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Abstract

Background: Gestational diabetes mellitus (GDM) is a prevalent chronic condition that affects maternal and fetal health
outcomes worldwide, increasingly in underserved populations. While generative artificial intelligence (AI) and large language
models (LLMs) have shown promise in health care, their application in GDM management remains underexplored.

Objective: This study aimed to investigate whether retrieval-augmented generation techniques, when combined with knowledge
graphs (KGs), could improve the contextual relevance and accuracy of AI-driven clinical decision support. For this, we developed
and validated a graph-based retrieval-augmented generation (GraphRAG)–enabled local LLM as a clinical support tool for GDM
management, assessing its performance against open-source LLM tools.

Methods: A prototype clinical AI assistant was developed using a GraphRAG constructed from 1212 peer-reviewed research
articles on GDM interventions, retrieved from the Semantic Scholar API (2000‐2024). The GraphRAG prototype integrated
entity extraction, KG construction using Neo4j, and retrieval-augmented response generation. The performance was evaluated
in a simulated environment using clinical and layperson prompts, comparing the outputs of the systems against ChatGPT (OpenAI),
Claude (Anthropic), and BioMistral models across 5 common natural language generation metrics.

Results: The GraphRAG-enabled local LLM showed higher accuracy in generating clinically relevant responses. It achieved
a bilingual evaluation understudy score of 0.99, Jaccard similarity of 0.98, and BERTScore of 0.98, outperforming the benchmark
LLMs. The prototype also produced accurate, evidence-based recommendations for clinicians and patients, demonstrating its
feasibility as a clinical support tool.

Conclusions: GraphRAG-enabled local LLMs show much potential for improving personalized GDM care by integrating
domain-specific evidence and contextual retrieval. Our prototype proof-of-concept serves two purposes: (1) the local LLM
architecture gives practitioners from underserved locations access to state-of-the-art medical research in the treatment of chronic
conditions and (2) the KG schema may be feasibly built on peer-reviewed, indexed publications, devoid of hallucinations and
contextualized with patient data. We conclude that advanced AI techniques such as KGs, retrieval-augmented generation, and
local LLMs improve GDM management decisions and other similar conditions and advance equitable health care delivery in
resource-constrained health care environments.

(JMIR Diabetes 2026;11:e76454)   doi:10.2196/76454
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Introduction

The growing use of electronic medical records linking diverse
patient characteristics and prescription choices with positive
treatment outcomes in large-scale use cases has resulted in
platforms that guide optimal treatment options. For example,
Sharma et al [1] presented an approach for delivering

personalized health care as a means of effectively using scarce
medical resources in underserved regions and populations,
supporting the value of artificial intelligence (AI)–driven
systems in such settings. While machine learning (ML) and data
analytics have generated individualized treatment
recommendations for improving outcomes, “these works focused
on making broad [largely drug class level] treatment
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recommendations independently of specific drug and dose
considerations... [whereas] guidelines and landmark trials
highlight important drug- and dose-dependent variations in
treatment efficacy, safety, and risk profiles” [2]. In short,
personalized medicine should account for contextual variations
in seeking more effective, cost-efficient treatments with better
outcomes. This study presents an approach to clinical support
to time- and resource-constrained practitioners using a
generative artificial intelligence (GenAI) approach to treat a
serious medical condition afflicting young mothers and their
children with increasing alacrity. Such a need is particularly
acute in the socioeconomically disadvantaged regions of the
world.

Gestational diabetes mellitus (GDM) is a significant global
health concern affecting many pregnancies [3]. Defined as
glucose metabolism imbalance first detected during pregnancy,

the International Association of Diabetes in Pregnancy Study
Group reports that “GDM is not only related to perinatal
morbidity but also to an increased risk of diabetes and
cardiovascular disease in the mother in later life, and childhood
obesity in the offspring” [4]. The pooled global prevalence was
14% in 2021, with the highest occurrence in the Middle East -
North Africa (27.6%), Southeast Asia (20.8%), and among
high-income countries (14.2%) [5]. There is considerable
agreement among medical practitioners that the development
of GDM could be influenced by various risk factors, including
maternal age, obesity, family history of diabetes, previous
occurrences of GDM, and specific ethnic backgrounds [6,7].
This is illustrated in Figure 1 (data sources: [3,8-10]) as the
medical characterizations of GDM comprising factors such as
diagnosis, risks, prediction, management, complications, and
postpartum care.

Figure 1. Medical characterization of gestational diabetes mellitus. GDM: gestational diabetes mellitus.

Also, of concern to the WHO is that GDM leads to various
complications for both affected mothers and their offspring,
such as increased risks of cesarean delivery, pre-eclampsia, and
type 2 diabetes (T2D) for mothers. Children are at higher risk
of macrosomia, hypoglycemia, respiratory distress syndrome,
and an increased likelihood of developing obesity and T2D later
in life [11]. The long-term health risks include elevated chances
of developing T2D and cardiovascular diseases for both mother
and child [12]. In the Global South and developing countries
[8,13], GDM presents significant challenges due to:

1. Higher prevalence rates in certain regions, particularly
South Asia and the Middle East.

2. Limited health care resources for screening, diagnosis, and
management.

3. Genetic factors in certain ethnic groups increase GDM risk.
4. Rapid urbanization and lifestyle changes leading to

increased obesity rates.

5. Potential underdiagnoses due to lack of routine screening.

Effective GDM treatment requires multiple diagnostic tests,
including oral glucose tolerance tests, random plasma glucose
tests, and fasting plasma glucose tests. The treatment options
include regular blood glucose monitoring, dietary modifications,
lifestyle changes, and, when necessary, pharmacological
interventions such as insulin or oral hypoglycemic agents [9].
The recent advancements in AI-driven tools, such as the AI
Drug Mix and Dose Advisor developed for T2D [2], have shown
potential in optimizing pharmacological interventions by
customizing drug and dose recommendations to individual
patient profiles. Similar approaches could be valuable in
improving glycemic management in GDM cases, enhancing
personalized care in postpartum treatment, drug discovery with
therapy, and reducing long-term risks of developing chronic
diseases in general.
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Despite growing interest in AI-driven clinical support, current
models often struggle to integrate diverse, multisource medical
data into actionable insights, especially in conditions such as
GDM, where missing information and diagnostic delays
contribute to less desirable outcomes. These limitations are
particularly prominent in resource-constrained settings, where
systemic challenges, such as insufficient screening tools, lack
of standardized care protocols, and limited provider training,
complicate effective diagnosis and treatment [8,13]. As a result,
the timely and effective treatment of GDM remains difficult,
further endangering maternal and fetal health.

In such contexts, the unavailability of specialized professionals,
economic constraints, and cultural challenges also influence
treatment adherence and engagement [14,15]. The limited
awareness between both the public and health care providers
continues to contribute to improper management of GDM [16],
reinforcing the urgent need for robust, context-sensitive clinical
decision support [17,18].

To address these gaps, we propose a novel solution using
specialized GenAI techniques for GDM management.
Specifically, we develop a proof-of-concept (PoC) of a clinical
support system that uses a knowledge graph (KG) supporting
a local large language model (LLM). This system extracts and
integrates intervention strategies from peer-reviewed research

to support physicians in making contextually relevant treatment
decisions.

Standalone local LLMs, however, face known limitations,
including hallucinations and reduced reliability when handling
domain-specific, complex queries [19]. To address these issues,
we introduce a retrieval-augmented generation (RAG)
mechanism that improves the accuracy and relevance of outputs
by supplementing the LLM with contextual data [20,21]. This
hybrid approach could elevate the clinical utility of GenAI for
complex, low-resource health care scenarios such as GDM.

By generating structured, evidence-informed recommendations
in real time, our system lays the foundation for scalable and
explainable AI support tools customized to maternal health.
The following section reviews previous ML and LLM-based
approaches to GDM detection and prediction, positioning our
work within this evolving research landscape. It is stated at this
juncture that while the distinction between LLMs and local
LLMs is clear, it is less so between local LLMs and small
language models (SLMs). The prototype developed in this study
assumed a local LLM architecture but could be repurposed as
SLMs, particularly in resource-constrained locations of the
Global South. A concise feature comparison of LLMs, local
LLMs, and SLMs is provided in Textbox 1.

Textbox 1. Feature comparison of large language models, local large language models, and small language models.

Large language models

Large language models (LLMs) are typically based on deep learning, trained on massive amounts of text and increasingly multimedia data to understand,
generate, and manipulate human language. LLMs work by learning to predict the next word in a sequence based on the context of the input prompt,
using billions of parameters to refine these predictions. They excel at natural language processing tasks such as text completion, translation,
summarization, question-answering, and content generation.

Local LLMs

Local LLMs run inside the private data center of an entity or organization. Local LLMs are fine-tuned with the organization’s data (eg, patient records
or standard rules) and can provide specific context to a query or prompt that general-purpose chatbots cannot or should be legally allowed to deliver.
Particularly in the domains of sensitive and confidential data (such as a patient’s medical conditions), such prompts may have to be subject to rigorous
access, authentication, and accounting controls.

Small language model

A small language model is designed to understand and generate natural language, similar to LLMs, but on a much smaller scale, with fewer parameters
and a simpler architecture. Small language models are optimized for efficiency and can be deployed on resource-constrained devices like smartphones
or local servers, offering benefits such as faster training and execution, lower energy consumption, and improved privacy by allowing for on-device
processing and less reliance on cloud connectivity. A use case could be first responders in emergency room situations.

Recent advances in ML have shown promise in improving the
early diagnosis and personalized management of chronic
conditions such as GDM. These models identify high-risk
individuals during pregnancy, customize treatment plans, and
ultimately enhance maternal and neonatal health outcomes.
Several studies have developed ML algorithms that account for
demographic variations, for example [22,23], present models
customized to Asian women [10] used decision trees and
ensemble learning for early GDM detection, reporting high
sensitivity and specificity. However, these models often fail to
capture the full complexity of GDM-related factors.

The efforts to improve model interpretability include research,
such as meta-reviews of clinical studies on complications during
pregnancy and their treatments [24], on clinically explainable
ML approaches for blood glucose monitoring [25,26], and the
use of extreme gradient boosting to identify key risk factors
[27]. However, several studies [25,26,28,29] note limitations
in integrating high-quality datasets, supporting real-time
interventions, or embedding models within clinical systems.
Table 1 presents these representative models, underscoring the
trade-offs between accuracy, interpretability, and practical
usability.
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Table . Representative research deep learning or machine learning models for predicting gestational diabetes mellitus.

Key contributions and limitationsModelYearStudy

Demographic-specific MLa model2024Kokori et al [22] and Kumar et al
[23]

• KCsb: Accurate predictions for
specific demographics (Asian
women).

• Limits: Limited integration in-
to health care systems.

Decision trees and ensemble2023Kurt et al [10] • KCs: High sensitivity and
specificity.

• Limits: Fails to capture all

GDMc-related factors.

Clinically interpretable ML2024Wu et al [29] • KCs: Emphasized interpretable
models for GDM.

• Limits: Limited real-time appli-
cation.

ML-based models2022Wu et al [25] • KCs: Importance of high-qual-
ity datasets.

• Limits: Lacks interpretability
and integration.

aML: machine learning.
bKC: key contribution.
cGDM: gestational diabetes mellitus.

These limitations highlight the need for models that go beyond
static risk prediction to support context-aware clinical
decision-making. In this regard, LLMs offer transformative
potential as they generate patient-specific recommendations by
synthesizing heterogeneous clinical data. When augmented with
retrieval techniques, such models become more effective.

Several recent studies have discussed the expanding role of
LLMs across health care domains[30]. For example, an AI

system developed for liver diseases [31] provided personalized
treatment strategies that improved diagnostic outcomes.
Graph-based retrieval-augmented generation (GraphRAG)
integration has shown benefits in nephrology by increasing
output precision and reliability [20], while LLMs have supported
psychotherapy automation [32] and administrative workload
reduction in personalized medicine [33]. Some of these use
cases are captured in Table 2, reinforcing the applicability of
RAG-augmented LLMs in clinical practice.

Table . Representative use cases of artificial intelligence in clinical health care.

Key contributionsModelYearStudy

Enhanced diagnostic accuracy and
patient management tailored for
liver diseases.

AIa model for liver diseases2024Ge et al [31]

Improved clinical decision-making

with RAGb-enhanced LLMsc, offer-
ing precise predictions and treat-
ments.

Clinical decision support system2023Ong et al [34]

Improved accuracy and reliability
in nephrology advice by integrating
RAG with LLMs.

LLM-RAG for nephrology2024Miao et al [20]

Explored the potential of LLMs to
support and potentially automate
aspects of psychotherapy.

LLMs in psychotherapy2024Stade et al [32]

Demonstrated how LLMs can auto-
mate administrative tasks, reducing
clinicians’workload from electronic
medical records.

Personalized medicine AI model2024Tripathi et al [33]

aAI: artificial intelligence.
bRAG: retrieval-augmented generation.
cLLM: large language model.
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Noting the above, this paper proposes a novel architecture for
GDM care that integrates (1) a local LLM for domain-specific
control and privacy, (2) an RAG engine for contextual
grounding, and (3) a domain-specific KG to capture interrelated
medical evidence.

This combination enables real-time generation of explainable,
evidence-informed treatment recommendations for GDM
management, even in resource-constrained settings. As
compared with previous studies, such as those by Nambiar et
al [2] and Tripathi et al [33], which focused on general dosing
automation or task simplification, this study addresses a critical
gap: the need for adaptive, fine-grained, and explainable
intervention support in the prenatal context.

From a technical standpoint, our contributions are (1) the
construction of a GDM-specific KG derived from peer-reviewed
literature; (2) the use of RAG-enhanced local-LLMs to retrieve,
contextualize, and generate targeted care pathways; and (3) a
PoC system architecture that is interpretable, domain-grounded,
and designed for offline, privacy-preserving environments.

The PoC will support timely intervention and align with the
practical realities of underserved clinical contexts; consider the
plight of a rural doctor in the Global South, where internet
connectivity, specialist clinician availability, and cutting-edge
expertise may be limited. It represents a step toward deploying
technically robust and clinically meaningful AI to applications
of acute need.

Following this introduction, the remainder of this paper is
organized as follows. The next section addresses the methods,

and specifically, a description of developing design artifacts for
a PoC. In the Results section, we put the system through
simulated scenarios and test the responses for accuracy, bias,
and performance benchmarking. In the Discussion section, we
present the principal findings along with an analysis of key
contributions of the research. The paper ends with a section on
Conclusions, which also covers limitations and suggestions for
further research.

Methods

Prototyping a PoC
Health care professionals, particularly those in densely populated
and resource-constrained regions of the Global South, often
face significant challenges in accessing timely, evidence-based
medical insights. Attending training sessions or reviewing vast
volumes of literature under time pressure is impractical,
especially in scenarios where specialist expertise or standardized
guidelines are lacking. Our approach uses computational
methods to extract, structure, and contextualize medical
knowledge using GenAI and KG technologies to address this
need.

Our primary objective was to develop a PoC of a clinical AI
assistant that would support the management of GDM. This
GraphRAG-based architecture combines entity extraction from
published research, KG construction, and RAG to generate
clinically grounded, context-aware responses. As illustrated in
Figure 2, the PoC framework follows a 5-stage pipeline.

Figure 2. Process flow of the proposed graph-based retrieval-augmented generation approach, showing data collection, entity extraction, knowledge
graph construction, and retrieval-augmented generation for AI-assisted clinical support for gestational diabetes mellitus. API: application programming
interface; GDM: gestational diabetes mellitus; LLM: large language model; PRISMA: Preferred Reporting Items for Systematic Reviews and
Meta-Analyses.
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• Data collection and preparation: The Semantic Scholar API
retrieved relevant research articles on GDM interventions.
A PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses)–guided filtering process was
applied to ensure that inclusion criteria were met, resulting
in a refined corpus of 1212 high-quality articles.

• Entity extraction: Using GPT-3.5 Turbo (OpenAI) and
few-shot prompting, entities such as treatments, outcomes,
risk factors, and disease indicators were extracted from
full-text articles. Semantic consolidation (eg, grouping
“low-carb diet” and “reduced carbohydrate intake”) ensured
terminological consistency.

• KG construction: Extracted entities and their relationships
were encoded into a Neo4j graph database. The graph
allowed efficient traversal of clinical pathways, such as
connecting interventions to outcomes and risk profiles.
Each node and edge pair was annotated with medical
metadata, such as intervention strength, evidence level, or
prevalence.

• Query processing and graph retrieval: When a user query
is submitted (eg, “What treatments control GDM?”), the
system was designed to retrieve relevant subgraphs using
Cypher queries. These results are then passed to the LLM
for augmentation and contextual response generation by
incorporating patient records.

• Response generation: The final output is a clinically
coherent and relevant response integrating retrieved

evidence and a generative explanation. For example, based
on retrieved data, the model might respond: “Insulin therapy
controls GDM by lowering blood sugar levels and
preventing complications.” If asked why, the system might
explain: “Insulin enables glucose uptake by cells throughout
the body, particularly muscle and fat cells, by facilitating
glucose transport across cell membranes. Without adequate
insulin, glucose accumulates in the bloodstream while cells
are starved of this essential energy source.”

This multistep process would allow the system to access
reputable and current medical research to produce explainable,
evidence-grounded outputs for clinical decision support. Each
component of this workflow is further detailed in the following
subsections.

Data Collection
To develop a high-quality domain-specific KG for GDM, we
conducted a systematic search using the Semantic Scholar API
[35], a widely used biomedical research platform. The query
term “gestational diabetes interventions” was selected to target
studies focused on treatment strategies and clinical outcomes.
The search was restricted to articles published between January
2000 and May 2024, to cover both foundational and
contemporary research. The data collection and filtering process
adopted PRISMA guidelines, as illustrated in Figure 3.
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Figure 3. PRISMA flow diagram showing the systematic data collection and filtering process, detailing identification, screening, eligibility assessment,
and inclusion of research articles for knowledge graph construction.

• Identification: The initial search produced 2305 journal
articles. No records were found from registers. Automated
filters removed 638 ineligible records based on metadata
mismatches or irrelevant domains. No duplicate entries
were detected.

• Screening: The remaining 1667 articles were screened by
2 reviewers (FR and SB) based on titles and abstracts. This
stage ensured that only articles related to GDM diagnosis,
treatment, management, or intervention outcomes were
retained.

• Eligibility: A total of 1212 full-text articles were deemed
eligible based on the inclusion criteria. Articles were
excluded at this stage (n=455) due to full-text unavailability,
access limitations, or insufficient clinical relevance.

• Inclusion: The final corpus consisted of 1212 peer-reviewed
studies, all of which were used to extract entities and
construct the GDM-focused KG.

While Semantic Scholar provided comprehensive coverage and
metadata-rich access, reliance on a single source introduces
potential limitations, such as limited representation of

non-English or region-specific research and sensitivity to
keyword variations. Future work could explore multilingual
database integration and broader query strategies to reduce
potential selection bias.

Nonetheless, for developing our PoC, the selected dataset
offered sufficient diversity and clinical validity to enable
meaningful experimentation and system development.

Entity Extraction
Following the curation of the GDM research corpus, the next
step involved extracting clinically relevant concepts, including
treatments, risk factors, and outcomes, from the published
research. This process was executed using OpenAI’s GPT-3.5
Turbo 16K API [36], which supported advanced natural
language processing for domain-specific knowledge extraction.
Rather than relying on pretrained biomedical ontologies, we
adopted a lightweight prompting-based approach aligned with
our PoC’s experimental and modular goals.
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A few-shot prompting strategy was applied to guide the language
model in identifying and structuring entities of interest in a
usable format. Guided by 3 medical doctors, the prompts were
manually engineered to show expected outputs, such as
intervention types (eg, insulin therapy, diet, and physical
activity), intervention parameters (eg, frequency, duration, and
dosage), and associated maternal and infant outcomes. This
enabled the model to consolidate synonymous or semantically
related expressions (such as “low carbohydrate diet” and
“reduced carb intake”) into a unified entity representation. The
same prompts also encouraged disambiguation of overlapping
terms and discouraged the duplication of entities across articles.

The outputs were parsed into structured formats, which included
both individual entities and the semantic relationships among
them, for example, linking “insulin therapy” as a treatment that

“controls” GDM, or connecting “smartphone-based lifestyle
interventions” to enhanced “maternal outcomes.” These entities
and their connections were then directly integrated into the KG
in the next stage of development.

This stage of entity extraction was led by the coauthor (FR),
who specializes in bioinformatics and uses a technique we
describe as “medical prompt engineering.” The objective was
to simulate how future clinical AI assistants might extract
structured knowledge from unstructured medical literature
autonomously. However, we acknowledge that such extractions
would require validation by specialist health care professionals
to ensure accuracy and reliability for clinical deployment.

The overall entity extraction workflow, including prompt design,
model guidance, semantic structuring, and preparation for graph
integration, is visualized in Figure 4.

Figure 4. Entity extraction workflow using large language models. The diagram is an example of the process for extracting interventions, risk factors,
and relationships, which produces structured and context-aware knowledge representation for gestational diabetes mellitus management. GDM: gestational
diabetes mellitus; LLM: large language model.

Construction of the KG
Upon completion of the entity and relationship extraction, the
structured data were integrated into a KG using Neo4j, a widely
used open-source graph database [37]. Neo4j is optimized for
representing interconnected biomedical data, making it
well-suited for capturing the multifactorial nature of GDM
management, which involves dynamic relationships between
interventions, risk factors, outcomes, and complications [38].

The KG construction process involved linking each extracted
entity, such as insulin therapy, dietary strategies, or risk factors
like obesity, to its semantically relevant mappings using
directional edges labeled with relationship types (eg, “controls,”
“contributes to,” and “enhances”). Each node was annotated
with descriptive labels and properties derived from the literature,

and relationships were encoded with metadata such as source
references or study types, when available.

All nodes and edges were imported into Neo4j through a
structured ingestion pipeline, enabling clinicians or researchers
to query the KG using the Cypher query language. This
functionality allowed for exploratory clinical queries, such as
identifying interventions most frequently associated with
improved maternal outcomes in high-risk GDM cases or tracing
evidence paths for specific treatment combinations.

The resulting KG facilitated context-aware clinical decision
support by surfacing specific evidence-informed insights. For
example, a clinician’s query, such as “What are the best
interventions for GDM in patients with a BMI over 30?” could
retrieve targeted graph segments linking relevant interventions
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(eg, low glycemic index diet and structured exercise regimens)
to outcomes validated in the literature. This dynamic capability
is depicted in Figure 5, which illustrates a representative graph

traversal initiated by a clinician’s question, leading to
personalized treatment recommendations based on the structural
relationships captured in the KG.

Figure 5. Knowledge graph–powered clinical support system for gestational diabetes mellitus. The graph-based search retrieves relevant interventions
and relationships, giving treatment recommendations. GDM: gestational diabetes mellitus; KG: knowledge graph.

The KG serves as the core reasoning backbone of the prototype
clinical assistant, consolidating distributed medical evidence
into a queryable visual knowledge substrate that can be updated
as new medical evidence emerges.

KG-Based RAG
To enhance the clinical utility of the constructed KG, we then
implemented an RAG approach [39]. This hybrid architecture
combines traditional retrieval mechanisms with generative
LLMs to produce contextually grounded and medically sound
responses. In clinical settings, where decision-making depends
on subtle interpretation and evidence-based insights, this
integration mitigates the limitations of standalone generative
systems like SLMs.

While LLMs, such as ChatGPT (OpenAI), can produce fluent
and context-aware responses, they are prone to hallucinations,
outdated knowledge, and domain-specific inaccuracies [19].

Conversely, RAG addresses these gaps by coupling LLMs with
reputable (peer-reviewed) external knowledge sources. For
example, no medical claim, such as bleach being a valid
treatment for COVID-19, would have gone into the KG. In our
PoC, entity-aware retrieval from the Neo4j-based GDM KG
provides factual context, which the LLM then uses to generate
a tailored response. This integration significantly improves
factual grounding and interpretability, essential in critical
domains, such as maternal health [20,21].

Using the PoC follows a 5-stage pipeline, visualized in Figures
6 and 7. Beginning with an initial clinical query, the system
encodes the user input and dynamically retrieves semantically
matched information from the KG. This process accounts for
risk factors, interventions, and patient-specific context, including
medical records and socioeconomic profiles, thereby aligning
output with real-world variability in treatment planning.
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Figure 6. End-to-end process flow of the graph-based retrieval-augmented generation solution. The pipeline processes medical literature and patient
data, integrating them into a structured knowledge graph for AI-driven clinical decision support. GDM: gestational diabetes mellitus; KG: knowledge
graph; LLM: large language model.

Figure 7. Structured retrieval and response generation process in graph-based retrieval-augmented generation. The diagram shows how clinician queries
interact with medical knowledge sources, pattern matching, and graph-based retrieval to enhance artificial intelligence–generated responses. GDM:
gestational diabetes mellitus; LLM: large language model.
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Figure 6 shows the underlying LLM-KG pipeline, including
entity extraction, relationship linking, and graph query
generation. Figure 7 offers a complementary perspective by
emphasizing end-to-end data flow, from patient query and
literature matching to LLM response generation, thus
highlighting how both structured (graph-based) and unstructured
(textual) data are integrated to yield context-aware, personalized
responses.

Although Figures 6 and 7 present a simplified overview of
system functionality, the development process required iterative
prompt engineering, guided tuning, and manual validation to
align LLM outputs with the domain-specific vocabulary and
relationships obtained from GDM research literature [32,33].
This iterative refinement helped ensure that the GraphRAG PoC
consistently produces clinically meaningful recommendations
rooted in the KG, avoiding spurious correlations and unverified
claims.

Evaluation Framework and Metrics
The evaluation of the GraphRAG-powered local LLM for GDM
was conducted through a structured framework designed to
assess both technical performance and clinical relevance.
Applications of AI in health care require rigorous validation
beyond prompt engineering. This study used a multidimensional
evaluation process using a combination of quantitative metrics
and clinician-generated prompts.

Evaluation Objectives
The primary objective of the evaluation was to measure the
effectiveness of the proposed PoC in three “fit for purpose”
criteria: (1) generating clinically relevant, context-aware
responses to queries on GDM management; (2) comparing its
performance against widely used open-source LLMs in terms
of accuracy and interpretability; and (3) assessing whether the
retrieval-augmented approach of GraphRAG significantly
improves response quality in medical decision support. These
criteria reflect the critical nature of clinical decision-making,
where AI-generated content’s clarity, accuracy, and contextual
relevance directly affect patient safety and clinical outcomes.

Testing Environment
The evaluation was conducted in a simulated environment,
without the involvement of live patients or human participants.
The GraphRAG-powered local LLM was deployed on an offline
computing environment, ensuring that no external API calls or
third-party cloud services influenced the test outcomes. The
KG was prepopulated with medical research articles, as

described in the “Prototyping a PoC” section, and served as the
contextual knowledge base for all retrieval-augmented queries.

Prompt Design and Benchmark Models
The prompts used in the evaluation were carefully crafted to
simulate realistic clinical and layperson queries. These prompts
were generated from two user groups: (1) laypersons represented
by 5 contributors (the authors) simulating patient queries,
verified for clarity and simplicity; and (2) clinicians comprising
2 general practitioners (GPs) and 1 specialist physician, who
created queries based on typical clinical decision-making
scenarios.

Furthermore, 2 independent medical practitioners reviewed all
prompts to ensure clinical relevance (were the prompts aligned
with real-world GDM management scenarios?) and content
clarity (did the prompts avoid ambiguous phrasing or unrealistic
edge cases?)

The GraphRAG system was then benchmarked against 3
open-source LLMs commonly used in medical AI research. The
comparison is intended to analyze the performance of a
domain-augmented local model (our PoC) against both
general-purpose and specialized health care LLMs.

• ChatGPT [36]: A versatile, general-purpose LLM.
• Claude [40]: Known for generating coherent, contextually

rich responses.
• BioMistral [41]: A domain-specific medical LLM optimized

for health care contexts.

Our benchmarking compares the GraphRAG-enabled local LLM
against the above 3 LLM models to assess clinical relevance,
contextual accuracy, and terminological consistency. These
models were selected based on availability, health care domain
relevance, and ease of integration into our evaluation pipeline.
While we acknowledge the increasing prevalence of open-source
LLMs such as LLaMA 3 (Meta AI), due to hardware
compatibility constraints and inference framework differences
at the time of testing, we could not integrate LLaMA 3 within
the test environment. LLaMA 3 and other emerging open-source
models, such as Mistral 7B (Mistral AI) and Phi-3 (Microsoft),
should be included in future benchmarking updates to expand
our comparative analysis, which is suggested as future work.

Evaluation Metrics and Rationale
Following established practices in evaluating health care AI
models [42,43], we used 5 complementary metrics, each
addressing a distinct dimension of AI-generated response
quality. These are presented in Table 3.
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Table . Metrics and their clinical significance in evaluating artificial intelligence–generated responses.

SignificancePurposeMetric

Critical for clinical decision support, where irrel-
evant or off-topic answers compromise safety.

Measures alignment between response content
and user query.

Relevance score

Ensures AIb responses replicate validated medi-
cal language without distortion.

Evaluates syntactic similarity and phrase struc-
ture match against reference answers.

BLEUa score

Captures preservation of clinical terminology

essential in GDMc management.

Quantifies overlap in key medical terms between
model response and reference.

Jaccard similarity

Evaluates whether model responses capture the
intended clinical meaning beyond surface text.

Assesses semantic similarity using deep contex-
tual embedding.

BERTScore

Ensures clarity and interpretability for both clin-
icians and patients.

Evaluate fluency and coherence in response
generation.

METEOR

aBLEU: bilingual evaluation understudy.
bAI: artificial intelligence.
cGDM: gestational diabetes mellitus.

Together, these metrics comprehensively address the precision,
contextual relevance, and interpretability of an AI model’s
outputs, which are key requirements for clinical use cases.

Evaluation Process
The evaluation adopted the following steps:

First, each LLM, including GraphRAG, was presented with the
same curated set of 20 prompts (10 from simulated layperson
queries and 10 from clinicians), covering core aspects of GDM
management, such as risk factors, diagnostics, treatment, and
complications. The 5 coauthors (EE, FR, SB, AN, and RS)
jointly drafted the layperson prompts, while clinical prompts
were contributed by 2 practicing GPs and reviewed by a third
medical specialist.

Second, the system’s responses were compared against reference
answers, curated from clinical guidelines and expert consensus
statements.

Third, evaluation was conducted in a zero-shot
retrieval-augmented setting. No supervised training or
fine-tuning was performed. The local LLM operated on a
preconstructed KG as the contextual grounding source.

Fourth, automated evaluation metrics (bilingual evaluation
understudy [BLEU], Jaccard Similarity, BERTScore, and
METEOR) were computed using standard natural language
processing evaluation libraries. These scores reflect surface-level
accuracy, overlap in medical terminology, and semantic
similarity.

Fifth, manual relevance scores were assigned by 2 independent
medical reviewers on a 1‐5 scale, based on clinical
applicability, specificity, and usefulness of responses.

Finally, results were averaged across all prompts and models
and reported for comparative analysis in the Results section.
While performance scores are high (eg, BLEU=0.99
approximately), this reflects a small, curated test set and should
not be considered generalizable. CIs and interrater agreement
were not calculated in this phase of the research.

Benchmarking Scope and Qualifications
The evaluation was designed to show the technical feasibility
and domain relevance of the GraphRAG framework, rather than
to establish clinical deployment readiness for deployment.
Consequently, the following qualifications would apply:

First, all responses were evaluated in a simulated, offline
environment without involvement of human patients, real-time
electronic health record data, or live clinical workflows.

Second, no supervised training or dataset splitting was involved,
as the system uses RAG rather than end-to-end training. All
prompts were presented statically to each LLM.

Third, as recorded in our research logs, the KG was constructed
from a curated corpus of 1212 peer-reviewed, English-language
articles on GDM interventions, extracted via Semantic Scholar
API (2000‐2024). The KG contains approximately 2750 nodes,
5800 edges, and 18 entity types, including risk factors, therapies,
dietary interventions, and outcomes.

Fourth, the evaluation prompt set, while medically validated,
remains small and nonrandomized. No demographic
stratification, multilingual testing, or subgroup fairness analysis
was performed.

Fifth, performance metrics assessed linguistic and contextual
quality only. There has been no empirical validation of clinical
efficacy, patient safety, or decision-making utility.

Finally, future iterations should expand prompt diversity,
compute interrater reliability scores, and explore prompt-based
fairness auditing. Prospective clinical trials and
feedback-integrated deployment pipelines are also planned.

Ethical Considerations
This study involved the development and technical validation
of a PoC clinical AI assistant for GDM management. The
research was conducted entirely in a simulated environment
without involving human participants, personal health data, or
clinical interventions. Accordingly, formal ethics board approval
was not required for this PoC phase of the research study.
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More specifically, this was in accordance with ethical research
standards for early-stage AI system development in health care.
We ensured that no human participants, no personal health data,
and no real-time clinical interventions resulted from this PoC
phase. While fairness across subpopulations was not evaluated
in this version, future efforts shall explicitly address this
dimension.

Data Source Transparency
The data used in this study were drawn exclusively from
public-domain, reputable academic research, collected through
the Semantic Scholar API. All articles retrieved were from
peer-reviewed scientific publications, ensuring no private,
sensitive, or patient-level data were accessed or processed. The
use of publicly available literature aligns with ethical practices
in computational biomedical research, where datasets are
preferably in the public domain.

Simulated Testing Environment
The PoC was evaluated using simulated prompts designed by
the research team and reviewed by independent clinicians. No
real patient interactions, medical records, or clinical
environments were involved in the testing. This approach was
explicitly chosen to focus on the feasibility of the proposed
GraphRAG-powered knowledge retrieval and response
generation approach.

All comparisons against open-source LLMs (ChatGPT, Claude,
and BioMistral) were also conducted offline, with no data sent
to external servers during evaluation, ensuring data security and
compliance with our concern that we do not train such models
with our research data.

Responsible AI Development
The design and development of the GraphRAG framework
adhered to ethical AI principles, emphasizing:

1. Transparency: Clear explanation of methods and evaluation.
2. Safety: Avoidance of deploying untested AI systems in live

clinical environments.
3. Explainability: Use of a KG for contextual reasoning and

improved interpretability.
4. Bias awareness: Although no patient data were used, future

iterations will integrate fairness auditing to minimize
algorithmic bias.

Fairness and Demographic Representation
The development of the PoC used a small set of curated prompts
authored by the research team and clinicians. Hence, no
demographic, linguistic, or regional diversity was represented
in the evaluation. This limitation may impact the generalizability
of the system’s recommendations across patient populations.
Future prototyping iterations will integrate fairness-aware
evaluations, including prompt diversity across age, gender,
geography, and language, to improve equitable performance
across clinical contexts.

Results

System Demonstration Scenarios
The PoC beta testing in a simulated environment highlighted
the feasibility of the GraphRAG-powered clinical support system
for GDM management. The PoC generated personalized,
clinically relevant responses to GDM-related queries, simulating
interactions between patients, health care professionals, and the
system.

Figures 8 and 9 present an illustrative scenario displaying how
the GraphRAG local LLM could support clinical consultations.
In this example, a patient presents a question regarding the top
risk factors for GDM. A health care professional, such as a GP
or maternity nurse, uses the GraphRAG-enabled clinical support
system to process the query into a prompt.
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Figure 8. GraphRAG-based clinical support system for gestational diabetes mellitus - iconographic representation. AI: artificial intelligence; GDM:
gestational diabetes mellitus; genAI: generative artificial intelligence.
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Figure 9. GraphRAG-based clinical support system for gestational diabetes mellitus - process flow diagram. AI: artificial intelligence; GDM: gestational
diabetes mellitus; GP: general practitioner.

As illustrated in Figure 8, the system processes the initial query.
It generates a concise, contextually relevant response (ie, with
the benefit of the patient’s medical records), listing key GDM
risk factors such as maternal weight, family history of diabetes,
and maternal age. The process flow highlights how the system
integrates domain-specific medical literature and patient-related
contextual data through its underlying Neo4j KG, enabling it
to deliver evidence-based, patient-centered recommendations.

Figure 9 further elaborates on the underlying process. The
patient’s query initiates a series of steps where the system
retrieves relevant interventions and relationships from the KG.
The local LLM then generates a response with context-aware
medical knowledge. The final advisory to the health care
professional integrates the patient’s specific context and
up-to-date medical research, avoiding potential inaccuracies
and hallucinations.

This demonstration shows how GraphRAG can streamline
clinical consultations by providing up-to-date, evidence-backed
responses. Beyond basic patient interactions, the system can
address more advanced clinical questions, such as identifying
appropriate screening tests for GDM or evaluating intervention
effectiveness. With explanation features, these capabilities
support informed decision-making for health care providers and
patients, enhancing the overall quality of care for GDM.

The detailed results of the system’s performance in various
scenarios are presented in the following 3 subsections. The first
examines the system’s responses to layperson prompts. The one
that follows analyzes its performance with clinically oriented
queries from 2 GPs. The third presents the comparative analysis
of model performance using standard evaluation metrics across
GraphRAG and 3 other LLMs.

JMIR Diabetes 2026 | vol. 11 | e76454 | p.16https://diabetes.jmir.org/2026/1/e76454
(page number not for citation purposes)

Evangelista et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


GraphRAG Local LLM Response to Prospective
Patients’ Prompts
The GraphRAG Local-LLM generated clear, clinically relevant
responses to patients’ queries related to GDM management.
These prompts were designed to simulate questions that a
general audience might ask during health consultations with
their health care provider. The system’s responses highlighted

its ability to simplify complex medical concepts while
maintaining factual accuracy and clinical relevance.

Table 4 presents example prompts and the corresponding
GraphRAG-generated responses. For example, when asked
about the top 3 factors determining gestational diabetes risk,
the system correctly identified key risk factors such as weight,
family history of diabetes, and maternal age.

Table . Responses to patient prompts.

ResponsePrompt

What are the top 3 factors determining gestational diabetes risk? • Weight: Being overweight or obese increases your risk of gestational
diabetes.

• Family history: Having a family history of diabetes or a personal
history of gestational diabetes in a previous pregnancy can increase
the risk.

• Age: Older women, especially those over 25, are at higher risk of
developing gestational diabetes.

How can we safeguard a baby’s health and wellness for gestational diabetes
patients?

• Monitor blood sugar levels, follow a healthy meal plan, engage in
regular physical activity, take prescribed medications, attend prenatal
check-ups, and follow healthcare guidance.

What nutrition is recommended to prevent gestational diabetes? • Eat a balanced diet high in fiber and low in added sugars and un-
healthy fats. Include fruits, vegetables, whole grains, lean proteins,
and healthy fats.

Are gestational diabetes patients more likely to have a cesarean or a stan-
dard delivery?

• Women with gestational diabetes are more likely to have a cesarean
delivery due to risks like macrosomia, shoulder dystocia, and birth
trauma.

What neonatal screening should a couple with a family history of diabetes
undergo before planning to have a baby? Are there precautions they could
take?

• Consider genetic counseling and testing. Preconception counseling
can help identify risks and precautions, with personalized plans de-
veloped alongside health care professionals.

These results show the system’s capacity to convey medical
information in a manner accessible to nonspecialist users. The
responses accurately addressed the queries using medically
appropriate language, ensuring clarity for a general audience.

Responses to GP Prompts
The GraphRAG system was evaluated using clinically relevant
prompts provided by GPs. These prompts simulated real-world
clinical queries related to the diagnosis, management, and
long-term planning of GDM. The system generated medically
valid responses as assessed by the participating GPs and
diabetologists, addressing both basic and advanced aspects of
GDM care.

Responses to Prompts From GP 1
Table 5 presents the responses generated by GraphRAG for the
first set of prompts from GP 1. These prompts covered
foundational aspects of GDM diagnosis and management. For
example, when asked how to diagnose GDM, the system
recommended the glucose challenge and tolerance tests,
reflecting standard clinical guidelines. The responses addressed
both diagnostic procedures and recommended clinical
management steps.

The responses provided clear, evidence-aligned answers
covering diagnostic tests, management strategies, fetal
monitoring approaches, and long-term complications.
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Table . Responses to prompts from general practitioner 1.

ResponsePrompt

Gestational diabetes is typically diagnosed through a glucose challenge
or glucose tolerance test. A sugary solution is consumed, and blood sugar
levels are tested. If results are high, a more detailed glucose tolerance test
is done. A health care provider must confirm the diagnosis and guide
management.

How do I diagnose gestational diabetes?

Monitor blood sugar regularly, follow a health care–guided meal plan,
engage in physical activity, attend prenatal care visits, take prescribed
medications, and stay in contact with your health care team.

What measures would you advise me to take once I am diagnosed with

GDMa?

Monitor fetal growth via regular ultrasounds, track amniotic fluid and fetal
movements (kick counts), and consult health care providers for ongoing
prenatal assessments.

What fetal changes should I monitor (and how) in gestational diabetes?

Use technologies like continuous glucose monitors and personalized insulin
therapy. Also, nonmedical options such as tailored diets, physical activity,
and stress reduction should be applied, ideally with specialist consultation.

What are the cutting-edge medical and non-medical interventions I could
take to control GDM in pregnant mothers?

GDM increases the risk of type 2 diabetes in mothers and raises the chance
of obesity, metabolic syndrome, and diabetes in children. Long-term fol-
low-up is essential for both.

What are the long-term complications for GDM mothers and their off-
spring?

aGDM: gestational diabetes mellitus.

Prompts From GP 2 and GraphRAG Local LLM
Responses
Further evaluation was conducted using prompts from GP 2,
which explored broader clinical topics, including screening

tests, genetic factors, and emerging therapies. Table 6
summarizes the system’s responses.

According to the medical practitioners, the GraphRAG system
generated contextually appropriate responses, addressing
established clinical practices and emerging medical topics in
GDM care.

Table . Responses to prompts from general practitioner 2.

ResponsePrompt

Standard tests for screening and monitoring GDM include:What basic screening tests for GDMa should I perform and monitor regu-
larly? • Glucose challenge test (GCT) – a one-hour blood test after consuming

a sugary drink.
• Oral glucose tolerance test (OGTT) – a follow-up fasting test with

multiple blood draws.
• Glycated hemoglobin (A1C) – reflects average glucose levels over

the past months.
• Regular blood glucose monitoring – daily checks using a glucometer.

Consult a healthcare provider for tailored testing schedules.

Both parents can genetically influence the risk of DM. The extent varies
by DM type and individual genetic profiles. Environmental factors also
play a key role.

On balance, does medical evidence suggest a greater genetic influence of

the father or the mother for DMb?

Medical interventions include:If the patient and her husband decide to go ahead with starting a family,
what medical interventions can I prescribe to alleviate the risk of GDM? • Healthy diet and lifestyle habits.

• Regular blood glucose monitoring.
• Medications such as metformin, if required.
• Referral to a nutritionist or diabetes educator.
• The provider should personalize recommendations.

There is no direct link between oral care and GDM prevention. However,
good dental hygiene supports overall pregnancy health. Recommendations
include brushing twice daily, flossing, and routine dental visits.

Can proper oral and dental care alleviate GDM during pregnancy? What
are some effective measures?

Stem-cell and epigenetic research show potential, but are still in the early
stages. Patients should consult reproductive specialists for the latest updates
and personalized advice.

Are there promising stem-cell or epigenetic treatments that could ease my
patient’s hesitance to start a family?

aGDM: gestational diabetes mellitus.
bDM: diabetes mellitus.
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Comparative Model Performance

Overview of Benchmarking Procedures
The GraphRAG system was benchmarked against 3 widely used
LLMs, BioMistral, ChatGPT, and Claude, using a standardized
set of clinical prompts focused on GDM management. The
models’ responses were evaluated using 5 quantitative metrics
that assessed relevance, linguistic precision, terminology
consistency, contextual understanding, and coherence.

Benchmarking Results
Figure 10 presents a comparative analysis of the models’average
performance across 5 evaluation metrics. GraphRAG achieved
the highest scores in BLEU, Jaccard Similarity, and BERTScore,
indicating strong alignment with clinical phrasing, preservation
of key medical terms, and deep contextual accuracy. Relevance
Score and METEOR also reflect competitive performance across
all models.

Figure 11 shows a radar chart (also known as a Kaviat diagram)
of the same results, highlighting GraphRAG’s balanced strengths
across multiple evaluation dimensions.

Figure 10. Comparative performance of GraphRAG, BioMistral, ChatGPT, and Claude across evaluation metrics. BLEU: bilingual evaluation understudy.
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Figure 11. Radar chart visualizing model performance across key metrics. BLEU: bilingual evaluation understudy.

Key Observations
1. Relevance Score: GraphRAG and BioMistral showed

comparable results, aligning well with the clinical intent of
queries.

2. BLEU Score: GraphRAG outperformed all other models,
reflecting precise replication of validated clinical
expressions.

3. Jaccard Similarity: GraphRAG highlighted superior
consistency in medical terminology usage across responses.

4. BERTScore: The model achieved the highest semantic
similarity, indicating deep contextual understanding.

5. METEOR: GraphRAG generated coherent and fluent
responses suitable for clinical communication, comparable
with ChatGPT and Claude.

These findings demonstrate the technical feasibility of the
proposed GraphRAG-enabled local LLM. However, we stress
that as a PoC evaluated in a simulated environment, the
prototype is not ready to be deployed in real-world clinical
settings. Even so, these results show that the GraphRAG
approach effectively balances linguistic precision, contextual

depth, and clinical relevance in GDM decision support scenarios.
Besides BioMistral, ChatGPT, and Claude, new open-source
LLMs such as LLaMA 3, Mistral 7B, and Phi-3 are becoming
prevalent in health care AI. Although hardware and framework
limitations prevented their inclusion in this study, we recognize
their importance as baselines. Future work will add these models
to expand our comparative analysis.

Discussion

Principal Findings
This study demonstrates that the GraphRAG-enabled local LLM
consistently produces clinically relevant, contextually grounded,
and medically precise responses for managing GDM. Through
a rigorous benchmarking process against established
open-source models, BioMistral, ChatGPT, and Claude, the
GraphRAG approach achieved top-tier performance across all
key evaluation metrics: BLEU Score, Jaccard Similarity, and
BERTScore. The radar chart (Figure 11) illustrates
well-balanced strengths of the model across multiple evaluation
dimensions. Notably, first, GraphRAG matched BioMistral in
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Relevance Score, indicating strong alignment with the clinical
intent behind queries of the health care providers. This score
reflects how accurately the system understands and responds
to the specific clinical context of the user, which is critical in
decision support. Second, GraphRAG outperformed all models
in BLEU Score and Jaccard Similarity, showcasing its ability
to reproduce clinical phrasing with syntactic accuracy and
maintain consistency in key medical terminologies, a vital factor
for preserving the meaning of technical medical advice. Third,
it achieved a superior BERTScore, showing deep semantic
understanding. This reflects the capacity of the model to
generate responses that not only match expected language
structures but also accurately convey complex clinical
relationships within GDM care. Finally, the superior
performance across these diverse metrics stems from the
architectural design of GraphRAG. By integrating
domain-specific KGs with RAG, the system grounds its
responses in verified clinical evidence rather than relying solely
on probabilistic language patterns. This integration mitigates
common challenges of general-purpose LLMs, such as
hallucinations and domain irrelevance, ensuring that responses
are both medically accurate and context-aware.

These findings validate the core hypothesis that combining
structured medical knowledge and patient-specific information
with GenAI significantly enhances the quality, safety, and
reliability of AI-generated clinical recommendations.

Implications for AI-Driven Clinical Decision Support
The empirical results of this study highlight the transformative
potential of GraphRAG-powered local LLMs in advancing
AI-enabled clinical decision support systems. This is particularly
the case within specialized domains, such as GDM management,
where expertise is scarce and uneven. By combining structured
retrieval from a domain-specific KG with contextual generation,

the system addresses the longstanding gap between unstructured
clinical queries and structured evidence-based medical
knowledge.

The GraphRAG approach addresses a critical limitation of
general-purpose LLMs, such as ChatGPT and Claude, which
often prioritize linguistic fluency over clinical accuracy. While
these models can generate coherent responses, they frequently
lack the domain specificity needed for accurate clinical
guidance. In comparison, the responses of GraphRAG
consistently align with established clinical guidelines, reflecting
a deep understanding of current medical standards and practices.
For example, when prompted to hear about GDM diagnosis,
GraphRAG accurately recommended the glucose challenge and
tolerance tests, mirroring clinical best practices. This indicates
that the system is not merely generating plausible text but
retrieving and contextualizing domain-specific evidence to
support clinical decision-making.

The clinical utility of such contextually enriched responses is
profound. In healthcare, where treatment decisions directly
affect patient safety and outcomes, factual accuracy and
contextual relevance are not optional but essential. The ability
of GraphRAG to consistently deliver these qualities positions
it as a valuable tool for supporting health care providers,
particularly in low-resource or high-pressure clinical
environments where access to specialist knowledge may be
limited.

The practical utility of GraphRAG is further illustrated in
Textbox 2, which presents a representative response to a
clinically relevant query about managing insulin resistance in
patients with GDM. Unlike generic language models,
GraphRAG provides structured, evidence-aligned
recommendations grounded in recent clinical guidelines.

Textbox 2. GraphRAG response to a clinical query on managing GDM.

Query: What are the latest recommendations for managing insulin resistance in GDM patients?

GraphRAG response: Recent studies suggest a multi-faceted approach to managing insulin resistance in GDM patients, including:

1. Personalized low glycemic index diets, emphasizing complex carbohydrates and fiber-rich foods.

2. Structured exercise programs combining aerobic and resistance training for at least 150 minutes per week.

3. Early initiation of metformin where lifestyle modifications are insufficient, as per the 2023 guidelines.

4. Continuous glucose monitoring to optimize insulin dosing and adjust lifestyle recommendations.

5. Regular screening for comorbidities such as hypertension and dyslipidemia, which contribute to insulin resistance.

The above sections highlight the ability of GraphRAG to
transform unstructured clinical questions into actionable,
guideline-compliant insights. By synthesizing evidence from
domain-specific KGs, the system avoids unsupported claims
and produces responses aligned with best clinical practices,
supporting its role as a trustworthy clinical decision support
tool.

Contributions to AI in Health Care
This study advances the field of health care AI by presenting a
scalable, contextually enriched clinical support system
specifically designed for GDM management. We believe that
our key contribution lies in the system’s ability to empower

GPs and nonspecialist clinicians, particularly in underserved
and resource-limited health care environments with limited
access to endocrinology specialists and up-to-date clinical
knowledge. By using a KG-driven retrieval process, the system
surfaces context-specific clinical insights without requiring
clinicians to conduct exhaustive manual literature reviews or
consult multiple sources. Here, a word of caution is in order.
We reiterate that the PoC works best as a clinical assistant; that
is, a health practitioner must be in the loop. This is important
given the dangers of unsupervised AI agents, which may usurp
the role of a human caregiver without human oversight [44]. It
is concerning that a recent, peer-reviewed (and in our view,

JMIR Diabetes 2026 | vol. 11 | e76454 | p.21https://diabetes.jmir.org/2026/1/e76454
(page number not for citation purposes)

Evangelista et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


misguided) study actually normalizes a doctor versus machine
“Turing-test of authenticity” [45].

Furthermore, this study shows domain-specific superiority over
general-purpose LLMs. While models such as ChatGPT and
Claude can produce coherent responses, they lack the fine-tuned
contextual sensitivity and clinical precision essential for
specialized health care domains. In comparison, the architecture
of GraphRAG is optimized to capture the complex relationships
inherent in GDM management, such as patient history with risk
factors, availability of interventions, and outcome pathways for
follow-up medical care, thereby enhancing both response
accuracy and clinical applicability.

This study contributes to a novel retrieval-augmented GenAI
architecture that translates domain-specific medical knowledge
into clinically actionable insights. It serves a need; namely,
access to the latest, credible medical research in time- and
resource-constrained environments. In health care, timely and
science-based interventions are crucial.

Technical Innovations Driving Performance Gains
The robust performance of the GraphRAG-enabled local LLM
stems from the integration of 3 core technical innovations that
address longstanding limitations in clinical AI systems.

First, the KG integration allows for the structured representation
of complex clinical relationships between risk factors,
interventions, symptoms, and outcomes. Unlike flat text
embedding, the KG enables the system to reason over
interconnected entities and contextual dependencies, ensuring
that recommendations are grounded in the complete clinical
scenario rather than isolated data points.

Second, the RAG framework of the system addresses the gap
between static model knowledge and dynamic, evolving medical
evidence. The system mitigates temporal gaps by integrating
retrieval from an up-to-date domain-specific KG. It reduces the
risk of hallucinated or outdated responses, a common flaw in
general-purpose LLMs trained on static corpora.

Third, the domain-specific adaptation of the model through
targeted prompting strategies and fine-tuning on GDM-related
interventions enhances its ability to understand and accurately
apply specialized clinical terminology in localized contexts.
This adaptation ensures that the system’s responses reflect the
nuanced requirements of GDM management, capturing both
the syntactic precision and semantic depth necessary for
high-stakes clinical situations like emergency room triage.

We believe that these innovations enable the system to move
beyond generic language generation, delivering interpretable,
actionable, and clinically validated responses. This advancement
represents a meaningful step toward reliable AI-assisted clinical
decision-making, especially for chronic disease management
scenarios where timely and context-aware recommendations
are essential.

Conclusions

Limitations and Challenges for Clinical Deployment
While the initial results from this PoC study are promising,
several critical limitations must be addressed before GraphRAG

can be translated into clinical practice. Intended as a PoC, the
system has not undergone field validation. Future studies
involving real-world patient interactions, clinician feedback,
and longitudinal follow-up are essential to establish the model’s
safety, reliability, and usability in live health care environments.

A second major consideration concerns data privacy and
protection. Although this PoC did not involve patient-level data,
real-world deployments would necessitate strict adherence to
data protection frameworks. The integration of
privacy-preserving learning paradigms, such as federated
learning, would allow models to be trained on decentralized
clinical data without exposing sensitive patient information.
Complementary techniques, such as blockchain for differential
privacy and secure multiparty computation, could further protect
patient confidentiality.

The interpretability of AI-generated clinical responses remains
a pressing challenge. While GraphRAG uses structured retrieval
to enhance contextual grounding, clinicians must be able to trust
and explain its outputs. Future iterations of the system should
integrate explainability frameworks such as Shapley Additive
Explanations or Local Interpretable Model-agnostic
Explanations, enabling clinicians to trace and retrieve evidence
on how specific KG pathways contribute to a given clinical
recommendation.

In addition, seamless workflow integration will be critical for
adoption. Clinical decision support systems must embed
naturally within existing electronic health record platforms,
minimizing disruption to physician workflows. Without such
integration, even the most accurate systems risk being underused
in clinical practice.

As with many multistage AI pipelines, GraphRAG is also
subject to the risk of error propagation, where inaccuracies in
earlier stages, such as entity extraction or graph construction,
may be compounded in downstream response generation. While
our current prompt engineering and domain-specific graph
design reduce this risk, future versions will integrate
intermediate validation checkpoints, feedback loops, and
retrieval-failure auditing to ensure response fidelity and system
transparency.

Another key limitation is the reliance on English-language
peer-reviewed articles from a single aggregator (Semantic
Scholar). This has excluded regional or non-English medical
literature with culturally adapted GDM interventions. Future
work should incorporate multilingual and regionally diverse
corpora to improve the model’s generalizability and contextual
sensitivity, particularly in Global South health care settings.

Finally, the computational demands of GraphRAG’s RAG
architecture present scalability challenges. The latency and
resource consumption must be optimized to support real-time
inference in time-sensitive clinical settings, especially in
environments where computational capacity may be limited.
Addressing these challenges is essential for transitioning
GraphRAG from an academic PoC to a clinically viable,
ethically responsible AI system.
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Broader Implications and Future Research Directions
Building on the demonstrated feasibility of our PoC, our future
research agenda is designed to advance the GraphRAG
framework along 2 primary axes: strategic domain expansion
and core technical refinement. First, we propose to strategically
adapt the framework for other data-intensive clinical areas,
including cardiovascular disease, oncology, and mental health,
where evidence-grounded decision support is crucial. Second,
we will enhance the core retrieval engine by integrating
advanced algorithms, such as contextual BM25 and
embedding-based summarization, to improve precision. To
improve robustness and transparency, we propose implementing
new retrieval-specific metrics, such as recall and failure rates.
We have established a roadmap and aim to pursue these
enhancements in our next research cycle, solidifying the
GraphRAG pipeline as a viable tool for real-world clinical
decision support.

The legal, ethical, and intellectual property considerations will
also shape future deployments. To ensure transparency and
reduce legal risks, future iterations will prioritize training on
open-access datasets such as PubMed Central, adhering to
responsible AI development practices and open science
principles.

To protect patient privacy and mitigate algorithmic bias will
remain core ethical imperatives. The federated learning and
anonymized blockchain solutions could support decentralized

training across institutions without compromising patient
confidentiality. Bias audits, fairness-aware modeling, and
hallucination mitigation strategies, such as reranking retrieved
evidence and diversifying training datasets, will improve the
reliability and equity of the system’s clinical recommendations.
In such a trusted platform, integrating GraphRAG with real-time
patient data could enable personalized clinical decision support,
customizing recommendations to individual genetic profiles,
lifestyle factors, and environmental exposures. This evolution
toward precision medicine would represent a significant leap
forward in AI-driven health care delivery.

To overcome the limitation of computational costs, the enhanced
system will require architectural optimizations to enable
scalability in resource-constrained clinical settings. Techniques
such as prompt caching, adaptive chunking of graph queries,
and hybrid retrieval strategies will reduce computational costs
and response latency. This will support deployments in
low-bandwidth environments, such as rural clinics and
community health centers.

In the long term, retrieval-augmented LLMs, such as
GraphRAG, are envisioned not as autonomous clinical agents
but as clinical copilots, supporting, rather than replacing human
clinicians. Their evaluation in live clinical workflows will be
critical to determining their optimal role as decision-support
systems. A reflective perspective on this motivation is presented
in Textbox 3, showing the personal origins of our research
question.

Textbox 3. Closing vignette on gestational diabetes.

“I do not wish to alarm you, Mrs. Sharma, but you have been diagnosed with gestational diabetes and your baby is 10 pounds at birth. Both of you
need to be careful.”

[Ward Nurse in Singapore’s Kandang Kerbau Maternity Hospital to the mother of the last author, circa 1961]

In 2022, the mother passed away peacefully at the age of 88, her diabetes controlled with insulin injections for decades. The “baby” (the last author
and principal investigator of this study [RS]) was diagnosed with type 2 diabetes at the age of 60, giving rise to our research question of whether a
graph-based retrieval-augmented generation solution could change the outcome for both with timely, relevant best practices.

In closing, this paper sought to establish the feasibility of a
GraphRAG-enabled local LLM architecture for generating
clinically relevant, context-aware responses in the management
of diseases, such as GDM [46]. By integrating domain-specific
KGs with RAG, the system outperformed general-purpose LLMs
across multiple evaluation metrics, offering evidence-grounded
and terminologically precise clinical recommendations. While
this work serves as a technical PoC, future research will need
to focus on (1) prospective clinical validation involving real-time

patient interaction, (2) multimodal agents to improve
accessibility and cultural sensitivity, and (3) integration of
explainable AI modules, such as Shapley Additive
Explanations–based KG traceability, resulting in enhanced trust
and transparency for the 2 key humans in the loop – the patient
and her doctor. Ultimately, we believe the transformative
potential of AI-powered decision support tools will personalize
care and improve clinical outcomes, particularly in underserved
societies.
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Abstract

In our study, a commercially available continuous ketone monitoring device captured β-Hydroxybutyrate (BHB) dynamics during
exogenous ketosis but revealed a gradual decline day-to-day BHB concentrations over 14 days in both ketone ester and placebo
groups, likely reflecting sensor drift.

(JMIR Diabetes 2026;11:e85548)   doi:10.2196/85548
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Introduction

Continuous measurement of ketone bodies is of scientific and
clinical interest, providing insights into type 1 and type 2
diabetes, ketogenic diets, intermittent fasting, and exogenous
ketone precursor supplementation. Current finger-prick
point-of-care testing (POCT) devices are invasive, intermittent,
and fail to capture dynamic fluctuations [1]. Continuous ketone
monitoring (CKM), a small device measuring interstitial ketone
(β-hydroxybutyrate, BHB) levels, offers a potential solution
[2]. CKM research, however, remains in its early stages, with
only a single commercially available device at present (SiBio
KS1, Hong Kong), to the best of our knowledge. Exogenous
ketone supplementations are currently studied for potential
therapeutic applications, including weight loss, enhanced
exercise performance, and the management of
neurodegenerative, cardiovascular, and inflammatory conditions
[3-5]. We hypothesized that CKM would accurately track BHB
and evaluated its performance under sustained intermittent
supraphysiological ketosis.

Methods

Study Design
This work is part of a larger study on exogenous ketosis and
erythropoiesis (Thomsen et al, unpublished). CKM became

available midway through the study and was therefore applied
sequentially in the final 7 of the 16 healthy volunteers.
Participants were randomized to receive either a ketone ester
(KE) drink (500 mg/kg/d) or a placebo (PBO), matched for
volume, taste, and viscosity. Over two weeks, drinks were
consumed two to three times daily, with half the dose before
sleep. Participants were blinded to CKM readings, while
investigators were not blinded. We tested the effects of time,
treatment, and their interaction on log-transformed BHB area
under the curve (AUC) using a linear mixed-effects model and
applied polynomial contrasts to assess linear trends.

Ethical Considerations
The study was conducted in accordance with the Declaration
of Helsinki II, approved by the regional ethics committee
(#1-10-72-221-22), and registered with ClinicalTrials
(NCT06053138). Oral and written informed consent was
obtained from all participating patients. Participant data were
pseudonymized to ensure confidentiality. Participants received
financial compensation for their time and participation.

Results

A total of 7 participants wore CKM devices: 4 in the KE group
(3 female, 1 male) and 3 in the PBO group (2 female, 1 male).
Median age was 41 years (IQR 28–55). One KE participant’s
sensor detached on day 4 and was not replaced, but CKM
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readings until detachment were included in the analyses. BHB
AUCs were significantly influenced by both day and treatment,
with an interaction effect (P=.006). In the KE group, BHB
showed a significant linear decrease over 14 days (P<.001), and

a smaller but significant decline was also observed in the PBO
group (P=.02). Consequently, group differences diminished,
with KE and PBO becoming indistinguishable by the final day
(Figure 1).

Figure 1. Day-by-day changes in total BHB area under the curve (AUC) for both the Ketone Ester (KE) group (n=4, orange) and placebo (PBO) group
(n=3, blue). Scatter points represent individual AUC measurements for each participant across the 14 study days. Solid lines depict the back-transformed
least-square means of BHB concentrations from a mixed-effects model, estimated separately for each day and treatment group, and the shaded regions
represent the confidence intervals. BHB: beta-hydroxybutyrate.

Discussion

This study evaluated the performance of a commercially
available CKM device during 14 days with intermittent
exogenous ketone supplementation. Our findings demonstrate
that the CKM detected increases in interstitial BHB
concentrations following KE ingestion but revealed a
progressive decline in BHB concentrations over the 14-day
study period in the KE group, indistinguishable from the PBO
group on the last study day. This contrasts with two prior studies
in which participants received KE for 14 days before ingesting
25 g KE in a laboratory setting on day 15 [6,7]. In those studies,
peaks reached ~2.3 mM at 1 hour and declined to ~0.5 mM at
4 hours, with no evidence of a declining peak BHB
concentration following a comparable period of intermittent
exogenous ketosis. Importantly, we observed a temporal decline
in BHB concentrations also in the placebo group, highly
suggesting a ketone-independent physiological or
measurement-related drift. Therefore, this raises the possibility
of sensor-related limitations. Potential explanations include
sensor enzyme degradation, biofouling, temperature effects,
compression, or interstitial variability [8]. The underlying sensor
principle is not fully disclosed but thought to use a modified
electrochemical method reacting selectively with BHB in

interstitial fluid. In comparison, an in-development multianalyte

sensor using a three-electrode system with NAD+-dependent
β-hydroxybutyrate dehydrogenase and osmium-based redox
chemistry has shown stable 14-day performance in 12 healthy,
low-carbohydrate-consuming participants [9,10]. A future study
is anticipated with interest since it will assess the accuracy of
the same device used in our study, SiBio KS1, in subjects
following a 14-day ketogenic diet (NCT06420518). Limitations
for our study include not comparing the CKM-derived ketone
levels with gold standard blood BHB measurements (eg,
finger-prick tests), making it difficult to definitively decide if
our observations are due to sensor-specific limitations or not.
Additionally, the small sample size and statistical power may
impact the generalizability of our findings, and it is important
to note that the study was not originally designed to evaluate
CKM performance.

In conclusion, CKM captured BHB dynamics during exogenous
ketosis but revealed a gradual decline in day-to-day BHB AUC
over 14 days in both KE and PBO groups, likely reflecting
sensor drift rather than physiological adaptation. Larger
controlled studies with direct comparison of CKM and blood
BHB measurements are needed to confirm accuracy and clinical
utility, and must include more than a single batch of CKM
devices.
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Abstract

Background: Closed-loop insulin delivery is the new standard of care for patients with type 1 diabetes (T1D). However, in
France, its implementation remains predominantly hospital based. Expanding access to this treatment through alternative care
models looks essential.

Objective: This study (cost-effectiveness analysis) compares 2 care models for people with T1D implementing a closed-loop
system in France: outpatient care in the Inter-Regional Center for Automated Insulin in Diabetes (CIRDIA) and inpatient care.

Methods: We conducted a cost-effectiveness analysis using retrospective observational data from individuals with T1D aged
16 years and older from the implementation of the closed loop to a 12-month follow-up either in the CIRDIA (CIRDIA group)
or in a hospital center setting (hospital center [HC] group). The cost analyses were based on patient records and public databases:
the French Medical Information Systems Program and the French General Nomenclature of Professional Acts. Closed-loop
efficacy was assessed using a time in range (TIR) of 70 to 180 mg/dL, and closed-loop safety was assessed using the glycemia
risk index (GRI), a single indicator that represents the risk of hypoglycemia or hyperglycemia and ranges from 0 (minimal risk)
to 100 (maximal risk).

Results: A total of 201 patients were included: 128 in the CIRDIA group and 73 in the HC group. The mean (SD) age was 43
(14) years and 46 (15) years, respectively. Mean (SD) baseline TIR was 52.9% (16%) in the CIRDIA group versus 65.9% (15.1%)
in the HC group (P<.001), whereas mean (SD) baseline GRI was 56.4 (21) in the CIRDIA group versus 37.8 (19.8) in the HC
group (P<.001). After 12 months, both groups achieved similar efficacy and safety outcomes with a mean (SD) TIR at 72.7%
(11.6%) in the CIRDIA group versus 71.9% (10.5%) in the HC group, and a mean GRI at 30.1 (14.1) versus 30.3 (13), respectively.
There were no significant between-group differences (P=.60 for TIR; P=.91 for GRI). However, the CIRDIA was associated
with significantly lower management costs with a mean cost of €8373.12 (SD €427.30; €1=US $1.10 at the time of the study)
per patient in the CIRDIA group versus €8814.32 (SD €192) per patient in the HC group (P<.001). The estimated saving was
€626 per percentage point of increase in TIR and €2011 per point of reduction in GRI, indicating that the HC closed-loop initiation
was dominated by the CIRDIA. The CIRDIA was less costly than HC in 8600 (86%) out of 10,000 simulations in a probabilistic
sensitivity analysis.

Conclusions: These findings suggest the potential of the CIRDIA to represent a viable alternative organizational model for
closed-loop initiation in France, achieving comparable effectiveness at lower cost in our population. Further research with longer
follow-up is warranted. From a policy perspective, the resources saved could be at least partly reallocated to support out-of-hospital
closed-loop initiation centers.

(JMIR Diabetes 2026;11:e86690)   doi:10.2196/86690
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Introduction

Background
Diabetes is a chronic disease characterized by persistent
hyperglycemia, resulting from either a relative or absolute
deficiency in insulin secretion or an impairment in its action. It
represents a major public health challenge because of its
increasing prevalence, its impact on patients’ quality of life,
and the substantial economic burden on health care systems [1].
As of 2024, 588.8 million adults (aged 20‐79) worldwide were
living with diabetes, a number projected to increase to
approximately 853 million by 2050 [2]. In France, more than
4.5 million people are living with diabetes [3]. Among the
different forms of diabetes, type 1 diabetes (T1D) is an
autoimmune disease that is often diagnosed in children,
adolescents, or young adults. Overall, about 7.4 million people
are living worldwide with T1D, and in France, T1D accounts
for approximately 320,000 individuals [3]. The management of
T1D requires lifelong insulin therapy, frequent or nowadays
continuous glucose monitoring (CGM), and structured patient
therapeutic education [4]. Over the past decades, technological
advances have progressively transformed diabetes care from
multiple daily injections to external insulin pumps and
subsequently to CGM, enabling the real-time tracking of
glycemia [5]. These innovations have paved the way for the
development of closed-loop (CL) systems, which integrate a
glucose sensor, an insulin pump, and an adaptive control
algorithm [5].

Prior Work
While numerous studies have established the clinical benefits
of CL systems on glycemic outcomes, evidence on the models
of care for their initiation and follow-up remains limited [6-10].
The recent reimbursement of CL systems in France, and the
relative novelty of studying organizational rather than purely
clinical outcomes, may explain this evidence gap [11].

In France, approximately 2 years after the first reimbursement,
only about 15,000 eligible patients had received CL
systems—roughly a 5% coverage—despite the benefits for
glycemic control [12]. This low rate is partly attributable to the
centralization of CL initiation in hospital-based clinics, where
waiting times are often long [13].

The Inter-Regional Center for Automated Insulin in Diabetes
(CIRDIA) was developed in 2023 mainly to improve access to
CL among persons with T1D. The CIRDIA is a multisite CL
initiation center regrouping highly trained diabetologists, mostly
in private practice. The CIRDIA—like hospital-based CL
initiation centers—is based on the guidelines of the
French-Speaking Diabetes Society (SFD) [4]. However, as this
is a new concept of care in France, its cost-effectiveness had to
be evaluated and compared to usual hospital-based care.

Study Objectives
Evidence on the cost-effectiveness of alternative organizational
models of CL initiation, such as out-of-hospital–based pathways,
remains scarce. This raises the question of whether initiating
CL systems in out-of-hospital settings, such as the CIRDIA,

could represent a cost-effective alternative to hospital center
(HC)–based initiation.

This study aimed to estimate the 1-year cost-effectiveness of
CIRDIA-based CL initiation compared to HC-based initiation
among patients with T1D in France from a French National
Health Insurance perspective. We hypothesized that
out-of-hospital–based initiation could achieve comparable
effectiveness and safety while reducing costs. Evaluating this
organizational model could determine whether or not the
CIRDIA represents a viable alternative for the French health
care system and provide the data that may be transferable to
other health care systems worldwide.

Methods

Study Design
This is a cost-effectiveness analysis based on retrospective
observational data collected between 2023 and 2024 with a
12-month follow-up as part of the routine monitoring of patients
with T1D initiating CL in France. We compared 2 modes of
health care delivery: the CIRDIA setting and the HC setting.
The cost-effectiveness analysis compared the net monetary costs
of health care intervention with a measure of its clinical
effectiveness.

Accordingly, the evaluation was conducted from the perspective
of the French National Health Insurance (Assurance Maladie),
considering all costs covered by the payer, with a 1-year time
horizon. No modeling was conducted, as all analyses relied on
real-world data extracted from patient records (follow-up
consultations) and public databases: the Agency for Information
on Hospital Care and the French Health Insurance [14].

Recruitment
The study included persons living with T1D, 16 years of age
or older, starting for the first time a CL system. Patients with
missing continuous glucose monitoring data were excluded.
Participants were allocated to 1 of the 2 groups based on their
care pathway: those managed directly by the CIRDIA center
(CIRDIA group) and those initiated and followed by the hospital
center outpatient clinic (HC group). The 2 models of care were
mutually exclusive and could not be used simultaneously.

Participants from the CIRDIA group were consecutive patients
who started CL between May 2, 2023, and March 30, 2024, and
had at least a 12-month follow-up. Devices (insulin pump,
infusion sets, insulin reservoirs, and glucose sensors) were
provided by different home health care providers, as it is the
rule in France. Registered nurses specialized in diabetes care
and working for home health care providers are usually
responsible for the technical education of the patient and
connectivity issues. Participants in the HC group had CL
initiated in 2023 or 2024 in 1 of the 5 HCs located in the north
of France (“Haut-de-France” region) and were the patients for
whom devices and technical education were provided by
Santelys, a nonprofit organization acting as a home health care
provider.
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Ethical Considerations
This study used retrospective observational data collected as
part of the routine monitoring of persons with T1D managed
on CL therapy. No additional intervention occurred beyond
usual care. All data were fully anonymized before analysis in
accordance with the General Data Protection Regulation. No
patient could be identified directly or indirectly [15]. In line
with current regulations regarding research not involving human
persons, no specific ethics committee approval was required
[16].

All participants had received oral and written information at
the time of CL initiation about the potential use of their
anonymized clinical data for research purposes. Written consent
or non-opposition was obtained in accordance with French data
protection and ethical regulations. This study complied with
the principles of the Declaration of Helsinki and relevant
national guidelines regulating the secondary use of health data.

Interventions
The CIRDIA is a new concept in France of a multisite health
care model that performs CL initiation most often during a long
(about 1 h) office visit or occasionally during a day
hospitalization (DH) outside of university hospitals. Its activity
complies with the position statement issued by the SFD and the
French National Health Authority (HAS) [17]. The main
objective of the CIRDIA is to expand access to care for people
living with T1D while reducing the burden on HC. Furthermore,
initiating CL systems in the out-of-hospital sector is considered
a strategic lever to support the sustainability of out-of-hospital
diabetes care. Nevertheless, since CL initiation is predominantly
performed in hospital settings, hospital-based care is considered
the reference strategy. The out-of-hospital sector initiation
remains underdeveloped and must demonstrate its effectiveness.

In the CIRDIA arm, CL initiation was usually followed by 3
teleconsultations and 3 consultations over 1 year. For some
patients (those initiated after January 1, 2024), an additional
3-month telemonitoring period could be implemented. In the
HC arm, CL initiation was carried out during DH, followed by
3 teleconsultations and 3 follow-up visits, coupled with 3 months
of telemonitoring for patients initiated after January 1, 2024. In
both settings, CGM data were available for the diabetologist
(or the diabetes care team) to optimize patient adherence to the
device [18].

Efficacy and Safety Inputs
Because CL initiation and the 1-year time horizon did not affect
mortality or lifespan, we selected an alternative measure for
effectiveness. However, due to incomplete data on comorbidities
and complications in 1 of the 2 study arms (HC), adverse events
could not be included in the analysis. Instead, effectiveness was
assessed by improvement in the time in range (TIR) 70‐180
mg/dL, while safety was assessed through a reduction in the
glycemia risk index (GRI). The GRI is a composite metric that
reflects both hypoglycemia and hyperglycemia risks by
integrating the time spent below range (<54 mg/dL and 54‐69
mg/dL) and the time spent above range (181‐250 mg/dL and
>250 mg/dL). Notably, although hemoglobin A1c is frequently

used as an efficacy outcome in similar studies, it is no longer
systematically measured during routine consultations [19].

Cost Inputs
We conducted the economic evaluation from a health care payer
perspective, including all direct medical and nonmedical
expenses reimbursed by the French National Health Insurance,
expressed in euros for the year 2024. Costs were estimated using
a bottom-up micro-costing approach, which is considered the
gold standard in health technology cost assessment according
to HAS recommendations. Because T1D belongs to the list of
fully covered diseases by the French National Health Insurance,
no out-of-pocket expense was considered. Moreover, because
the time horizon was limited to 1 year, no discount rate was
applied. Cost components were identified and calculated in line
with the HAS and SFD recommendations [20,21].

Outpatient procedures and consultations were valued according
to the prices from the General Classification of Professional
Acts and the Common Classification of Medical Acts. Biological
analyses were valued according to the Common Nomenclature
of Medical Biology Acts. In addition, CL-related costs were
valued in accordance with the List of Products and Services of
the French National Health Insurance. The cost of DH was
calculated using the Homogeneous Group of Patients with the
principal diagnosis code Z451 (“Adjustment and maintenance
of an infusion pump”), associated with the Hospital Stay Tariff
1794, based on prices provided by the Agency for Information
on Hospital Care [22-26].

Incremental Cost-Effectiveness Ratio
The results of a cost-effectiveness analysis were expressed in
terms of incremental cost-effectiveness ratios (ICERs) and were
calculated as the ratio of incremental costs to incremental health
outcomes between the 2 groups. Specifically, ICERs were
expressed as the additional cost per percentage point of increase
in TIR and per unit of reduction in the GRI. In line with
International Society for Pharmacoeconomics and Outcomes
Research recommendations, negative ICERs were interpreted
as situations of dominance or dominated strategies rather than
reported as such. A strategy was considered to be dominated if
it was more costly and less effective or more costly and equally
effective. We designed, conducted, and reported this evaluation
in accordance with the CHEERS (Consolidated Health
Economic Evaluation Reporting Standards) guidelines [27].

Sensitivity Analysis
As this study was based on real-world observational data rather
than modeled parameters, some uncertainty may still arise from
the data, potentially leading to biased estimates. According to
the International Society for Pharmacoeconomics and Outcomes
Research [28], deterministic sensitivity analysis was not
applicable in this context. Instead, robustness was explored
through subgroup analyses and through a probabilistic sensitivity
analysis (PSA) to test whether the conclusions of the base-case
analysis held under parameter uncertainty. A PSA was
performed using 10,000 Monte Carlo simulations in which all
parameters were varied simultaneously. Parameter values were
sampled from predefined probability distributions: truncated
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normal for efficacy and safety outcomes (bounded between 0
and 100) and gamma for costs [28].

Statistical Analysis
Data were collected using Excel (2016, Microsoft Inc.), and
statistical analyses were performed with the R software version
4.4.2 (2024). Means and SDs were calculated for quantitative
variables. To verify comparability between the groups, we
conducted a Shapiro-Wilk test to check the normality of our
variables. For normally distributed variables, we used a 2-tailed
Student t test, and for non-normally distributed variables, the
Wilcoxon signed-rank test was used. The threshold for statistical
significance was set at P<.05.

Results

Overview
Overall, 201 patients aged 16 to 80 years were included in this
study, including 128 CL initiations by the CIRDIA and 73 by
HC. Baseline characteristics of the 2 groups are shown in Table
1. The mean age of patients initiated at CL by the CIRDIA was
43 (SD 14) years and 46 (SD 15) years for the HC arm. The
gender distribution was 52% (n=66 and n=38) women and 48%
(n= 62 and n=35) men in both arms, and the average BMI was

27.5 (SD 4.9) and 27.2 (SD 5.2) kg/m2, respectively. In the
CIRDIA arm, only 17 (13%) CL initiations were performed
during DH, while the remaining initiations were conducted
during 1-hour office visits.

Table . Baseline characteristics of the patients included in the study by group (CIRDIAa vs HCb).

P value (t test/Wilcoxon test)HC (n=73)CIRDIA (n=128)Parameters

.7127.2 (5.2)27.5 (4.9)BMI (kg/m2), mean (SD)

.5579.8 (15.3)78.5 (14.8)Weight (kg), mean (SD)

.048171 (9.3)169 (7.9)Height (cm), mean (SD)

Gender, n (%)

.9535 (48)62 (48)    Men

—c38 (52)66 (52)    Women

Age class (y), n (%)

—7 (11)13 (10.2)    <25

—27 (37)60 (46.9)    25-45

—31 (42.5)46 (35.9)    45-65

—7 (9.6)9 (7)    >65

Age (y), mean (SD)

<.00145 (15)34 (15)    At pump initiation

.1546 (15)43 (14)    At closed-loop initiation

Pump model, n (%)

—67 (92)99 (77)    Medtronic 780G (with Guardian
4 sensor)

—6 (8)17 (9)    “Control IQ” (Tandem Slim 2X
pump, Dexcom G6 sensor)

——12 (13)    “CamAPS” (Ypsopump, Dexcom
G6 sensor)

Baseline glucose control, mean (SD)

<.001e65.9 (15.1)52.9 (16)TIRd (%)

<.001e37.8 (19.8)56.4 (21)GRIf

aCIRDIA: Inter-Regional Center for Automated Insulin in Diabetes.
bHC: hospital center.
cNot applicable.
dTIR: time in range 70-180 mg/dL.
eWilcoxon test values.
fGRI: glycemia risk index.
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Efficacy and Safety Outcomes Figure 1 illustrates the changes in the ambulatory glucose profile
from baseline to 1 year after initiation.

JMIR Diabetes 2026 | vol. 11 | e86690 | p.35https://diabetes.jmir.org/2026/1/e86690
(page number not for citation purposes)

Napame et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Ambulatory glucose profile for both comparison arms (A: CIRDIA group, B: hospital centers group) at baseline (M0) and after 3 months
(M3), 6 months (M6), and 12 months (M12) of closed-loop use. AGP: ambulatory glucose profile; CIRDIA: Inter-Regional Center for Automated
Insulin in Diabetes; TAR: time above range; TBR: time below range; TIR: time in range.
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Figure 2 presents GRI grids showing glycemic risk zones over
the same period (zone A: minimal hypo- or hyperglycemia risk;
zone E: maximal hypo- or hyperglycemia risk). At baseline,
79% (101/128) of the patients from the CIRDIA group were in
the intermediate risk (zone C) or high-risk zones (zones D and

E). After 1 year on CL, only 21% (27/128) remained in these
GRI zones. In the HC arm, 34% (25/73) of the patients were in
zones C, D, and E at baseline, and 25% (18/73) remained in
these zones after 1 year.

Figure 2. Glycemia risk index (GRI) grids at baseline (M0) and 1 year after closed-loop initiation (M12). Upper grids: Inter-Regional Center for
Automated Insulin in Diabetes (CIRDIA) group; lower grids: hospital center (HC) group. Each participant is identified by a blue circle and their
identification number.

Table 2 summarizes the overall effectiveness and safety results
for the total population and according to age at inclusion. After
12 months, the mean (SD) TIR increased by 19.8 points in the
CIRDIA group (from 52.9% [16] to 72.7% [11.6]) and by 6
points in the HC group (from 65.9% [15.1] to 71.9% [10.5]).
Although baseline differences were significant (P<.001), no

significant difference between groups was observed at 12
months (P=.60). The GRI decreased in both groups, by 26.3
points in the CIRDIA group, from 56.4 (21) to 30.1 (14.1), and
by 7.5 points in the HC arm, from 37.8 (19.8) to 30.3 (13). No
significant difference between groups was observed at 12
months (P=.91).
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Table . Glycemic outcomes at baseline (M0) and 12 months (M12) after closed-loop initiation for the total population and according to age class at

inclusiona.

P valueHCc (n=73), mean (SD)CIRDIAb (n=128), mean
(SD)

Parameters

M0d

    TIRe

<.00165.9 (15.1)52.9 (16)        Total

        Age class (y)

.0167.8 (14.7)50.4 (11.4)            <25

<.00164.7 (16.7)48.4 (15.6)            25-45

.0265.8 (14)57.6 (16.3)            45-65

.3068.9 (14.2)62.9 (14.2)            ≥65

    GRIf

<.00137.8 (19.8)56.4 (21)        Total

        Age class (y)

.00735.3 (17.9)59.6 (16.9)            <25

<.00140.2 (22.1)63 (20.7)            25-45

.00236.6 (17.7)50.2 (20.1)            45-65

.7036.7 (24.3)39.3 (16.6)            ≥65

M12g

    TIR

.6071.9 (10.5)72.7 (11.6)        Total

        Age class (y)

.2077.9 (11.8)70 (11.8)            <25

.2072 (7.9)69.1 (11.7)            25-45

.0972.2 (10.8)76.7 (10.6)            45-65

.0363.6 (14)79 (6.2)            ≥65

    GRI

.9130.3 (13)30.1 (14.1)        Total

        Age class (y)

.1023.5 (15.1)33.6 (14.5)            <25

.1229.7 (10.7)34.4 (13.9)            25-45

.1330.2 (13)25.3 (13.1)            45-65

.0140.9 (15.3)21.2 (7.4)            ≥65

aValues were compared using the Wilcoxon rank sum test.
bCIRDIA: Inter-Regional Center for Automated Insulin in Diabetes.
cHC: hospital center.
dM0: closed-loop initiation.
eTIR: time in range 70‐180 mg/dL.
fGRI: glycemia risk index.
gM12: 12 months after closed-loop initiation.

Subgroup analyses revealed no statistically significant
differences between the CIRDIA and HC at M12, except among
patients older than 65 years, for whom CIRDIA participants

had higher TIR and lower GRI values (P=.03 and P=.01,
respectively).
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Costs Outcomes
We combined all cost items by type of procedure, year, and data

source. Costs are expressed in euros from the French National
Health Insurance perspective, and Figure 3 shows the mean
costs for both comparison arms and by subgroup.

Figure 3. Average costs per patient according to the care setting. €1=US $1.10 at the time of the study. CIRDIA: Inter-Regional Center for Automated
Insulin in Diabetes; HC: hospital centers.

The total cost of CL insulin therapy management was
€1,077,231 (1 €=1.10 US $ at the time of the study) for 128
patients initiated in the CIRDIA, which was a mean cost of
€8373.12 (SD 427.3) per patient. In the HC group, the total cost
was €645,991 for 73 patients, which was a mean cost of
€8814.32 (SD 192) per patient. Out-of-hospital–based
management was associated with significantly lower costs
(P<.001). All cost components are shown in Table S1 in
Multimedia Appendix 1.

Incremental Cost-Effectiveness Ratio
The base-case analysis, using mean parameter values, indicated
that the CIRDIA was less costly while achieving comparable
effectiveness and safety to HC. This situation corresponds to
dominance, with an estimated saving of €626 per additional
percentage point of TIR and €2011 per point reduction in GRI,
indicating that CL initiation in HC is dominated by the CIRDIA.
The detailed results are presented in Table 3.
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Table . Base-case cost-effectiveness and cost-safety results.

HCbCIRDIAaParameters

8814.328373.12Costs per patient (€c)

N/Ad−441.20Incremental costs (€)

71.9572.65Mean efficacy (TIRe)

N/A0.70Incremental efficacy (increase in TIR)

30.3330.11Mean safety (reduction in GRIf)

N/A−0.22Incremental safety

N/A−625.83ICERg

N/A2011.02ICSRh

aCIRDIA: Inter-Regional Center for Automated Insulin in Diabetes.
bHC: hospital center.
c€1=US $1.10 at the time of the study.
dN/A: not applicable.
eTRI: time in range.
fGRI: glycemia risk index.
gICER: incremental cost-effectiveness ratio (based on the increase of time in range).
hICSR: incremental cost-safety ratio (based on the decreased of glycemia risk index).

Sensitivity Analysis
In the PSA (10,000 simulations), the CIRDIA was less costly
in 8600 (86%) of the cases. Strong dominance (less costly and
more effective) was observed in 4340 (43.4%) of the
simulations, while in 4270 (42.7%) of the simulations, the
CIRDIA was less costly but less effective. The probability of

being more or less effective was generally consistent with the
base-case results. Only 1400 (14%) of the simulations placed
the CIRDIA in a more costly position, being either less effective
(n=700, 7.0%) or more effective (n=690, 6.9%). The scatter
plot of the incremental cost-effectiveness plane is presented in
Figure 4.

Figure 4. Probabilistic sensitivity analysis of 10,000 Monte Carlo simulations using glycemia risk index (GRI) (A) or time in range (TIR) (B)
Inter-Regional Center for Automated Insulin in Diabetes (CIRDIA). €1=US $1.10 at the time of the study. ICER: incremental cost-effectiveness ratio.
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Discussion

Principal Findings
The aim of this study was to assess the cost-effectiveness of CL
initiation by the CIRDIA and HC from a health care payer
perspective. We examined the relationship between initiation
models and the increase in TIR or reduction in GRI and whether
or not an out-of-hospital CL initiation and follow-up can be
achieved in a cost-effective manner compared to the usual
hospital management. In our cohort, CL initiation through the
CIRDIA was associated with comparable TIR and GRI values
at 12 months compared to HC initiation (P=.60 and P=.91,
respectively), while being consistently less costly (P<.001),
although baseline TIR was lower and baseline GRI was higher
in the CIRDIA group. Sensitivity analyses further supported
these results, confirming that the CIRDIA generally remained
less costly than HC across a wide range of parameter variations.

Prior Work
To our knowledge, this is the first cost-effectiveness analysis
comparing hospital-based and out-of-hospital CL initiation.
However, our findings are consistent with previous studies,
such as Böhme et al [29], which reported no significant
differences in effectiveness between outpatient care and hospital
settings in therapeutic education programs for patients with type
2 diabetes in France. Similarly, Cavassini et al [30] reported
that the outpatient management of gestational diabetes was more
cost-beneficial than hospital-based care in Brazil, underlining
the potential economic advantages of ambulatory strategies. In
the United Kingdom, Pulleyblank et al [31] also found that
treatment setting had a significant impact on costs in patients
with type 2 diabetes, with outpatient follow-up being less
resource-intensive than hospital-based management.

Moreover, recent studies have shown that transitioning to CL
reduces the GRI at 1 year [32-34], which is consistent with the
trend observed in our cohort.

Strength
One major strength of this study is the use of real-world French
data, but many published economic evaluations of CL systems
have so far relied mainly on modeled analyses conducted in the
United States and the United Kingdom. Furthermore, the use
of TIR and GRI as primary end points is relatively novel in
economic evaluations, allowing for the integration of a clinically
relevant weighting of risk in the assessment of glycemic control
[19,35].

Finally, sensitivity analyses and subgroup explorations provided
additional insights into the robustness of our results, supporting
the finding that CIRDIA and HC achieved broadly comparable
outcomes in terms of TIR and GRI, whereas at baseline, TIR
was lower and GRI higher in the CIRDIA participants. This
also underlines that prior to CL initiation, patients followed in
out-of-hospital settings do not have better glucose control than
those followed in hospital centers, at least in our population.

Limitations
This study has several limitations.

First, the relatively small sample size limits the
representativeness of the study population and, consequently,
the robustness of the conclusions.

Second, there was an imbalance in baseline efficacy and safety
outcomes between groups, which could have led to selection
bias. To address this, we performed inverse probability of
treatment weighting to adjust for sociodemographic
characteristics as well as baseline efficacy and safety measures.
After weighting, the cost advantage of the CIRDIA was
maintained, and the results on effectiveness and safety suggested
a potential benefit, although these should be interpreted
cautiously given the limited sample size (data not shown).
However, the patients who chose to start CL therapy in the
CIRDIA setting might be different from the patients from the
HC group in terms of prior education or other characteristics.
A prospective study with better characterizations of these items
will be needed.

Third, the 1-year time horizon restricts the evaluation to the
short term and does not allow assessment of long-term
effectiveness or costs, although this choice was justified by the
specific objective of analyzing the initiation phase of CL.

Fourth, because the costs were assessed using French Health
Insurance (Assurance Maladie) rates, the results may not be
generalizable to other health care systems. However, this study
suggests that CL initiation in an outpatient setting is feasible,
safe, and probably less expensive than the inpatient setting,
regardless of the health care system.

Fifth, we cannot exclude a bias in the recruitment of HC patients
as it is possible that the patients sent to Santelys home health
care provider by the hospital teams might have a different (here
better) control compared to other HC patients. However, as
patients are from 5 different hospitals, it is unlikely that this
happened in all of the hospitals.

Finally, missing information on complications and comorbidities
in the hospital arm may have led to an underestimation of certain
costs (eg, retinopathy-related tests), although this does not
appear to alter the overall trend observed.

Nevertheless, the data from the French Closed-Loop
Observatory (OB2F) indicate that outpatient initiation is already
widespread, reinforcing the relevance of investigating this
organizational model [18].

Conclusion
This cost-effectiveness analysis compared 2 models of CL
initiation for patients with T1D: a conventional hospital-based
model and an out-of-hospital–based model supported by the
CIRDIA.

Although baseline TIR was lower and baseline GRI was higher
in the CIRDIA out-of-hospital setting compared to the HC
setting, our results showed no significant differences in efficacy
or safety outcomes between the 2 approaches. However, the
CIRDIA setting was associated with lower management costs.
While the patients who choose to initiate a CL system in the
CIRDIA setting are probably not the same as the patients who
choose to initiate CL in hospitals, these real-life findings suggest
that the CIRDIA may represent a viable alternative
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organizational model for CL initiation in France, as it combines
efficacy and savings.

Future research should assess whether these results hold over
longer time horizons (eg, 5 or even 10 y) and from broader
perspectives, such as a societal perspective that incorporates
quality of life and indirect costs. Such work would enable
cost-utility analyses to complement our cost-effectiveness
findings.

From a policy perspective, the resources saved through
out-of-hospital CL initiation could be reallocated to
organizations such as the CIRDIA, which bring together highly
trained diabetologists and uphold high-quality standards. This
would allow persons living with T1D to choose their CL
initiation setting, ensure early access to new technologies, and
benefit the overall health care system through a cost-effective
model.
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Abstract

Background: Existing qualitative research in peer support interventions has largely focused on the recipients of support rather
than those delivering support. Exploring the perspectives of both roles may provide a holistic understanding of the peer support
experience.

Objective: This study elicits the experiences of recipients and providers of support who participated in REACHOUT, a 6-month
peer-led mental health support intervention delivered via mobile app for adults with type 1 diabetes. REACHOUT offered multiple
support delivery modalities (one-on-one, group-based texting, and virtual face-to-face small group sessions) that could be
customized by recipients.

Methods: A total of 32 study participants (recipients and peer supporters) attended focus group discussions following the
completion of REACHOUT. Thematic analysis was performed in an inductive approach.

Results: Four major themes were identified by thematic analysis: (1) need for a sense of community and belonging, (2) factors
to enhance the recipient-peer supporter experience, (3) key aspects of the peer supporter experience, and (4) importance of
personalizing the user experience while using the REACHOUT mobile app. REACHOUT successfully fostered connectedness
by bringing together adults with type 1 diabetes who previously felt isolated. Recipients felt greater agency when given the
opportunity to self-select a peer supporter. The main factors considered during the matching process included insulin delivery
and glucose monitoring systems, duration of diabetes, shared hobbies, life stage, and age. While support was designed to be
unidirectional from peer supporter to recipient, the former also derived benefits. Peer supporters expressed the need for greater
guidance around navigating boundaries and responding to emotionally charged conversations. Finally, the REACHOUT app was
able to accommodate a heterogeneity of support needs by offering one-on-one and group support across multiple communication
platforms including text, audio, and video.

Conclusions: The success of peer-led mental health support interventions such as REACHOUT is likely associated with the
recipient-peer supporter dynamic. By offering a range of support delivery and communication modalities, participants can better
personalize solutions to meet their unique support needs. Understanding the perspectives of both recipients and peer supporters
is essential to refining interventions and optimizing digitally delivered mental health support models.

(JMIR Diabetes 2026;11:e72779)   doi:10.2196/72779
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Introduction

Peer support is a promising self-management strategy to improve
emotional health in chronic illness care [1-4]. In the context of
diabetes, several systematic reviews of adults with diabetes
(both type 1 and type 2 diabetes) have found peer support
interventions to be associated with improved clinical, behavioral,
and psychosocial (quality of life, perceived social support)
outcomes [5-8]. However, to better understand the processes
underlying these positive changes, it is important to explore the
qualitative experience of giving and receiving peer support.

While qualitative research on peer support interventions has
focused largely on the experiences of those who receive support
[9-11], there has been a notable increase in studies focused on
the individuals who deliver support [12-19]. However, the
optimal model for understanding the peer support experience
is to explore the perspectives of both parties involved. To date,
there have been 4 qualitative studies that have investigated the
experiences of both recipients of support and peer supporters
in the context of diabetes [20-23]. Of these studies, only 1
recruited adults with type 1 diabetes (T1D) as part of a larger
sample [21], while the other investigations targeted adults with
type 2 diabetes [20,22,23].

In the era of digital health, peer support models in diabetes have
been made more accessible through the shift to virtual platforms
such as mobile apps. Such digital peer support programs are
especially valuable in rural and remote areas, where access to
traditional peer networks and diabetes programs can be limited
[24-26]. A systematic review of in-person and
technology-mediated peer support for adults with diabetes found
that peer support was beneficial in reducing isolation and
increasing social support for recipients [27]. However, none of
these studies were specific to T1D only. Interestingly, in a
review of technology for peer support intervention for
adolescents with chronic illness, rather than adults, T1D was
the most represented condition [28]. Generally, adolescents
with T1D experienced benefits in emotional support and diabetes
management [29]. Of the few studies utilizing mobile or web
apps for T1D adults, peer support was a secondary feature to
self-management behavior education or one of multiple
intervention components rather than the main focus [30-33].
As T1D is a lifelong condition, it is important to offer ongoing
mental health support to adults living with T1D, especially those
facing geographical or resource barriers.

Methods

Study Aim
This study aimed to explore the experiences of and perspectives
from recipients and providers of support on REACHOUT, a
peer-led mental health support intervention for adults with T1D
living in rural and remote regions of British Columbia, Canada.

Study Design
Following the completion of the pilot trial titled REACHOUT,
which investigated the feasibility and acceptability of peer-led
mental health support intervention delivered by a mobile app,
we conducted focus groups with participants of the study. The

reporting of methods and findings adheres to the COREQ
(Consolidated Criteria for Reporting Qualitative Research)
checklist (Checklist 1) [34].

REACHOUT Intervention Description
Described in detail elsewhere, the REACHOUT pilot
investigated the impact of a mobile app that delivered mental
health support to adults with T1D living in Interior British
Columbia over a period of 6 months. REACHOUT offered
multiple support delivery modalities (one-on-one, group-based
texting, and virtual face-to-face small group sessions that could
be customized by recipients) [35]. Participants include
individuals who receive support (recipients) and those who
provide support (peer supporters). In this paper, the term
“participants” will only be used when addressing both recipients
and peer supporters. The eligibility criteria for recipients were
as follows: (1) be diagnosed with T1D, (2) be at least 18 years
or older, (3) speak English, (4) have access to the internet and/or
a smartphone, (5) live in the interior region of British Columbia,
and (6) have a mean subscale score of ≥2 on the type 1 Diabetes
Distress Scale [36]. Peer supporters had similar requirements
with the exceptions of criteria 5 and 6. They also had to be
willing to complete a 6-hour training program. Training
components and competency evaluation are published elsewhere
[37]. It should be noted that if asked a medical question by
recipients, peer supporters were instructed to refrain from
answering and defer to the diabetes nurse educator.

The REACHOUT app offered multiple support delivery
modalities including one-on-one support provided by a
recipient-selected peer supporter, group texting support via the
24/7 chat room, and small group face-to-face support via video
huddles and happy hours. Recipients were encouraged to use
any or all modalities as frequently as desired. Peer supporters
were invited to attend virtual wellness sessions to debrief their
experiences as well as receive their own emotional support.
Finally, the ongoing monitoring of group-based communication
exchanges was performed by the research team, and fidelity
assessments were conducted at 1, 3, and 5 months of the
intervention with all participants.

Ethical Considerations
This qualitative descriptive study was approved by the
University of British Columbia Behavioural Research Ethics
Board (H20-00276). Prior to focus groups, participants provided
e-informed consent using REDCap (Research Electronic Data
Capture) electronic data capture tools hosted at the University
of British Columbia [38,39]. To maintain privacy and
confidentiality, recordings were anonymized to omit personal
identifying information and stored securely. Only the study
team could access study data. Upon completion, participants
received a CAD $25 (approximately US $18) e-gift card.

Participant Recruitment and Sampling
Following the completion of the pilot trial REACHOUT, all
those in recipient roles were contacted by a research assistant
and invited to the postintervention focus groups to share their
experience with the REACHOUT program and app and
suggestions for improvement. Only peer supporters who had
been paired with recipients were invited to join the
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postintervention focus groups. Those who provided consent
were interviewed.

Data Collection and Analysis
Focus groups were conducted online using Zoom; video and
audio were recorded and later transcribed. Led by a female
researcher (TST), focus groups were stratified into recipient
versus peer supporter-only membership with approximately 6
individuals per group. The interview guide (Multimedia
Appendix 1) used open-ended questions and prompts to elicit
discussion around their experience in the program, peer support
interactions, and app usage. Follow-up questions were posed if
clarification or explanation was needed.

Recordings were transcribed verbatim and anonymized with
participant roles (recipient or peer supporter) identified to
capture perspectives from both groups. Transcripts were
analyzed using NVivo V.14 software package [40]. Guided by
an interpretivist research paradigm, which centers around
subjective experiences [41], we selected an inductive thematic
approach to support the possible variation of participant
perceptions. Following Braun and Clarke’s 6 phases of thematic
analysis, 1 coder (DL) participated in transcribing the data and
another coder (PJ) who had no involvement in the interview
guide development, interviews, and transcription familiarized
themselves with the transcripts [42]. Both coders discussed
initial ideas before independently performing open coding. The
coders discussed the findings after every round of coding to
enhance reflexivity and iteratively refine a unified codebook.
Independently coded transcripts were combined, and codes were
sorted and combined to form themes and subthemes. Themes
and subthemes were reviewed and refined with clear definitions
and names. Findings and any discrepancies were discussed with
the principal investigator (TST) and another coauthor member
(DS) who was not involved in the interview guide creation and

interviews. Moreover, this was a recursive process where
analysis phases moved back and forth as needed [42].

Positionality Statement
Our multidisciplinary team comprises cisgender, heterosexual
women from East Asian, South Asian, and European settler
backgrounds. TST has over 25 years of experience working in
peer support, and her research focuses on developing models
to improve mental health outcomes in high-risk and medically
underserved communities. DS has over 25 years of research
working in diabetes self-management at the community and
provider level. FSC has over 20 years of experience working
on topics related to stress, social support, and social connection
and contributes a behavioral science perspective. DL and PJ are
early-career researchers with master’s and medical graduate
training. All authors are living in urban centers and are cognizant
of their own privileges and practice reflexivity to ensure that
priorities of the diabetes community are represented throughout
the research process.

Results

Description of Sample
In total, 32 study participants (17 recipients and 15 peer
supporters) who completed the REACHOUT intervention were
recruited and interviewed from August to October 2022. The
characteristics between focus group participants compared to
nonrespondents in the pilot study population are noted in
Multimedia Appendix 2. There were 9 focus groups lasting
60‐90 minutes, 4 recipient-only groups, and 5 peer
supporter-only groups. As summarized in Table 1, participants
were predominantly women and Caucasian, with a mean age
of 48 (SD 16.3; range 23‐76) years and an average of 24 (SD
18.1; range 0‐65) years living with diabetes. Most participants
received postsecondary education and had a household income
greater than CAD $70,000 (approximately US $50,505).
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Table . Interviewed recipients’ and peer supporters’ baseline characteristics.

Peer supporters (n=15)Recipients (n=17)Total focus group participants
(n=32)

50 (16.4)48 (16.6)48 (16.3)Age (y), mean (SD)

23 (18.2)25 (18.5)24 (18.1)Diabetes duration (y), mean (SD)

11 (73)15 (88)26 (81)Women, n (%)

Marital status, n (%)

3 (20)6 (35)9 (28)    Never married

10 (67)10 (59)20 (63)    Married or living with a partner

2 (13)1 (6)3 (9)    Separated or divorced or Widow

Ethnicity, n (%)

0 (0)1 (6)1 (3)    Aboriginal

0 (0)1 (6)1 (3)    Aboriginal/Caucasian

1 (7)0 (0)1 (3)    East Asian (Chinese, Korean,
Japanese)

14 (93)15 (88)29 (91)    Caucasian

Education, n (%)

0 (0)3 (18)3 (9)    High school graduate (or equiva-
lent)

3 (20)4 (24)7 (22)    Some college or technical school

7 (47)3 (18)10 (31)    College graduate

5 (33)7 (41)12 (38)    Graduate degree

Pretax household income (CAD $),
n (%)

3 (20)7 (41)10 (31)    <70,000 (approximately US
$50,505)

12 (80)5 (29)17 (53)    >70,000 (approximately US
$50,505)

0 (0)5 (29)5 (16)    Declined to answer

Employment, n (%)

6 (40)6 (35)12 (38)    Full-time job

1 (7)5 (29)6 (19)    Part-time job

4 (27)2 (12)6 (19)    Retired

3 (20)4 (24)7 (22)    Other

1 (7)0 (0)1 (3)    Declined to answer

Themes
Four overarching themes were identified and related to
participants’ experiences in the peer support intervention and

on their user experience with the mobile app delivery (Table
2).
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Table . Four major themes were identified by thematic analysis with subthemes that capture similarities and differences within and across recipient
and peer supporter groups.

Both groupPeer supporterRecipientTheme

——aNeed for a sense of community and
belonging

• Giving and receiving uncondi-
tional support

• Reducing isolation in rural
communities

• Learning from real-life experi-
ences of T1D peers

—Factors to enhance the recipient-
peer supporter experience

•• Modality and frequency of
communication

Ability to select a peer support-
er

——Key aspects of the peer supporter
experience

• Supporting peer supporters in
their role

• Benefits of being a peer sup-
porter

• Challenges of being a peer
supporter

——Importance of personalizing the user
experience while using the REA-
CHOUT mobile app

• Varied preferences in peer
support

• Adapting the mobile app to fit
user expectations

aNot applicable.

Theme 1: Need for a Sense of Community and Belonging
For recipients and peer supporters, REACHOUT created a safe
environment to build and strengthen connections with other
adults who shared the lived experience of T1D. This sense of
belonging and community spirit manifested in different ways.

Subtheme A: Giving and Receiving Unconditional Support

The intervention created a space to express concerns without
fear of judgment or rejection. Participants who had felt
completely alone in the past finally found their “tribe”—a
community that experienced and understood the same fears,
frustrations, and emotional burdens of T1D.

The whole thing has been just so rewarding and I
think it’s kind of brought me out a little bit too. Like
being able to be who I am and not be judged it’s like
– it’s just this community. Being able to kind of hop
into the chat and say, “Oh yeah this is what happened
to me” or you know, just that common sharing. It’s
been huge. [Peer supporter 5-2]

Initially, some participants were hesitant to engage in group
activities such as face-to-face virtual sessions because the
possibility of meeting peers who were managing their diabetes
“perfectly” could trigger feelings of inadequacy or resentment.
However, once the intervention started, they realized others
were willing to be vulnerable. For example, when some
participants disclosed perceived self-management failures in
the 24/7 chat room, they were met with empathy and validation.
After this precedent was established, others felt safe to reveal
moments of insecurity and self-blame.

It was really nice to know when you’re like, “I’m
doing everything possible to keep my blood sugar
stable right now and for the life of me they’re on the

higher side. I don’t know why.” But knowing other
people are like, “Yeah, isn’t that frustrating,” like
they get it because they live it. It’s not like your
[endocrinologist], it’s nice to hear it from somebody
who lives it, I don’t feel so alone in the world.
[Recipient 6-3]

Subtheme B: Reducing Isolation in Rural Communities

Coming from rural and small communities across Interior British
Columbia, many recipients and peer supporters had never
encountered another T1D adult in their local community. This
sense of loneliness was particularly pronounced for individuals
diagnosed late in life (eg, 45 years and older).

It seems like we grew up in a smaller town, and there
wasn’t anybody that had diabetes that I knew, and
then going through the other parts of my life, I didn’t
have really anybody to talk to. [Recipient 4-2]

Although REACHOUT was a virtual intervention, participants
were comforted knowing that peers resided in nearby towns.
When browsing through the peer supporter library, participants
were able to identify the general location where each peer
supporter lived and, therefore, felt reassured that face-to-face
support was accessible if needed. As part of the REACHOUT
community, participants were not left to cope with the struggles
of T1D on their own.

I thought it was really nice to connect with people,
maybe not totally in my community. But certainly,
there have been a great number of people within an
hour’s drive that’s connected with and there’s just
something about that to know that you’re not alone
in your little portion of the world. [Recipient 6-2]
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Subtheme C: Learning From Real-Life Experiences of Peers
With T1D

With REACHOUT, participants had direct access to the most
reliable and high-quality T1D information including
“real-world” experiences from adults who used insulin, insulin
pumps, and continuous glucose monitors daily. The mobile app
offered different mechanisms to obtain the knowledge needed.
For instance, in the 24/7 chat room, participants posted updates
regarding changes to health insurance coverage or, during the
COVID-19 period, shortages in various diabetes supplies. This
platform was also a place to pose questions and elicit differing
perspectives from both recipients and peer supporters. For
example, participants who were considering transitioning to a
different insulin pump or continuous glucose monitoring device
could hear opinions from peers from diverse lifestyles and
backgrounds.

It was cool to hear firsthand information from
somebody’s experience, say about the Omnipod or
the Medtronic or Dexcom or whatever. I think that’s
invaluable, rather than just going to a doctor or
endocrinologist and just a medical professional,
which is still really good information but to get the
user’s perspective on something is kind of for sure.
[Peer supporter 7-1]

Notably, how participants preferred to learn varied. Those who
were not comfortable posting messages or disclosing personal
experiences still enjoyed reading the discussion threads and
exchanges in the 24/7 chat room. Many participants routinely
checked the app to read the most recent conversation and
updates. While not directly participating, participants who
passively monitored the exchange of dialogue derived substantial
benefits.

In my journey over the years with diabetes, I just felt
so alone, so this app has been – just knowing it’s there
has been huge. I’m kind of a classic introvert – I don’t
really go on and participate actively on it, but I do
on in and I read the conversations and just I love it.
Please don’t underestimate power of that because it’s
really been a big thing for me. [Peer supporter 7-2]

Theme 2: Factors to Enhance the Recipient-Peer
Supporter Experience
Factors related to one’s experience with REACHOUT were
largely dependent on the quality of the recipient-peer supporter
relationship. Many found their peer supporter extremely helpful
and valued their time, but the strength of their relationship was
influenced by various contributing factors.

Subtheme A: Ability to Select a Peer Supporter
Recipients felt empowered by the opportunity to choose their
peer supporter. Some sought identical counterparts, while others
envisioned their peers as potential mentors. The criteria that
each recipient used to choose their peer supporter were unique
and personal. The main factors included diabetes management
system, duration of diabetes, shared activities, life stage, and
age.

According to some recipients, diabetes and management-related
factors weighed heavily into the selection process. For example,
some recipients were seeking a peer supporter who had been
living with diabetes for as long, if not longer, than themselves.
Others felt a greater kinship with peer supporters using the same
continuous glucose monitoring or insulin pump.

I looked at not necessarily insulin type, but just device
that they might be using. And for me, the Dexcom was
new so I wanted somebody who knew and used the
Dexcom. So that was some of my criteria when I
started to go through the list. I don’t need to read the
other fifteen that don’t use a Dexcom, that was a clear
priority for me. [Recipient 6-3]

Lifestyle factors also factored in prominently when selecting a
peer supporter. For instance, recipients who enjoyed exercising
or engaging in outdoor sports preferred an equally active peer
supporter. Having shared hobbies enhanced the quality of
recipient-peer supporter relationships and extended
conversations beyond the boundaries of diabetes. In contrast,
in the absence of similar interests, some recipients found it
difficult to establish meaningful and sustained rapport with their
peer supporters.

Device for me wasn’t as important. Cause I’ve been
on both injections and pump. So for me, mostly
activities and hobbies. And someone that liked to
travel as well, cause I always find that quite daunting
but I want to do more of that so yeah. I found a good
person for that. [Recipient 8-4]

The stage of life was equally important. For example, young
mothers gravitated toward selecting peer supporters who were
also raising children. As expected, navigating both diabetes and
parenthood created strong connections. Similarly, older
recipients who were retired understood the priorities and pace
of others who were also no longer in the workforce.

I picked someone who was in a similar life stage as
me, cause I’ve had diabetes for 30 years I don’t really
need advice on how to treat my diabetes. For me, it
was much more the mental health connection and
then transition to this new part of my life of being a
mom. Because stuff would come up and I’d be like
oh, my gosh, how do you deal with this? How do you
prioritize a crying baby verses a low? So that for me
was great. [Recipient 9-1 ]

Age and/or length of diabetes experience emerged as critical
factors in the selection process. Some recipients intentionally
chose older peer supporters who had a lifelong journey with
diabetes as they envisioned having a mentor who could provide
insight on what challenges to expect over time. Rarely did
recipients choose peer supporters who were much younger than
themselves.

Someone [who] was male, and older than me. So I
can relate to what they’re going through, and
someone who has had diabetes for longer than I have.
So it’s quite focused of what I was looking for. I was
able to be paired up with someone who was in my
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position, but a couple years down the road. [Recipient
8-3]

Subtheme B: Modality and Frequency of
Communication
Video conferencing was the most preferred modality, as it
allowed for the 2 parties to observe facial expressions and body
language. Different communication methods were utilized for
different functions. Direct messaging, texting, and emails were
ideal for quick communication such as check-ins and meeting
coordination. If both parties were amenable to investing greater
effort and commitment, more substantial conversations took
place through video conferencing or phone calls.

Consistency formed the foundation of a strong recipient-peer
supporter relationship. Initially, weekly communication was
needed to establish and build rapport. However, as the
relationship matured, for some, the frequency of contact slowed
down as people had other competing life demands such as
full-time jobs or home responsibilities. Mid-intervention, many
acknowledged that the ideal schedule was contact once every
2 weeks.

I liked that it was once a week in the beginning. I
think it gave you a lot of opportunity to get to know
each other, tell each other your diagnosis story and
then from there on. I think I did realize with my peer
supporter when we started, when we were meeting
every week that we almost were running out of things
to update each other on or talk about. And then every
two weeks was really great and then we had some
things to share over the last two weeks. [Recipient
8-1]

Theme 3: Key Aspects of the Peer Supporter
Experience
The cornerstone of a peer-led intervention is the peer supporters
who deliver mental health support. Although the goal of
REACHOUT was to provide support to recipients, the sustained
quality of the 6-month intervention provided opportunities for
peer supporters to be nurtured as well.

Subtheme A: Supporting Peer Supporters in Their Role
To function effectively in their role, peer supporters underwent
a 6-hour training. According to peer supporters, the most
instrumental training activity was “role-plays.” Not only did
role-plays allow trainees to practice newly developed skills, but
these simulated scenarios helped build their self-confidence and
preparedness.

During the intervention, peer supporters appreciated having a
workbook with structured activities to lead their recipients
through. These activities served as a valuable foundation for
conversations that would not occur organically—for example,
identifying personal values and exploring sources of diabetes
distress.

Furthermore, peer supporters benefited from attending wellness
sessions hosted by the research team. Wellness sessions were
Zoom-based and provided the opportunity for peer supporters
to share stories, voice concerns, and pose questions to one

another. Moreover, these discussions fostered camaraderie
among peer supporters while navigating inherent challenges in
their support roles.

I think every [Wellness] session – I found important,
because there’s always something new that you can
take away. And then, if there’s a question that I have,
[I] can actually ask during those sessions. “Okay,
you know. Great. I’m on the right track,” you know
as well and then, “I’m following what I supposed to
be following and doing what I’m supposed to be doing
with the peers.” [Peer supporter 1-1]

Subtheme B: Benefits of Being a Peer Supporter
Peer supporters derived deep satisfaction and intrinsic reward
from their role, finding genuine fulfillment from providing
mental health support to other adults with T1D. Through acts
of altruism and compassion for the T1D community, they
experienced satisfaction knowing that their contribution added
meaning and value to the lives of their recipient.

Many peer supporters realized that their relationship with their
matched recipient was mutually beneficial. Not only did peer
supporters deliver emotional support, but recipients also shared
their knowledge, coping strategies, and perspectives.
Additionally, many peer supporters discovered a renewed
connection with their own diabetes journey and engaged in
self-reflection and self-development.

[My recipient] was fairly newly diagnosed, within the
last year, and it’s been 11 years for me. I benefited a
lot from talking with her. It kind of re-engaged me in
diabetes. I think I realized I’ve been coasting, and I
needed to kind of re-engage, and I think that was
really important for me. [Peer supporter 2-2]

Subtheme C: Challenges of Being a Peer Supporter
Not all peer supporters had recipients who reciprocated with
the same level of enthusiasm. Rather than feeling rejected if
their recipient did not respond immediately, some peer
supporters did not take it personally. Moreover, peer supporters
found it challenging to sustain consistent communication with
their recipients, especially in the last half of the intervention.
Peer supporters tried to understand their recipient’s perspectives
by acknowledging the demands of personal and professional
lives.

I found sending a text- something, I felt like I was
chasing her. And I would think, “Oh maybe she
doesn’t want to talk to me anymore,” “Maybe she’s
had enough,” or, “Maybe I’m doing something
wrong,” but it wasn’t anything like that at all. It was
just she was busy; she has a job and family. [Peer
supporter 5-3]

Some peer supporters struggled to deepen their conversations
when recipients appeared to be reluctant to broach more
sensitive topics. At times, peer supporters adhered to
surface-level conversations so as to not “over-step.” As such,
peer supporters suggested having more guidance on how to
navigate boundaries and tips for gauging the depth recipients
seek from relationships.
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I didn’t bring up the underlying issues as much as I
would have expected, perhaps because I wasn’t quite
versed in how to bring those up. I didn’t know if it
was appropriate for me to kind of prod a little bit. […
] I felt a little bit at a loss of how to bring up like these
big concepts, psychological issues and things like
that. There was definitely stuff going on, but it was
hard for me to get them to speak about some of those
things. [Peer supporter 2-1]

Conversely, some peer supporters encountered recipients who
openly shared their feelings and concerns, which posed a
different challenge as it triggered feelings of worry and
inadequacy. Peer supporters were seeking greater instructions
on how to navigate these emotionally charged conversations.
Two potential solutions suggested were (1) establishing clear
guidelines on how to respond to questions requiring escalation
to a health professional and (2) providing a set of prepared
questions to ask when these situations arose.

I’m not gonna lie, I was a little bit stressed if this
person was really in distress, because I don’t know
if I was like, “Jeez, like I don’t know if I can be the
guy that’s going to help this person.” But I was pretty
fortunate, [my recipient] just wants someone to talk
to, basically, which worked out well for me. [Peer
supporter 7-1]

Theme 4: Importance of Personalizing the User
Experience While Using the REACHOUT Mobile App
Participants (recipients and peer supporters) had four ways to
engage with others on the REACHOUT mobile app: (1) direct
messaging, (2) 24/7 chat room, (3) virtual happy hours, and (4)
virtual huddles.

Subtheme A: Varied Preferences in Peer Support
The 24/7 group chat room served as a central feature of the app
with a significant amount of activity. Most participants referred
to the 24/7 chat room to pose questions, share stories and
updates, and initiate discussions. The high level of engagement
led many participants to habitually check the chat to stay
informed. For some, monitoring the 24/7 chat room was a part
of their daily routine, as participants could obtain new
information as well as be exposed to a diverse range of topics.

Alternatively, some found the continuous flow of information
in the 24/7 chat room to be overwhelming. Specifically, it was
burdensome to sift through a high number of messages to find
discussions of personal relevance. For example, while the
majority of participants discussed insulin pumps, it alienated
the few individuals who used multiple daily injections. In
extreme cases, some participants deactivated the notifications
setting for the 24/7 chat room.

Like it was overwhelming right at the beginning [from
the 24/7 chat room], and so I turned off the
notifications but then I got it out of the habit of
checking, so I missed a whole bunch of stuff, me and
my mentor were communicating through text, so I
didn’t really have to worry about going back into the
app. [Recipient 9-1]

Virtual huddles and virtual happy hours were 2 additional
support delivery mechanisms offered. The former was a
larger-group interactive webinar led by peer supporters and/or
professionals and required fewer social demands or active
participation. The latter involved a smaller, intimate group
discussion led by a peer supporter and fostered open and relaxed
conversations beyond their one-on-one peer support relationship.
These 2 support modalities cater to diverse personality types
and needs.

Subtheme B: Adapting the Mobile App to Fit User
Expectations
App usability issues centered largely around the lack of logical
structure and flow of exchanges within the 24/7 chat room.
Because participants had the option of responding within a
thread or creating a new thread, conversations often seemed
disjointed. As a result, many suggested creating more
topic-focused discussion boards as “exit ramps” from the 24/7
chat room, allowing participants to select personally relevant
information in a structured way. Participants also suggested a
keyword search feature. This element would streamline the
process of finding specific information without the need to scroll
through recent posts. To increase accessibility for people with
different reading abilities, participants suggested that the app
be available on bigger devices such as tablets or computers.

Finally, the mobile app experienced various bugs. For research
purposes, this app was launched on a testing platform that
required participants to log in with their credentials every 3
months. This issue led to widespread frustration and confusion
among participants who lost access unexpectedly. Additionally,
there were bugs in the video feature, which made it difficult for
participants to connect unless they used platforms outside of
the mobile app (eg, Zoom, Facetime). Future improvements to
fix these bugs would ensure a smoother and more reliable user
experience.

I guess I went to log on the other day I wasn’t sure
when it ended, and I was quite sad when I didn’t have
access anymore, to go on and read the stuff I was
used to reading each day so that was kind of, that was
nice. Well, it wasn’t nice that I couldn’t get on but it
was nice, yeah. [Recipient 4-2]

Discussion

Principal Findings
This study explored recipients’and peer supporters’experiences
with and perspectives on REACHOUT, a peer-led mental health
support intervention for adults with T1D living in rural and
remote regions of British Columbia. Our results identified four
major themes: (1) Need for a sense of community and belonging,
(2) Factors to enhance the recipient-peer supporter experience,
(3) Key aspects of the peer supporter experience, and (4)
Importance of personalizing the user experience while using
the REACHOUT mobile app.

Comparison to Prior Work
Consistent with our findings, the need for community and
belonging, especially for geographically marginalized
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individuals, has also been reported in the literature. For instance,
a systematic review of 12 qualitative studies on health care
access for rural patients with chronic diseases found that a sense
of group connection in rural areas mitigates feelings of
vulnerability [43]. Similarly, Joensen et al [44] noted that while
a feeling of inclusion contributes to health promotion, it is often
lacking in daily life for individuals with T1D. Thus, a mobile
app such as REACHOUT is especially valuable in addressing
these gaps in remote and underserved communities.

With REACHOUT, recipients had the agency to choose a peer
supporter based on personally relevant factors. This
choice-based model deserves consideration, as it may optimize
the recipient-peer supporter match [12,35]. Our data also suggest
that successful pairs often referred to one another as “friends,”
which supports the idea that effective emotional support is built
upon friendship and trust [17,22]. To enhance participant
satisfaction, future peer support studies should adopt this
recipient-driven matching process as recipients are in the best
position to understand their own unique support needs.

While the one-on-one and group support delivery mechanisms
address different support needs, many recipients expressed
greater value for the former. The advantages of personalized
individual relationships address the limitations inherent in group
settings. For example, in an intervention of peer support
meetings for adults with T1D focusing on insulin pumps,
dissatisfied participants reported a lack of relevance in the
discussion topics, hindering their ability to speak about topics
that mattered to them [45]. Incorporating modalities that allow
recipients to seek both group-based and one-on-one peer support
within the same intervention promotes greater support
customization for each user. Subsequent mental health support
models should prioritize flexible delivery options that balance
individualized support with opportunities for group engagement.

As participation in group activities within the mobile app was
optional, we observed varying levels of engagement. Passive
participation, characterized by viewing (vs posting) 24/7 chat
room exchanges, was the most common. Participants engaged
in “lurking” behavior, which involved routinely checking the
chat room, gleaning value in reading anecdotes and being
exposed to new topics related to T1D. “Lurking” was also
observed in an online community–based peer support forum
for in-hospital patients. This study found that 7 of 30 participants
opted not to post yet still experienced a positive impact on
emotional well-being [46]. Additionally, Tang et al [47] found
that adults with T1D who passively engaged with the digital
support platform (ie, ‘lurkers’) reported greater reductions in
stigma-related distress compared to active posters. These
findings highlight the role of passive engagement in mental
health interventions as a strategy for mitigating “social risks”
[47,48]. An in-depth examination of the mental health benefits
associated with passive participation on digital platforms is
warranted.

While not anticipated by peer supporters, the flow of support
with recipients was bidirectional. However, the content of the
“give and take” exchange likely encompassed a range of topics
not necessarily diabetes-specific. Nonetheless, this opportunity
for mutual sharing was also cited in a systematic review of
qualitative peer support studies for chronic diseases [49].
Recognizing this reciprocity as an unintentional intervention,
peer support studies should routinely assess changes in outcomes
for both recipients and peer supporters. Clearly, peer support
fosters emotional well-being for both parties.

Ensuring ongoing support for peer supporters beyond the initial
training phase is essential for peer supporter effectiveness and
well-being. Our intervention addressed this need by offering
peer wellness sessions, a space for peer supporters to share
successes and challenges. Not surprisingly, emotional
investment leading to exhaustion can harm the mental health
of peer supporters [50]. Thus, having an environment to express
frustrations in real time such as how to deal with nonresponsive
recipients or navigate emotionally charged conversations could
potentially prevent burnout or dissatisfaction. Therefore,
implementing regular communication or check-ins could
enhance peer supporters’ experience and overall intervention
effectiveness.

Limitations
First, this study only recruited matched peer supporters (vs
unmatched peer supporters). Perspectives from unmatched peer
supporters were not captured. Future studies should consider
interviewing those peer supporters who did not participate in
the one-on-one support component but had access to other
support delivery features. Second, this sample was self-selected
and possibly more engaged and enthusiastic than other
participants. This may limit the representativeness of the original
REACHOUT cohort. While we compared the characteristics of
the consenting and nonconsenting sample, future studies should
ensure representation across different levels of engagement.
Third, the socioeconomic background for participants was
relatively high. Because we did not overrecruit for individuals
with lower levels of income or education, the diversity of
experiences captured may be skewed. Finally, the study targeted
the rural and remote communities of Interior British Columbia;
therefore, the results may not be generalizable to other
geographically marginalized populations in BC or Canada.

Conclusions
Peer support is increasingly recognized as a critical component
for mental health interventions in T1D. While research has
focused largely on recipients of support, our study also
considered perspectives of individuals delivering support,
providing a holistic view. More importantly, it is the
recipient-peer supporter dynamic that most likely drives the
success of the implementation of the REACHOUT program
and impacts mental health outcomes. Only by understanding
the experiences of both parties can we refine our interventions
to provide the optimal mental health support model.
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Abstract

Background: Diabetic kidney disease (DKD) is a major complication of diabetes and the leading cause of end-stage renal
disease globally. Artificial intelligence (AI) technologies have shown increasing potential in DKD research for early detection,
risk prediction, and disease management. However, the landscape of AI applications in this field remains incompletely mapped,
especially in terms of collaboration networks, thematic evolution, and clinical translation.

Objective: This study aims to perform a comprehensive bibliometric and translational analysis of AI-related DKD research
published between 2006 and 2024, identifying publication trends, research hotspots, key contributors, collaboration patterns, and
the extent of clinical validation and explainability.

Methods: A systematic search of the Web of Science Core Collection was conducted to identify English-language original
articles applying AI technologies to DKD. Articles were screened following PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) 2020 guidelines. Bibliometric visualization was performed using CiteSpace and VOSviewer to
assess coauthorship, institutional and country collaboration, keyword evolution, and citation bursts. A qualitative review was
conducted to evaluate clinical validation, model explainability, and real-world implementation.

Results: Out of 1158 retrieved records, 384 studies met the inclusion criteria. Global publications on AI in DKD increased
rapidly after 2019. China led in publication volume, followed by the United States, India, and Iran. Keyword analysis showed a
thematic transition from early biomarker and proteomic research to deep learning, clinical prediction models, and management
tools. Despite methodological advances, few studies included external validation or explainability frameworks. Notable translational
efforts included DeepMind’s acute kidney injury predictor and a chronic kidney disease prediction model developed by Sumit,
yet widespread real-world integration remains limited.

Conclusions: AI research in DKD has grown substantially over the past 2 decades, with expanding international collaboration
and diversification of research themes. However, challenges persist in clinical applicability, model transparency, and global
inclusivity. Future research should prioritize explainable AI, multicenter validation, and integration into clinical workflows to
support effective translation of AI innovations into DKD care.

(JMIR Diabetes 2026;11:e72616)   doi:10.2196/72616

KEYWORDS

artificial intelligence; diabetic kidney disease; bibliometric analysis; clinical validation; explainable AI; global collaboration

Introduction

Diabetic kidney disease (DKD) is the most prevalent
microvascular complication of diabetes mellitus and a leading
cause of end-stage renal disease globally, accounting for a
substantial proportion of dialysis and transplantation burdens
worldwide [1]. The pathophysiological progression of DKD is
complex, often involving chronic hyperglycemia-induced
glomerular injury, hemodynamic changes, inflammation, and
fibrosis. Early-stage DKD is typically asymptomatic, and by
the time clinical markers such as proteinuria or a decline in
glomerular filtration rate become apparent, irreversible kidney
damage may have already occurred [2]. Therefore, early

detection and individualized risk stratification are essential for
improving patient outcomes and alleviating long-term health
care burdens.

In this context, artificial intelligence (AI) has emerged as a
transformative approach in biomedical research and clinical
practice. With capabilities in data-driven pattern recognition,
predictive modeling, and real-time decision support, AI
techniques—including machine learning, deep learning, and
neural networks—have been increasingly explored to address
key challenges in DKD research and management [3,4].
Applications range from biomarker discovery and disease
classification to risk modeling and personalized treatment
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optimization. Despite the growing enthusiasm for AI, there is
wide variability in the methodological rigor, clinical
applicability, and translational maturity of these studies.

While several narrative and systematic reviews have highlighted
specific AI models used in nephrology, there remains a lack of
comprehensive evaluation of how the field has evolved
thematically over time, which countries and institutions are
leading its development, how collaborative efforts are shaping
knowledge production, and to what extent the proposed AI
solutions are being validated and implemented in real-world
clinical settings. Moreover, important dimensions such as model
explainability, equity in global research representation, and
translational readiness are often underexamined.

This study aims to address these gaps by conducting a
bibliometric and translational landscape analysis of AI-related
DKD research published from 2006 to 2024. By integrating
quantitative bibliometric mapping with qualitative evaluation
of translational attributes—including clinical validation, model
transparency, and implementation potential—we aim to provide
a comprehensive overview of this rapidly evolving field and
offer insights to inform future research, clinical integration, and
policy development.

Methods

Literature Search and Eligibility Criteria
A systematic literature search was conducted using the Web of
Science Core Collection to identify studies related to the
application of AI in DKD from January 1, 2006, to April 30,
2024. The search strategy included combinations of terms for
DKD (“diabetic kidney disease,” “diabetic nephropathy,”
“DKD,” or “DN”) and AI (“artificial intelligence,” “machine
learning,” “deep learning,” or “neural network”). Only
English-language articles were considered. The search was
limited to original research articles involving human-related
data, excluding reviews, editorials, letters, conference abstracts,
and purely experimental or theoretical reports without clinical
relevance.

Eligible articles were those that applied AI techniques to DKD
in a clinical, translational, or predictive context. Studies that
involved image processing, signal detection, or statistical models
unrelated to DKD-specific diagnostic or prognostic tasks were
excluded. To ensure the reliability of inclusion, 2 reviewers
(XL and FY) independently screened titles and abstracts for
relevance, followed by full-text assessment. Discrepancies were
resolved by consensus or consultation with a third reviewer
(LX).

Bibliometric Mapping and Analysis Tools
Bibliometric data were exported from the Web of Science
platform (Multimedia Appendix 1) and analyzed using
CiteSpace (v6.1.R6) and VOSviewer (v1.6.18; Leiden
University's Centre for Science and Technology Studies;
Multimedia Appendix 2). These tools enabled visualization and
quantification of publication trends, author and institutional
productivity, international collaboration networks, and thematic
keyword clusters. CiteSpace was used to generate timeline

visualizations and detect emergent research topics through
keyword burst detection. VOSviewer was applied to construct
network maps illustrating coauthorship patterns and
co-occurrence frequencies. Centrality scores and citation
frequencies were used to identify influential authors, institutions,
and countries within the research landscape.

Translational and Thematic Evaluation
In addition to bibliometric analysis, a qualitative assessment
was performed to evaluate the translational significance of the
included studies. This review focused on identifying whether
AI models were externally validated or tested across different
cohorts, whether explainable AI methods were incorporated,
and whether any studies reported or discussed clinical
integration or real-world implementation. Studies that mentioned
the use of interpretability frameworks such as SHAP (Shapley
Additive Explanations) or LIME (Local Interpretable
Model-Agnostic Explanations) were noted. The presence of
multicenter datasets, ethnically diverse populations, or
cross-national data integration was also considered as indicators
of generalizability and applicability. This dual
approach—combining quantitative mapping with thematic
content analysis—allowed for a multidimensional perspective
on both the scientific growth and translational depth of AI
research in DKD.

Ethical Considerations
This study involved no human participants, animals, or patient
data, and therefore did not require ethical approval. The data
used were retrieved from publicly available bibliographic
databases and do not involve any sensitive or identifiable
personal information.

Results

Study Selection
A total of 1158 records were initially identified following the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) 2020 framework. After the removal of 0
duplicates, 1158 records were screened based on their titles and
abstracts. Of these, 251 records were excluded as irrelevant.
The remaining 907 full-text articles were assessed for eligibility,
resulting in 384 articles included in the quantitative synthesis,
and an additional 78 articles included in the qualitative thematic
review. Ultimately, these articles were included in the
subsequent bibliometric and qualitative synthesis.

Publication Growth Over Time
The global volume of publications related to AI in DKD
remained low and relatively stagnant between 2006 and 2016.
A notable increase in research output began in 2019, followed
by a rapid rise during the years 2022 to 2024 (Figure 1). This
pattern reflects the growing integration of AI techniques into
biomedical research and the rising urgency of addressing DKD
in the context of the global diabetes epidemic. The sharp upward
trend in recent years suggests an increasing recognition of AI
as a valuable tool for advancing DKD risk prediction, diagnosis,
and management (Figure 2A).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram for literature screening. AI: artificial
intelligence; DKD: diabetic kidney disease.
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Figure 2. Analysis of the publication trends in artificial intelligence research on diabetic kidney disease from 2006 to 2024: (A) timeline of annual
publications, (B) co-occurrence network of research countries, (C) co-occurrence network of research institutions, and (D) co-occurrence network of
authors.

Geographic and Institutional Contributions
China emerged as the leading contributor in terms of publication
volume, accounting for nearly half of all included studies. Key
institutions such as Beijing University of Chinese Medicine,
Sun Yat-sen University, and Central South University were
among the most prolific. The United States ranked second, with
prominent contributions from institutions such as the Icahn
School of Medicine at Mount Sinai. India, Iran, and Australia
also made notable contributions, reflecting a broader
international interest in the intersection of AI and nephrology.
Collaboration patterns showed that high-output countries often
published independently, although intercontinental
partnerships—particularly between East Asia, North America,
and parts of Europe—have been increasing in frequency and
visibility (Figure 2B-D).

Keyword Evolution and Research Hotspots
Analysis of keyword co-occurrence and burst terms revealed
distinct phases in the thematic development of the field. During
the early period (2006‐2012), research was focused primarily
on pathology, biomarker identification, and proteomic analysis,
often using conventional statistical tools. Between 2013 and
2018, machine learning began to emerge as a prominent
analytical method, with keywords such as “support vector
machine” and “feature selection” gaining prominence. From
2019 onward, deep learning became a dominant theme, as
reflected by the increasing frequency of terms such as
“convolutional neural network,” “risk prediction,” and “decision
support system.” Thematic clustering and citation bursts also
indicated a growing interest in explainability, model integration,
and individualized risk stratification, marking a shift toward
clinical application and interpretability (Figure 3A-D).
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Figure 3. Co-occurrence analysis of keywords in bibliometric studies: (A) keyword co-occurrence network, (B) keyword clustering, (C) keywords
with the strongest citation bursts, and (D) timeline of keyword trends in artificial intelligence research on diabetic kidney disease from 2006 to 2024.

Collaboration Networks Among Authors and
Institutions
Coauthorship network visualization demonstrated that the field
remains highly fragmented, with a large number of small,
loosely connected research groups. The most central nodes in
the institutional network were located in China, the United
States, and Singapore, reflecting both productivity and
cross-institutional engagement. Although multicenter projects
were occasionally identified, most AI models were developed
and tested within single-center or regional datasets.
Cross-national research, while increasing, often lacked shared

validation protocols or harmonized data structures, limiting
direct comparisons and large-scale model generalizability.

Model Validation, Explainability, and Translational
Readiness
A review of the included studies showed that only a limited
proportion of AI models underwent external validation using
independent cohorts. Most models were based on retrospective
data from a single institution or health system, with internal
cross-validation as the primary method of evaluation. Very few
studies implemented explainability frameworks such as SHAP
or LIME, and even fewer offered insights into how model
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outputs could be integrated into clinical decision-making
processes. Notable exceptions included studies that incorporated
prospective testing or demonstrated integration with electronic
health records, although these remained rare. DeepMind’s acute
kidney injury prediction system, while not DKD-specific, was
often cited as a prototype for nephrology-focused AI
applications [5]. Similarly, Sumit’s [6] deep learning–based
model for chronic kidney disease risk prediction represented an
example of real-world implementation relevant to diabetic
populations. However, the lack of consistent attention to
explainability, real-time integration, and regulatory
considerations suggests that most AI-DKD research remains in
a pretranslational stage.

Discussion

Principal Findings
This bibliometric and thematic analysis presents a
comprehensive overview of research trends, international
collaborations, and translational depth in the application of AI
to DKD from 2006 to 2024. The temporal trend reveals a slow
developmental phase lasting more than a decade, followed by
a surge in research activity from 2019 onward. This acceleration
corresponds with the broader adoption of AI in medicine and
the urgent need for precision tools to combat the rising global
burden of diabetes-related complications.

China and the United States have emerged as the primary
contributors to this field, with China leading in publication
quantity and institutional productivity. However, the dominance
of single-country studies and weak international collaboration
networks suggests a lack of unified global efforts in AI-DKD
research. While some cross-border cooperation exists, it has not
yet reached the level necessary to support large-scale model
generalization or multiethnic validation. Future research should
prioritize open data sharing, transnational model calibration,
and harmonized validation protocols to promote reproducibility
and clinical readiness across diverse populations.

Keyword analysis and thematic clustering indicate a clear
evolution in research focus. Early studies emphasized molecular
and pathological mechanisms of DKD, typically using traditional
regression models or biomarker discovery tools. From 2015
onward, a shift occurred toward applying machine learning
algorithms to structured clinical data, including risk prediction
and feature selection. Since 2019, the field has seen a rapid
proliferation of deep learning–based applications, especially
convolutional neural networks for imaging and time-series data
analysis. However, the transition from computational innovation
to clinical implementation remains incomplete. Most studies
prioritize model development and internal validation, while
relatively few undertake real-world testing or prospective
evaluation.

One major limitation identified is the scarcity of externally
validated and clinically integrated AI models. Despite rapid
algorithmic progress, few studies reach the level of clinical
translation demonstrated by landmark systems such as
DeepMind’s acute kidney injury prediction algorithm, which
was prospectively validated and tested in hospital settings [5].

Similarly, the work by Sumit [6], which developed and validated
a deep learning model for predicting chronic kidney disease
progression, represents an exemplar of real-world application.
These examples underscore the importance of incorporating
prospective design, external datasets, and health system
integration early in the research pipeline to ensure that AI tools
can transition beyond proof-of-concept stages.

Moreover, the “black box” nature of many AI models presents
a significant barrier to clinical trust and regulatory approval.
Although explainable artificial intelligence methods such as
SHAP and LIME have been proposed and applied in other
medical domains, they are seldom used in DKD-related research.
This gap not only limits interpretability but also hinders
integration into clinical workflows where explainability is
essential for physician adoption and patient safety. The
increasing interest in interpretable models and hybrid
systems—combining clinical rules with machine learning
outputs—may offer a promising path forward.

Another noteworthy observation is the underrepresentation of
research from low- and middle-income countries, apart from
China and India. Given the global prevalence of diabetes and
its complications, this imbalance may reflect disparities in AI
infrastructure, research funding, and access to large-scale clinical
data. Efforts to democratize AI research—such as open-access
datasets, international consortia, and capacity-building
initiatives—are critical to avoid reinforcing health inequities
through algorithmic bias.

Limitations and Future Work
This study also has limitations. The analysis was based solely
on the Web of Science database, which, while comprehensive,
may omit relevant studies indexed elsewhere, such as in Scopus
or PubMed. The decision to focus on English-language articles
may have further excluded important regional research.
Additionally, bibliometric tools such as CiteSpace and
VOSviewer, while effective in mapping research landscapes,
cannot capture the full context or nuance of each study’s
methodological rigor or clinical relevance. Therefore, the
qualitative thematic analysis presented here serves as a
complementary lens, but further domain-specific review is
warranted to assess clinical impact.

In conclusion, the field of AI in DKD is rapidly expanding, with
increasing interest from diverse geographic regions and
institutions. However, the translation of AI models into clinical
nephrology practice remains limited. Future research should
emphasize multicenter collaboration, external validation, and
interpretability to close the gap between computational
innovation and real-world impact. A systematic shift toward
transparent, validated, and context-aware AI systems will be
essential to unlock the full potential of AI in the management
of DKD.

Conclusions
This study provides a comprehensive and multidimensional
analysis of the research landscape at the intersection of AI and
DKD. Through bibliometric visualization and thematic
synthesis, we demonstrate that although the field has
experienced substantial growth in recent years—particularly
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with the application of deep learning technologies—the clinical
translation of these innovations remains in its infancy. Most
current research is confined to retrospective model development
with limited external validation and minimal integration into
real-world nephrology practice.

To advance the field, future efforts must prioritize
methodological transparency, external validation using diverse
populations, and the incorporation of explainable AI
frameworks. Strengthening international collaboration and
establishing multicenter consortia will be crucial for ensuring

reproducibility and promoting equitable access to AI tools across
health care settings. Additionally, regulatory and ethical
considerations should be proactively addressed to support the
safe deployment of AI in clinical decision-making.

In summary, while the promise of AI in DKD is evident,
realizing its full potential will require a deliberate transition
from algorithmic development to clinically meaningful,
patient-centered applications. Bridging this translational gap is
not only a technical challenge but also an opportunity to reshape
chronic disease management in the era of intelligent medicine.
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Abstract

Background: Diabetes prediction requires accurate, privacy-preserving, and scalable solutions. Traditional machine learning
models rely on centralized data, posing risks to data privacy and regulatory compliance. Moreover, health care settings are highly
heterogeneous, with diverse participants, hospitals, clinics, and wearables, producing nonindependent and identically distributed
data and operating under varied computational constraints. Learning in isolation at individual institutions limits model
generalizability and effectiveness. Collaborative federated learning (FL) enables institutions to jointly train models without sharing
raw data, but current approaches often struggle with heterogeneity, security threats, and system coordination.

Objective: This study aims to develop a secure, scalable, and privacy-preserving framework for diabetes prediction by integrating
FL with ensemble modeling, blockchain-based access control, and knowledge distillation. The framework is designed to handle
data heterogeneity, nonindependent and identically distributed distributions, and varying computational capacities across diverse
health care participants while simultaneously enhancing data privacy, security, and trust.

Methods: We propose a federated ensemble learning framework, FedEnTrust, that enables decentralized health care participants
to collaboratively train models without sharing raw data. Each participant shares soft label outputs, which are distilled and
aggregated through adaptive weighted voting to form a global consensus. The framework supports heterogeneous participants
by assigning model architectures based on local computational capacity. To ensure secure and transparent coordination, a
blockchain-enabled smart contract governs participant registration, role assignment, and model submission with strict role-based
access control. We evaluated the system on the PIMA Indians Diabetes Dataset, measuring prediction accuracy, communication
efficiency, and blockchain performance.

Results: The FedEnTrust framework achieved 84.2% accuracy, with precision, recall, and F1-score of 84.6%, 88.6%, and 86.4%,
respectively, outperforming existing decentralized models and nearing centralized deep learning benchmarks. The blockchain-based
smart contract ensured 100% success for authorized transactions and rejected all unauthorized attempts, including malicious
submissions. The average blockchain latency was 210 milliseconds, with a gas cost of ~107,940 units, enabling secure, real-time
interaction. Throughout, patient privacy was preserved by exchanging only model metadata, not raw data.

Conclusions: FedEnTrust offers a deployable, privacy-preserving solution for decentralized health care prediction by integrating
FL, ensemble modeling, blockchain-based access control, and knowledge distillation. It balances accuracy, scalability, and ethical
data use while enhancing security and trust. This work demonstrates that secure federated ensemble systems can serve as practical
alternatives to centralized artificial intelligence models in real-world health care applications.

(JMIR Diabetes 2026;11:e79166)   doi:10.2196/79166

KEYWORDS

blockchain; decentralized health care; diabetes prediction; ensemble learning; federated learning; knowledge distillation;
privacy-preserving AI; artificial intelligence; AI

Introduction

Diabetes continues to pose a growing global health burden,
requiring timely prediction and proactive management to reduce
complications and improve quality of life [1]. While machine

learning has emerged as a powerful tool for diabetes prediction,
conventional approaches often rely on centralized data
repositories [2-4]. This reliance introduces serious challenges
related to patient privacy, regulatory compliance (eg, Health
Insurance Portability and Accountability Act (HIPAA), General
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Data Protection Regulation (GDPR), and susceptibility to
cyberattacks [5]. Moreover, centralized data aggregation is
increasingly impractical due to fragmented data ownership
across institutions and regions [6].

Real-world health care systems are inherently heterogeneous,
encompassing a wide range of contributors—from large
hospitals and urban clinics to wearable health devices in remote
settings [7]. These entities vary significantly in data volume,
quality, and computational capacity. The data are often
nonindependent and identically distributed (non-IID), reflecting
demographic, clinical, and behavioral diversity [8]. As a result,
models trained within a single institution or on homogeneous
datasets often struggle to generalize across settings, limiting
their effectiveness and scalability.

To address these limitations, collaborative federated learning
(FL) has emerged as a compelling solution [9]. However,
applying FL to real-world diabetes prediction presents several
unresolved challenges. In particular, current FL frameworks
often struggle with:

• security vulnerabilities, such as model poisoning and
adversarial manipulation [10]

• lack of coordination and trust, especially in decentralized,
multiparty settings [11]

• performance degradation due to client heterogeneity and
non-IID data distributions [12]

While several FL frameworks [13-16] have been explored for
decentralized health care analytics, most assume homogeneous
model architectures, single global models, or idealized trust
environments and do not explicitly address lightweight or
resource-constrained participants at the edge [17,18]. Existing
systems, such as Biscotti [19] and Chang et al [20], rely on
gradient sharing and therefore require structurally aligned
models and consistent computational resources, while recent
blockchain-enabled FL frameworks incorporate differential
privacy but still assume homogeneous models or centralized
coordination [21,22]. Furthermore, blockchain [23], a promising
technology for ensuring integrity, transparency, and access
control in decentralized systems, has seen limited integration
with FL, especially in diabetes prediction contexts. Other
blockchain-enabled approaches, such as Shalan et al [24],
provide secure access control but do not incorporate mechanisms
for interoperable knowledge sharing across heterogeneous local
models.

In contrast, FedEnTrust introduces an integrated design that
simultaneously addresses model heterogeneity, non-IID data,
trust and identity verification, and secure update submission.
By combining soft-label knowledge distillation with
blockchain-verified RBAC, FedEnTrust enables robust
collaboration across diverse health care systems while
preventing unauthorized or malicious updates. FedEnTrust
introduces a novel integration of:

• ensemble learning, allowing clients to train diverse local
models best suited to their data and computational
constraints

• soft-label knowledge distillation, enabling effective model
aggregation across non-IID participants

• blockchain-based smart contracts, which provide
tamper-proof coordination, role-based access control, and
participant accountability

FedEnTrust represents a step forward in secure and collaborative
artificial intelligence (AI) for health care, with the following
key contributions:

1. Heterogeneity-aware ensemble design: Each participant
trains a model tailored to its resource level, supporting
real-world deployment across varied health care nodes.

2. Knowledge distillation-based aggregation: We introduce a
soft-label ensemble mechanism that improves convergence
and generalization across non-IID data.

3. Blockchain-enabled trust layer: Our smart contract system
enforces participant registration, access control, and secure
model submissions without a centralized authority.

4. Comprehensive evaluation: Using the PIMA Indians
Diabetes Dataset, we demonstrate that FedEnTrust improves
prediction accuracy; maintains privacy; and ensures secure,
low-latency collaboration.

By addressing the intersection of privacy, trust, heterogeneity,
and security, FedEnTrust provides a practical and deployable
framework for AI-powered diabetes prediction in real-world,
decentralized health care systems.

Methods

Overview of FedEnTrust
FedEnTrust is a secure, privacy-preserving federated ensemble
learning framework designed to address the challenges of
decentralized diabetes prediction across heterogeneous health
care environments. It enables collaborative learning without
centralizing sensitive patient data, accommodates diverse
computational resources, and defends against malicious
behaviors through a blockchain-coordinated trust infrastructure.
The core modules of FedEnTrust include (1)
heterogeneity-aware local model training, (2) knowledge
distillation via soft label sharing, (3) blockchain-based secure
coordination, and (4) adaptive ensemble aggregation.

These modules work together to realize 3 key objectives:
maintaining patient privacy, enabling equitable participation
across institutions with varying capacities, and ensuring secure
collaboration in a decentralized system.

Figure 1 illustrates the end-to-end data flow across the 4
modules. Local raw data remain strictly on the device. Each
participant trains a heterogeneous local model and generates
soft-label probability vectors. These soft labels, along with
accuracy metadata, are sent off-chain to the aggregator but must
first pass through blockchain-based role-based access control
(RBAC) validation, where the smart contract verifies participant
identity, role permissions, and submission metadata. Validated
soft labels are incorporated into an adaptive weighted
aggregation mechanism, producing global pseudo-labels that
are redistributed to all participants. The blockchain records
transaction hashes and role enforcement events, ensuring
traceability without revealing sensitive data.
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Figure 1. Overview of the FedEnTrust architecture. Soft labels generated by local models are authenticated through blockchain-based role-based access
control and combined using adaptive weighted aggregation to produce pseudo labels for continued local training. ML: machine learning.

Architectural Novelty and Comparison With Existing
FL Frameworks
Real-world health care environments exhibit substantial diversity
in computational capacity, data distributions, trust requirements,

and security risks. To contextualize the design of FedEnTrust
within this landscape, we compare its architectural capabilities
against representative FL and blockchain-enabled frameworks
in Table 1.
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Table . Architectural comparison of FedEnTrust with representative federated learning frameworks.

Microcontroller FLa

[17]

Chang et al [20]Biscotti [19]Hasan et al [15]FedEnTrust (Our work)Challenge in real-world
health care FL

Designed for ultra-low-
power devices; not
suitable for multitier
health care

Single model structure
required; difficult for
low-resource clients

Assumes all clients run
comparable gradient-
sharing deep models

Supports MLb models
but generally assumes
similar capacity clients

Heterogeneity-aware
model assignment;
each node trains model
matching its device ca-
pacity; ensemble aggre-
gation aligns knowl-
edge across disparate
models

Heterogeneous com-
pute environments
(hospitals, clinics,
kiosks, wearables)

Very limited support
for complex non-IID
medical data

DPd-sanitized gradients
reduce signal strength
on non-IID data

Gradient aggregation
without distillation;
non-IID data reduces
convergence

Local models trained
independently; static
averaging struggles
with non-IID distribu-
tions

Soft-label knowledge
distillation + weighted
aggregation improve
cross-site generaliza-
tion

Non-IIDc and imbal-
anced data across insti-
tutions

No trust or participa-
tion assurance mecha-
nism

Smart contract man-
ages DP gradients, not
participation permis-
sions

Uses blockchain only
as consensus layer, not
for role-level access
control

Minimal security; no
on-chain validation

Smart contract–driven

RBACe; on-chain vali-
dation of model submis-
sions; rejects malicious
or unauthorized up-
dates

Cross-institution trust
and secure participa-
tion

No adversarial defense
features

DP reduces leakage but
not poisoning

Consensus prevents
tampering but not
model poisoning

No defense against
malicious gradient or
model uploads

On-chain validator
roles + metadata
checks prevent poi-
soned soft labels before
aggregation

Protection against mali-
cious updates (poison-
ing, fake uploads)

No model interoperabil-
ity

Single-model FL;
weights must match

Requires same model
structure for gradient
fusion

Homogeneous ML
models; limited interop-
erability

Soft labels unify out-

puts of RFf, XGBg,

DTh, SVMi, KNNj into
comparable probability
space

Interoperability across
model types

Limited to microcon-
troller networks

DP gradient exchange
increases bandwidth
needs

Heavy blockchain con-
sensus overhead limits
scalability

Local model averaging;
moderate scalability

Lightweight soft-label
sharing reduces commu-
nication overhead and
suits mixed-resource
environments

Scalability across dis-
tributed health care
networks

Not designed for regu-
lated health care set-
tings

Stores only gradient
summaries; limited au-
dit transparency

All gradient updates
stored on-chain—high
cost

Centralized coordina-
tion; limited auditabili-
ty

Full on-chain audit log
of registrations, up-
dates, and permissions

Auditability and trace-
ability for compliance

(HIPAAk or GDPRl)

aFL: federated learning.
bML: machine learning.
cIID: independent and identically distributed.
dDP: differential privacy.
eRBAC: role-based access control.
fRF: random forest.
gXGB: extreme gradient boosting.
hDT: decision tree.
iSVM: support vector machine.
jKNN: k-nearest neighbors.
kHIPAA: Health Insurance Portability and Accountability Act.
lGDPR: General Data Protection Regulation.

Unlike approaches such as Hasan et al [15], Biscotti [19], and
Chang et al [20], which rely on homogeneous model structures
or gradient-based updates, FedEnTrust supports
heterogeneity-aware model assignment. Each participant trains
a locally suitable model (eg, random forest, extreme gradient
boosting, decision tree, support vector machine [SVM],

k-nearest neighbors [KNN]) based on its available resources,
enabling participation from hospitals, clinics, kiosks, and
wearable devices.

FedEnTrust also differs from blockchain-enabled systems such
as Shalan et al [24] and TinyFL [25]. While these frameworks
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integrate blockchain for logging or access control, they do not
incorporate soft-label knowledge distillation or adaptive
ensemble aggregation to unify heterogeneous model outputs.
FedEnTrust introduces a unique coupling of soft-label–based
distillation with blockchain-enforced RBAC, enabling secure
verification of participant identity and role prior to model update
submission, on-chain logging of update hashes to ensure
auditability, prevention of malicious or unauthorized
contributions before they influence aggregation, and
interoperability of predictions across diverse model
architectures.

This integration ensures that only authenticated, validated soft
labels contribute to the global model. This design is particularly
effective for non-IID and imbalanced health care data settings,
where traditional gradient-averaging approaches struggle.

Module 1: Decentralized Local Training With
Heterogeneous Models
FedEnTrust begins with a network of decentralized health care
participants, including large hospitals, regional clinics, kiosks,
and personal health trackers, each training its own machine
learning model locally. These models are tailored to each
participant’s computational capabilities and data volume. For
example, high-resource hospitals may use deep neural networks,
while low-resource settings use shallow learning such as KNN
or support vector classifier (SVC) to support real-time inference
with minimal memory demands.

This heterogeneity-aware model assignment ensures that all
participants, regardless of scale or technical capacity, can
contribute meaningfully. Local training is performed privately
using internal datasets, aligning with privacy regulations such
as HIPAA and GDPR.

Module 2: Knowledge Distillation via Soft Labels
To facilitate collaborative learning without exposing raw data,
participants generate soft labels, probability distributions over
prediction classes (eg, diabetic, nondiabetic). These soft labels
encode richer information than binary outputs and are shared
with a central aggregator, enabling cross-site knowledge transfer.

Soft Label Generation
Each participant generates soft labels, probability distributions
reflecting its model’s confidence across classes, and transmits
these predictions to the aggregator. Unlike gradient-based
approaches, soft labels create an interoperable representation
across heterogeneous model types. Before being used for
ensemble aggregation, every soft label submission is paired
with metadata including local validation accuracy, model
identifier, and round number. For an input instance x, the
participant’s model outputs a probability vector:

(1)Pi(x)=[p1,p2,…,pc]∈Rc, where ∑c=1Cpc=1

These soft labels encapsulate the model’s confidence across the
Cclasses and support knowledge transfer without sharing raw
patient data or internal model parameters.

To address differences in how heterogeneous models calibrate
probability outputs, FedEnTrust applies temperature scaling,

which smooths the probability distribution by dividing logits
zi(x)by a temperature parameter T:

(2)Pi(t)(x)=softmax (zi(x)T), T=2

A temperature of T=2 was selected because values greater than
1 produce smoother, less overconfident probability distributions,
which improves the stability of aggregation across models with
different calibration characteristics. A small temperature (eg,
T=1) can lead to overly sharp probabilities that amplify noise,
while excessively large values dilute useful predictive signals.
Empirical testing showed that T=2 offers an optimal balance.

Dynamic Weight Updates Across Federated Rounds
Once soft labels are generated by each participant model, the
system proceeds to combine these distributed outputs into a
unified global prediction. This ensemble consensus represents
a key step in transferring collective intelligence across all nodes
while respecting the constraints of data privacy and
computational diversity.

The ensemble aggregation process employs adaptive weighted
soft voting, where more reliable and accurate models are given
stronger influence. For example, a well-resourced clinic with
consistently high validation performance will contribute more
to the global prediction than a basic kiosk with limited data.
However, no participant is excluded; each contributes according
to its validated strength, ensuring fairness and inclusivity in the
learning process. FedEnTrust adaptively updates the influence
of each participant during communication round t. Each
participant evaluates its model using a shared public validation
subset to compute Accit, which is the validation accuracy of
participant i at round t. The ensemble assigns each participant
a normalized contribution weight:

(3)Wi(t)=Acci(t)∑j=1NAccj(t)

To prevent dominant institutions (eg, large hospitals with more
data) from exerting disproportionate influence, FedEnTrust
applies weight clipping, capping Witat an upper bound. This
ensures contribution fairness and reduces the risk of bias toward
specific demographic subpopulations.

Justification for Heterogeneous Model Assignment
The model architectures listed in Table 2 were selected to reflect
realistic resource constraints and deployment contexts:

• Random forest (hospitals): Hospitals possess sufficient
computational capacity and large datasets; random forest
models capture nonlinear relationships and perform well
on tabular clinical data.

• XGB (regional clinics): XGB provides strong performance
under moderate computational resources, making it suitable
for mid-sized clinics.

• Decision trees and KNN (community clinics or kiosks):
These models require minimal training cost and support
real-time inference in low-power environments.

• Linear SVM (wearables or personal trackers): Linear SVM
has a lower memory footprint than logistic regression and
offers more stable performance on small, noisy
physiological samples typically produced by wearables.
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Table . Simulated decentralized participants and their models.

RemarksWeightResource levelKey parametersModel architectureParticipantID

Trains complex
models on large
datasets; serves as
a high-capacity
node

0.50Very highn_estima-
tors=130max_depth=15max_fea-
tures=0.75 da-
ta_use=50%

Random forestLarge hospital1

Designed for low-
resource environ-
ments using simple,
efficient models

0.05Lown_neighbors=5 algo-
rithm='auto'da-
ta_use=5%

K-nearest neigh-
bors

Urban health kiosk2

Supports moderate-
ly complex model-
ing on medium-
sized datasets

0.30Highlearn-
ing_rate=0.01max_depth=10n_es-
timators=180da-
ta_use=30%

XGBoostRegional clinic3

Runs interpretable
tree-based models
with moderate re-
source needs

0.10Mediummax_depth=Nonecri-
terion='gini'da-
ta_use=10%

Decision treeCommunity health
clinic

4

Uses lightweight
models suitable for
wearables and em-
bedded devices

0.05Very lowkernel='lin-
ear'C=1.0da-
ta_use=5%

Support vector ma-
chine

Personal health
tracker

5

This heterogeneity-aware mapping allows each participant to
train a model aligned with its resource profile while still
contributing to a unified ensemble.

Enhanced Knowledge Distillation and Pseudo-Label
Generation
In each communication round t, participant models generate
calibrated soft probability vectors Pit(x), which are aggregated
using dynamically updated participant weights to produce a
global soft prediction.

Our proposed model aggregates the calibrated soft labels using
the dynamic weights to produce a global soft prediction:

(4)Pt(x)=∑i=1NWit∗Pit(x)

Because aggregation operates entirely on probability
distributions rather than gradients or model parameters,
FedEnTrust naturally supports heterogeneous machine learning
architectures across hospitals, clinics, kiosks, and personal
wearable devices while preserving data locality and privacy.

To improve the reliability of knowledge transfer, each
participant’s soft predictions undergo normalization followed
by temperature scaling (with T=2) to smooth overconfident
outputs. The ensemble output is then evaluated using a
confidence-based filtering mechanism, where pseudo-labels are
generated only if the maximum ensemble probability satisfies:

(5)max(Pt(x))≥τ
With τ=0.7 Predictions failing this criterion are discarded to
prevent the propagation of uncertainty or noise. Accepted
pseudo-labels are normalized and redistributed to participants,
where they are appended to local datasets and used for continued
training in the subsequent round. This feedback loop enables
low-resource participants to benefit from globally distilled
knowledge while retaining local autonomy.

All soft-label submissions are validated through the
blockchain-based RBAC mechanism described in Module 3.
Only soft labels originating from authenticated and authorized
roles (eg, model-provider) are accepted. Validated submissions
are incorporated into an adaptive weighted soft-voting process,
where participant weights are updated based on observed local
performance across rounds. The resulting global outputs are
then redistributed as pseudo-labels for the next training iteration,
ensuring robustness against non-IID data distributions,
preventing malicious or fabricated updates, and enhancing
cross-site generalization across heterogeneous health care
environments.

Module 3: Blockchain-Based Secure Coordination

Overview
Module 3 employs an Ethereum-based smart contract to
authenticate participants, enforce role permissions, and log
immutable update metadata. When a node attempts to upload
soft labels, the smart contract verifies the participant’s role,
identity, timestamp, and declared accuracy. The contract then
generates and stores a hashed representation of the update, which
validator nodes review. Only soft labels that receive approval
from multivalidators are admitted to the aggregation pool. This
ensures tamper resistance, prevents poisoning attacks, and
provides end-to-end traceability for health care compliance
requirements. When a participant attempts to contribute soft
labels, the smart contract performs the following checks:

1. Identity verification: Confirms that the contributor is a
registered network participant.

2. Role validation: Ensures the contributor holds a permitted
role to submit model outputs.

3. Metadata verification: Confirms the integrity of reported
metrics (eg, accuracy, round number).
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4. Hash logging: Stores a transaction hash to provide
auditability without exposing any data.

Only after passing these checks is the soft label included in the
aggregation pool. This design prevents poisoned or fabricated
updates from influencing the global model and eliminates single
points of failure in participation management. By integrating
RBAC directly with knowledge distillation, FedEnTrust
establishes a secure and transparent trust layer that coordinates
collaborative learning across diverse health care nodes.

Blockchain Platform Selection and Justification
FedEnTrust is implemented on an Ethereum-compatible private
blockchain network. Ethereum was selected due to its
deterministic smart contract execution, robust security
guarantees, and mature tooling ecosystem. The platform supports

Solidity-based smart contracts, Remix IDE integration, and
widely adopted standards for access control and event logging.
These characteristics make Ethereum well suited for
privacy-preserving health care collaboration, where verifiable
execution and auditability are required.

To justify this choice, we compared Ethereum with 2 commonly
used permissioned blockchain platforms: Hyperledger Fabric
and Corda. Table 3 presents a feature-level comparison of
Ethereum, Hyperledger Fabric, and Corda across network type,
decentralization, smart contract support, privacy mechanisms,
ecosystem maturity, and application alignment. Given the need
for flexible smart contract logic, verifiable coordination, and
broad compatibility with Internet of Things (IoT) and health
care prototypes, Ethereum provides the most practical platform
for FedEnTrust.

Table . Comparison of blockchain platforms.

CordaHyperledger fabricEthereumFeature

PermissionedPermissionedPublic or privateNetwork type

Semi-decentralizedSemi-decentralizedHighly decentralizedDecentralization

Contract flows for financial logicChaincode (Go/Java/Node.js)Solidity, robust toolingSmart contracts

Strong bilateral privacyStrong privacy (channels, private
collections)

Extensible via Layer-2/private net-
works

Privacy

Financial institutionsEnterprise-focusedVery large developer ecosystemEcosystem

Regulated financial workflowsConsortium-style enterprise net-
works

Decentralized coordination across
heterogeneous nodes

Use alignment

Adversarial Threat Model and Security Resilience
FL deployments in real-world health care environments may
be exposed to adversarial participants attempting to manipulate
the global model, disrupt training, or infer sensitive information.
To address these risks, we construct a structured threat model
covering three primary attack categories: (1) model poisoning;
(2) collusion among compromised participants; and (3)
malicious soft-label injection, where adversaries submit
manipulated pseudo-probabilities to bias the aggregation
process.

FedEnTrust incorporates multiple, tightly coupled defense
mechanisms across its blockchain coordination and ensemble
aggregation layers to provide resilience against these threats.

1. Model poisoning and malicious soft-label injection: A
compromised participant may attempt to submit adversarial
or fabricated soft labels to influence global predictions.
FedEnTrust mitigates this risk through smart
contract–enforced RBAC, which restricts update submission
exclusively to authenticated participants holding an
authorized model-provider role. Each submission is
accompanied by metadata including round number, reported
validation accuracy, and timestamp, which are verified for
internal consistency before acceptance. To ensure integrity
and prevent replay or tampering, all submissions are
cryptographically hashed and logged on-chain. Furthermore,
FedEnTrust employs validator redundancy, requiring
approval from multiple trusted validator nodes (eg, lead
hospitals within the consortium) before a submission is

incorporated into aggregation, preventing single-node
compromise.

2. Collusion and validator compromise: To reduce the impact
of colluding or compromised participants, FedEnTrust
adopts a consortium-style multivalidator approval
mechanism. No single validator can independently approve
a model update; instead, a quorum of validators must jointly
authorize submissions. The validator set itself is managed
through governed smart contract functions, allowing secure
updates to validator membership over time and eliminating
static trust assumptions.

3. Blockchain-specific threats: Public blockchain deployments
may be vulnerable to front-running, transaction reordering,
or gas manipulation attacks. FedEnTrust avoids these risks
by operating on a private Ethereum-compatible consortium
network without a public mempool, eliminating
front-running opportunities. Smart contracts use fixed gas
budgets and sequential transaction counters to ensure
deterministic execution and prevent reordering attacks.

4. Privacy leakage through on-chain metadata: Although raw
data and model parameters are never shared, metadata
leakage can still pose privacy risks. FedEnTrust minimizes
exposure by storing only hashed identifiers and
role-verification logs on-chain. No patient-level attributes,
raw predictions, or model parameters are recorded. All soft
labels remain strictly off-chain and are exchanged only
between authorized participants and the aggregator over
secure channels.

5. Aggregation-level safeguards: Beyond blockchain
enforcement, the adaptive ensemble layer further mitigates
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adversarial influence by applying temperature scaling,
confidence thresholds, and weight clipping. These
mechanisms limit the amplification of extreme or
adversarial soft-label probabilities and restrict the maximum
influence any single participant can exert, even if it reports
high accuracy.

Collectively, these mechanisms establish a multilayered security
architecture that protects FedEnTrust against common poisoning,
collusion, and manipulation attempts at the coordination and
authorization layers while preserving decentralized operation
and data privacy. The empirical results demonstrate that
unauthorized and malicious submissions are consistently
detected and rejected through blockchain-enforced RBAC and
validator checks. While this study focuses on secure enforcement
and system robustness rather than controlled adversarial learning
simulations, the framework is explicitly designed to support
future evaluation against targeted and untargeted attacks,
including label-flipping, probability-shifting, and adaptive
adversarial strategies.

Module 4: Adaptive Model Aggregation and Feedback
Loop
After soft labels are aggregated into a global ensemble
prediction, FedEnTrust redistributes this consensus to
participants as pseudo-labels for retraining. This adaptive
aggregation ensures that high-performing models contribute
more to the global prediction, while low-resource nodes still
benefit from the collective knowledge.

This module enables faster convergence across non-IID data,
fair and inclusive participation, and improved generalization
without data sharing.

The result is a balanced feedback loop: local models become
more aligned with the ensemble, improving personalization and
global performance over time.

System Implementation and Evaluation Setup
We evaluated FedEnTrust using the publicly available PIMA
Indians Diabetes Dataset [26], which includes 768 records of
female patients with 8 clinical attributes and a binary diabetes
outcome. Data were preprocessed using the following steps:

1. Outlier detection with IQR and local outlier factor
2. Feature engineering (eg, binning glucose, insulin levels)
3. Normalization using z scores

4. Class balancing using the synthetic minority oversampling
technique [27]

As shown in Table 1, to simulate a real-world heterogeneous
environment, the dataset was split across 5 simulated participants
with varying data volumes and models. Each participant’s
computational weight was reflected in the aggregation process,
mimicking operational conditions ranging from large hospitals
to low-power personal devices.

Ethical Considerations
This study exclusively used publicly available, deidentified
secondary datasets. No new data were collected, and no
interaction with human participants occurred. According to
institutional policy and US federal regulations (45 CFR 46),
research involving publicly available, deidentified data does
not constitute human participant research and is therefore
exempt from institutional review board review. As a result,
institutional review board approval was not sought, and informed
consent was not required. All datasets used in this study were
fully deidentified prior to public release. The data contained no
direct or indirect identifiers, and no attempt was made to
reidentify individuals. Data were accessed and analyzed in
accordance with the terms and conditions specified by the data
providers. No participants were recruited for this study, and no
compensation was provided.

Results

Model Performance
We evaluated the FedEnTrust framework across 5 heterogeneous
participants over 15 communication rounds, focusing on
prediction accuracy, precision, recall, and F1-score. The results
highlight how collaborative learning and adaptive aggregation
significantly enhance performance, especially for participants
with limited data and computational resources.

Figure 2 shows the accuracy trajectories of each participant over
the FL rounds. Participant 1 (random forest), equipped with the
largest dataset and the highest computational power, consistently
achieved the highest accuracy, acting as a de facto “teacher”
during knowledge distillation. Its influence helped guide
improvements in lower-resource nodes, such as participant 5
(SVC) and participant 2 (KNN), which showed steady gains
over time.
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Figure 2. Global model accuracy improves over ensemble federated round. DT: decision tree; KNN: k-nearest neighbors; RF: random forest; SVC:
support vector classifier; XGB: extreme gradient boosting.

Figure 3 presents the corresponding model loss curves. All
participants experienced substantial loss reduction early on,
with convergence observed by round 15. Participant 1

maintained the lowest loss throughout, while participants 4 and
5 showed marked improvement from higher initial losses,
demonstrating the benefit of federated collaboration.
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Figure 3. Federated model losses over rounds. DT: decision tree; KNN: k-nearest neighbors; RF: random forest; SVC: support vector classifier; XGB:
extreme gradient boosting.

Table 5. Federated Models Performance after 15 rounds

Comparing the initial and federated performance results (Tables
4 and 5) reveals substantial gains for all participants after
collaborative training. Accuracy improvements of up to 28%
are observed in lower-resource participants, and F1-scores

increase consistently across all models, demonstrating the
effectiveness of knowledge distillation and adaptive aggregation
in heterogeneous environments. For example, participant 4
(decision tree) improves its F1-score from 0.71 to 0.88, while
participant 3 (XGBoost) improves from 0.64 to 0.85,
highlighting the benefits of ensemble-driven knowledge transfer.

Table . Initial models’ performance.

F1-scoreRecallPrecisionAccuracyParticipant

0.830.840.850.781

0.720.710.730.712

0.640.650.630.653

0.710.710.730.704

0.670.680.670.675

Table . Federated models’ performance after 15 rounds.

F1-scoreRecallPrecisionAccuracyParticipant

0.930.940.920.931

0.830.860.800.812

0.850.860.850.843

0.880.900.870.834

0.830.870.790.805

To further characterize performance stability across
communication rounds, Table 6 reports both the final accuracy

at round 15 and the mean (SD) of accuracy over all 15 federated
rounds. The relatively low SDs indicate stable convergence
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behavior for all participants, even for lightweight models such
as KNN and SVC. These results confirm that FedEnTrust
effectively accommodates device and data heterogeneity while
maintaining strong predictive performance, privacy preservation,

and decentralized operation. Tailored model architectures,
aligned with participant resource constraints, ensure balanced
contribution and efficient deployment across the collaborative
learning process.

Table . Federated model accuracy and variability across 15 rounds.

Accuracy, mean (SD)Final accuracyModelParticipant

0.91 (0.04)0.93RFa1

0.79 (0.03)0.81KNNb2

0.81 (0.05)0.84XGBc3

0.80 (0.03)0.83DTd4

0.76 (0.03)0.80SVCe5

aRF: random forest.
bKNN: k-nearest neighbors.
cXGB: extreme gradient boosting.
dDT: decision tree.
eSVC: support vector classifier.

To assess whether the performance differences between
FedEnTrust and baseline models were statistically meaningful
on the PIMA Indians Diabetes Dataset, we conducted a
nonparametric bootstrap significance analysis using the same
held-out test set as the main evaluation. Because accuracy,
precision, recall, and F1-score are bounded metrics that may
deviate from normality, bootstrap resampling provides a
distribution-free and robust alternative to parametric methods
such as the t test. We used a 2-tailed t test, as no directional
assumption was imposed a priori and the objective was to assess
whether there was any statistically significant difference between
the compared methods.

We generated B=1000 bootstrap resamples by sampling test
instances with replacement from the held-out evaluation set.
For each bootstrap resample, we evaluated FedEnTrust and the
decentralized baseline from Blockchain-FL with Differential
Privacy [20], which represents the closest methodologically
comparable prior work under similar privacy and
decentralization constraints. This procedure produced
1000-sample empirical distributions for both models’ accuracy.
To quantify comparative performance, we computed the
bootstrap metric difference for each resample:

(6)Δ(b)=MFedEnTrust(b)−MBaseline(b)

where Mb represents the accuracy, precision, recall, or F1-score
on bootstrap resample b. We then constructed 95% CIs for each
metric difference using the percentile method.

The bootstrap CI analysis indicates that FedEnTrust achieves
statistically significant performance improvements over the
decentralized blockchain-based FL baseline [20]. Specifically,
FedEnTrust attains a mean accuracy of 0.842 with a 95%
bootstrap CI of 0.831-0.853, compared to 0.827 (0.814-0.839)
for the decentralized baseline. The resulting accuracy difference
of +0.015 yields a 95% CI of 0.004-0.027, which excludes zero,
indicating statistical significance at α=.05. These results confirm
that the performance gains observed for FedEnTrust are not due
to random variation but rather stem from its integration of
heterogeneous ensemble learning with blockchain-backed
coordination under privacy constraints.

These findings validate that FedEnTrust’s performance gains
are not only empirical but statistically robust, reinforcing the
effectiveness of combining heterogeneous ensemble learning
with blockchain-backed coordination in constrained health care
environments.

Blockchain Performance
We deployed the smart contract with 6 key functions and
evaluated it under a realistic configuration consisting of 5
decentralized health care participants and 1 global aggregator.
These components facilitated secure collaboration, access
management, and federated training. The details are shown in
Table 7.

Table . Blockchain system configuration.

DescriptionCountOperation

Registered using registerClient()5Total registered participants

Global aggregator for accuracy aggregation and
model ensemble

1Federated coordination nodes

Includes registration, role assignment, update
logging, and access checks

6Smart contract functions deployed
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To assess computational efficiency, we monitored key metrics
such as gas consumption, data size, and latency for major smart
contract operations. These measurements reflect the
cost-effectiveness and responsiveness of blockchain-mediated
tasks.

These operations incur gas overhead beyond Ethereum’s 21,000
base gas due to additional computation, state updates, and event
emissions. The modelUpdate() function, for example, consumes
about 98,560 gas (~295 bytes of encoded parameters), balancing
cost with functional depth and traceability (Table 8).

Table . Smart contract performance metrics.

Average latency (ms)Data size (bytes)Average gas costOperation

220370118,073Client registration

210345109,820Role assignment

19529598,560Model update

215315105,310Model aggregation

Despite slight delays compared to traditional systems, the
observed latency (195‐220 ms) remains acceptable for health
care applications, considering the gains in trust, verifiability,
and tamper resistance. To assess longer-term stability, we
analyzed all 212 smart contract operations recorded during the
training. All valid transactions executed successfully without

anomalies, indicating stable performance across repeated
interactions. The expanded evaluation in Table 9 includes
average latency, latency range, and variability across extended
cycles. These findings support the suitability of the blockchain
layer for multiround federated training.

Table . Transaction integrity and enforcement metrics.

DescriptionValuesCategory

All smart contract operations212Total transactions

Successfully executed by authorized participants201Valid transactions

Unauthorized queries (6), malicious submissions
(3), invalid role updates (2)

11 (5.19%)Rejected transactions

All valid transactions completed without error100%Success rate

Mean execution time for valid transaction21.4 msAverage latency

Minimum and maximum observed latency14.8‐36.2 msLatency range

Variability in execution time±4.7 msSD

Long-term stability testing simulating multiround

FLa
Mean: 22.1 ms; variation:±5.3 msLatency over extended cycles (100 iterations)

Deterministic finality in private PoAb Ethereum
network

~1 block(~1 s)Finality time

Consistent with private Ethereum networks~47 tx/sEstimated throughput

aFL: federated learning.
bPoA: proof-of-authority.

As illustrated in Figure 4, unauthorized model submissions are
automatically rejected, triggering an on-chain error: “Client not

registered.” This ensures that only authenticated nodes
contribute to the learning process, strengthening data integrity.
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Figure 4. Access rejection for unauthorized participant.

Throughout 15 communication rounds, the smart contract
reliably supported secure, real-time exchange of soft label
predictions and model aggregation updates. For instance,
participant 1 improved from 78% to 93% accuracy, while
participant 4 rose from 70% to 83%, all while maintaining
privacy and resisting tampering.

These results underscore the effectiveness of combining
blockchain with federated ensemble learning to achieve scalable,
secure, and privacy-preserving AI in health care environments.

Discussion

Principal Findings
This study presents FedEnTrust, a blockchain-enabled federated
ensemble learning framework that offers a privacy-preserving
and scalable solution for decentralized diabetes prediction. Our
system effectively balances accuracy, privacy, and adaptability
by integrating diverse machine learning models with knowledge
distillation and adaptive weighted aggregation. With a predictive

accuracy of 84.2%, FedEnTrust demonstrates competitive
performance while maintaining strict privacy guarantees and
supporting heterogeneous health care participants ranging from
hospitals to wearable devices.

The framework’s integration with blockchain smart contracts
provides secure participant coordination, role-based access
control, and transparent model validation without incurring
substantial latency or resource overhead. Importantly, our results
show that even low-resource participants benefit from
collaboration through soft label exchange, enabling equitable
participation in the learning process.

Comparison With Prior Work
Table 10 summarizes the performance of FedEnTrust against
the existing centralized and decentralized methods applied to
the PIMA Indians Diabetes Dataset. While centralized deep
learning approaches achieve slightly higher accuracy (eg, 95.2%
with light gradient boosting machine, 96.1% with convolutional
neural networks), these models require full data centralization,
sacrificing privacy and increasing system vulnerability.
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Table . Comparative performance on the PIMA Indians Diabetes Dataset.

NotesF1-score (%)Recall (%)Precision (%)Accuracy (%)Model or study

Federated ensemble
with adaptive weighted

86.488.684.684.2FedEnTrust

voting and blockchain
smart contract integra-
tion

Centralized; evaluated
multiple classifiers

N/AN/AN/Ab95.2MLa classifiers ap-
proach [28]

(LRc, XGBd, GBe,

DTf, ETg, RFh, and

LGBMi) on PIMA Indi-
ans dataset; best accura-
cy achieved by LGBM

Centralized; utilized
RFE-GRU on PIMA
Dataset

90.590.790.590.7Recursive feature elim-
ination with a gated re-

current unit RFE-GRUj

[29]

Centralized; applied

SVMk, RF, DT, naive

N/A64.8N/A83.1Hybrid classification
approach [30]

Bayes with K-means
preprocessing; best ac-
curacy achieved by
SVM

Centralized; applied

LR, RF, and ANNl; LR

N/AN/AN/A77.1Three predictive algo-
rithms [31]

achieved the best accu-
racy (77.10%) with

AUCm 0.83 over RF
and ANN

Centralized; combined
RF, LR, and naive
Bayes classifiers

80.971.673.179.1Soft voting ensemble
[32]

Centralized; applied
DT and LR, fused by
neural network

82.838.4 (positive)/90.2
(negative)

25.0 (positive)/98.6
(negative)

83.1Ensemble hierarchical
model [33]

Centralized; stacking
ensemble of ML mod-

N/AN/AN/A77.1Stacking ensemble [25]

els; accuracy achieved
using cross-validation
protocol

Centralized; deep
learning pipeline using

N/AN/AN/A92.3Deep learning pipeline
[34]

VAEn for data augmen-

tation, SAEo for fea-
ture augmentation, and

CNNp for classification

Centralized; applied
deep CNN with feature

94.594.494.496.1Deep CNN with corre-
lation-based features
[35] selection based on cor-

relation

Decentralized; imple-
mented federated

N/AN/AN/A82.7Blockchain-FL with
adaptive DP [20]

learning with differen-
tial privacy using
blockchain technology

aML: machine learning.
bN/A: not applicable.
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cLR: logistic regression.
dXGB: extreme gradient boosting.
eGB: gradient boosting.
fDT: decision tree.
gET: extra tree.
hRF: random forest.
iLGBM: light gradient boosting machine.
jRFE-GRU: Recursive Feature Elimination with Gated Recurrent Unit.
kSVM: support vector machine.
lANN: artificial neural network.
mAUC: area under the curve.
nVAE: variational autoencoder.
oSAE: stacked autoencoder.
pCNN: convolutional neural network.

In contrast, FedEnTrust improves over recent decentralized
models, such as blockchain-integrated FL with differential
privacy (accuracy≈82.7%), by incorporating ensemble learning
and adaptive aggregation. Despite the constraints of data
fragmentation and heterogeneity, our framework maintains
robust performance across all key metrics, including precision
(84.6%), recall (88.6%), and F1-score (86.4%).

FedEnTrust achieves a favorable trade-off between privacy,
generalizability, and computational practicality, making it well
suited for real-world deployment in regulated health care
environments.

Ethical AI Considerations: Fairness, Transparency,
and Accountability

Ethical Framework
Ethical concerns are central to the deployment of AI systems
in health care, where unequal access to computational resources
and imbalanced data distributions may inadvertently create or
reinforce model biases. FedEnTrust incorporates several design
principles aligned with emerging ethical AI guidelines, including
those recommended by the World Health Organization and
major AI governance frameworks.

Fairness Across Heterogeneous Participants
Health care institutions vary substantially in data volume,
demographic composition, and computational capacity, which
can introduce systematic bias in collaborative learning systems.
FedEnTrust is designed to mitigate such bias by supporting
heterogeneity-aware participation, allowing low-resource nodes
to contribute using models aligned with their capabilities without
sacrificing predictive performance. Adaptive weight clipping
is applied during aggregation to prevent high-resource
institutions from disproportionately dominating the global
ensemble. In addition, temperature-calibrated soft labels are
used to reduce overconfidence from models trained on larger
or more homogeneous datasets, while confidence thresholding
ensures that noisy or low-confidence predictions are not
propagated across participants. Together, these mechanisms
promote more balanced influence across diverse health care
contributors and support fairer model outcomes in heterogeneous
federated environments.

Transparency and Auditability
Transparency in FedEnTrust is enabled through the
blockchain-based coordination layer, which provides immutable
audit trails for all update submissions and verifiable records of
role validation events. Each model contribution is traceably
logged, allowing the system to record which institutions
participated in and influenced each training round. This
tamper-resistant logging mechanism enhances accountability,
supports post hoc auditing, and increases trust among
participating health care entities without exposing sensitive data
or model parameters.

Privacy and Data Minimization
FedEnTrust adheres to privacy-by-design principles:

• Raw patient data remain strictly on the device
• Only soft-label vectors and hashed metadata are transmitted
• No identifiable information is stored on-chain, supporting

HIPAA, GDPR, and similar regulatory frameworks

Role-based access ensures that only authorized clinical entities
may participate.

Accountability and Governance
The multivalidator consensus layer enables shared governance
rather than reliance on a single coordinating institution. This
creates a more accountable decision-making process and aligns
with ethical expectations for distributed medical AI systems.

Blockchain Performance and Practical Considerations

Implementation Considerations
Beyond empirical accuracy and security validation, the practical
deployment of blockchain-enabled FL systems in health care
requires careful consideration of scalability, cost, and regulatory
compliance. While the blockchain layer in FedEnTrust
demonstrated stable and reliable performance under controlled
experimental conditions, real-world health care environments
introduce additional operational and governance challenges.
This section discusses key practical considerations and outlines
how FedEnTrust is designed to address them.

Scalability and Throughput
Public blockchain platforms, such as the Ethereum main net,
face inherent constraints related to transaction throughput, block
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confirmation latency, and network congestion. These limitations
can lead to unpredictable delays and may not support the
repeated coordination required across multiple FL rounds. To
address this, FedEnTrust is designed for deployment on private
or consortium-based Ethereum networks, where consensus
parameters, block times, and validator participation can be
tailored to health care workflows. Such configurations enable
deterministic execution and consistent performance, as observed
in our evaluation. Nevertheless, large-scale deployments
involving many institutions may require additional
enhancements, including optimized validator load balancing,
hierarchical or sharded blockchain structures, and integration
with layer-2 scaling mechanisms to further increase throughput.

Cost Variability and Resource Requirements
In public blockchain environments, gas fees fluctuate
dramatically based on network conditions, resulting in variable
operational costs for smart contract execution. This variability
is incompatible with cost-sensitive health care environments.
Deploying FedEnTrust on a private Ethereum network
eliminates transaction fees and allows institutions to control
computational and storage overhead. However, operating such
networks requires institutional commitment to maintain validator
nodes, ensure uptime, and manage governance policies. Future
work will investigate cost-benefit trade-offs between private,
hybrid, and layer-2 blockchain configurations for FL.

Regulatory and Compliance Constraints
Health care systems must comply with strict privacy regulations
such as HIPAA, GDPR, and provincial or national
data-protection laws. These frameworks introduce challenges,
such as prohibiting the storage of patient data or identifiers
on-chain, requiring transparent audit trails for collaborative
analytics, and ensuring that cross-institution coordination
adheres to data-sharing agreements.

FedEnTrust addresses these concerns by storing only hashed
metadata and role-verification entries on-chain, keeping soft
labels and model outputs entirely off-chain. However, real-world
deployment requires integration with institutional governance
mechanisms to ensure compliance documentation, legal
interoperability among institutions, and formal auditing
procedures.

Generalizability to Multimodal and Longitudinal
Health Care Data
Although the PIMA dataset provides a controlled benchmark
for evaluating prediction accuracy, it does not reflect the
complexity of real-world clinical environments. Modern health
care systems generate multimodal data that may include
structured electronic health record fields, laboratory values,
medical imaging, clinician notes, and continuous wearable
sensor streams. Additionally, many health conditions, including
diabetes, require longitudinal modeling to capture evolving
physiological states over time.

FedEnTrust is designed to naturally extend to these scenarios.
The framework’s heterogeneity-aware model assignment allows
each participant to select model architectures aligned with its
data modality and computational resources. For example,

hospitals could train sequence models (eg, long short-term
memories or transformers) on longitudinal EHR data, while
wearable devices may contribute short-term physiological
features via lightweight SVM or tree-based models. The
knowledge-distillation component operates on probability
distributions and is therefore agnostic to model type, enabling
soft-label fusion across diverse modalities and temporal
structures. This capability is particularly suitable for integrating
outputs from time-series models, tabular models, and sensor
analytics.

The blockchain-based coordination layer also supports
generalization, as its role-based validation and update logging
apply to any model output regardless of modality. Future work
will apply FedEnTrust to multicenter datasets such as
MIMIC-IV, NHANES, and integrated wearable–EHR cohorts
to evaluate its performance under more heterogeneous and
clinically realistic conditions.

Limitations
Despite promising results, several limitations remain:

• Dataset representativeness: The PIMA dataset is limited in
scope and population diversity. Future work should evaluate
FedEnTrust on broader, real-world datasets from varied
demographics and geographies.

• Extreme client heterogeneity: Devices with ultra-low
resources may still face difficulties in real-time model
adaptation. Exploring ultra-lightweight architectures and
communication compression techniques is a key next step.

• Controlled blockchain simulation: Our blockchain
operations were simulated under stable conditions. Future
deployment on public testnets or mainnets is necessary to
assess real-world transaction delays, scalability, and cost
variability.

• Advanced threat modeling: While the smart contract blocks
unauthorized actions, adversarial behaviors such as
collusion or model poisoning were not addressed. Future
extensions may integrate anomaly detection and audit trails
to enhance system resilience.

Although the PIMA Indians Diabetes Dataset is a
well-established benchmark for evaluating diabetes prediction
models, its limited demographic diversity and relatively small
size restrict the generalizability of the findings. The simulated
heterogeneous environment in Table 2, while constructed to
reflect realistic participant variability, does not fully replicate
the complexity of multi-institution health care settings, where
differences in clinical practice, sensor characteristics, and patient
demographics lead to substantially wider non-IID distributions.
Accordingly, the results presented here should be viewed as a
controlled feasibility demonstration rather than a comprehensive
real-world validation.

Conclusions
This study presents FedEnTrust, a secure and intelligent
federated ensemble learning framework for privacy-preserving
diabetes prediction. Our approach addresses key challenges in
decentralized health care AI, including data privacy, system
trust, and participant heterogeneity, without requiring access to
raw patient data.
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By integrating knowledge distillation and adaptive ensemble
aggregation, the framework enables resource-aware
contributions from a diverse range of participants, from
high-performance hospital systems to low-power personal
devices. The experimental results demonstrate consistent
improvements in predictive performance across all participants,
validating both the effectiveness and inclusiveness of the design.

A central innovation is the blockchain-enabled coordination
layer, which ensures secure registration, role-based access

control, and verifiable model updates. Smart contract simulations
confirm the system’s efficiency, low latency, and robustness
against unauthorized actions, supporting scalable and
tamper-resistant deployment in health care environments.

In sum, FedEnTrust offers a practical, scalable solution for
secure, decentralized medical AI, balancing privacy,
performance, and trust. Future work will extend this framework
to additional clinical domains, multisite studies, and dynamic
personalization for broader impact in real-world health care.
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