens, but further domain-specific review is
warranted to assess clinical impact.

In conclusion, the field of AI in DKD is rapidly expanding, with
increasing interest from diverse geographic regions and
institutions. However, the translation of AI models into clinical
nephrology practice remains limited. Future research should
emphasize multicenter collaboration, external validation, and
interpretability to close the gap between computational
innovation and real-world impact. A systematic shift toward
transparent, validated, and context-aware AI systems will be
essential to unlock the full potential of AI in the management
of DKD.

Conclusions
This study provides a comprehensive and multidimensional
analysis of the research landscape at the intersection of AI and
DKD. Through bibliometric visualization and thematic
synthesis, we demonstrate that although the field has
experienced substantial growth in recent years—particularly
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with the application of deep learning technologies—the clinical
translation of these innovations remains in its infancy. Most
current research is confined to retrospective model development
with limited external validation and minimal integration into
real-world nephrology practice.

To advance the field, future efforts must prioritize
methodological transparency, external validation using diverse
populations, and the incorporation of explainable AI
frameworks. Strengthening international collaboration and
establishing multicenter consortia will be crucial for ensuring

reproducibility and promoting equitable access to AI tools across
health care settings. Additionally, regulatory and ethical
considerations should be proactively addressed to support the
safe deployment of AI in clinical decision-making.

In summary, while the promise of AI in DKD is evident,
realizing its full potential will require a deliberate transition
from algorithmic development to clinically meaningful,
patient-centered applications. Bridging this translational gap is
not only a technical challenge but also an opportunity to reshape
chronic disease management in the era of intelligent medicine.
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