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Abstract
Background: Gestational diabetes mellitus (GDM) is a prevalent chronic condition that affects maternal and fetal health
outcomes worldwide, increasingly in underserved populations. While generative artificial intelligence (AI) and large language
models (LLMs) have shown promise in health care, their application in GDM management remains underexplored.
Objective: This study aimed to investigate whether retrieval-augmented generation techniques, when combined with
knowledge graphs (KGs), could improve the contextual relevance and accuracy of AI-driven clinical decision support. For
this, we developed and validated a graph-based retrieval-augmented generation (GraphRAG)–enabled local LLM as a clinical
support tool for GDM management, assessing its performance against open-source LLM tools.
Methods: A prototype clinical AI assistant was developed using a GraphRAG constructed from 1212 peer-reviewed research
articles on GDM interventions, retrieved from the Semantic Scholar API (2000‐2024). The GraphRAG prototype integrated
entity extraction, KG construction using Neo4j, and retrieval-augmented response generation. The performance was evaluated
in a simulated environment using clinical and layperson prompts, comparing the outputs of the systems against ChatGPT
(OpenAI), Claude (Anthropic), and BioMistral models across 5 common natural language generation metrics.
Results: The GraphRAG-enabled local LLM showed higher accuracy in generating clinically relevant responses. It achieved
a bilingual evaluation understudy score of 0.99, Jaccard similarity of 0.98, and BERTScore of 0.98, outperforming the
benchmark LLMs. The prototype also produced accurate, evidence-based recommendations for clinicians and patients,
demonstrating its feasibility as a clinical support tool.
Conclusions: GraphRAG-enabled local LLMs show much potential for improving personalized GDM care by integrating
domain-specific evidence and contextual retrieval. Our prototype proof-of-concept serves two purposes: (1) the local LLM
architecture gives practitioners from underserved locations access to state-of-the-art medical research in the treatment of
chronic conditions and (2) the KG schema may be feasibly built on peer-reviewed, indexed publications, devoid of halluci-
nations and contextualized with patient data. We conclude that advanced AI techniques such as KGs, retrieval-augmented
generation, and local LLMs improve GDM management decisions and other similar conditions and advance equitable health
care delivery in resource-constrained health care environments.
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Introduction
The growing use of electronic medical records linking
diverse patient characteristics and prescription choices with
positive treatment outcomes in large-scale use cases has
resulted in platforms that guide optimal treatment options.
For example, Sharma et al [1] presented an approach for
delivering personalized health care as a means of effec-
tively using scarce medical resources in underserved regions
and populations, supporting the value of artificial intelli-
gence (AI)–driven systems in such settings. While machine
learning (ML) and data analytics have generated individu-
alized treatment recommendations for improving outcomes,
“these works focused on making broad [largely drug class
level] treatment recommendations independently of specific
drug and dose considerations... [whereas] guidelines and
landmark trials highlight important drug- and dose-dependent
variations in treatment efficacy, safety, and risk profiles” [2].
In short, personalized medicine should account for contextual
variations in seeking more effective, cost-efficient treatments
with better outcomes. This study presents an approach to
clinical support to time- and resource-constrained practition-
ers using a generative artificial intelligence (GenAI) approach

to treat a serious medical condition afflicting young moth-
ers and their children with increasing alacrity. Such a need
is particularly acute in the socioeconomically disadvantaged
regions of the world.

Gestational diabetes mellitus (GDM) is a significant global
health concern affecting many pregnancies [3]. Defined as
glucose metabolism imbalance first detected during preg-
nancy, the International Association of Diabetes in Pregnancy
Study Group reports that “GDM is not only related to
perinatal morbidity but also to an increased risk of diabetes
and cardiovascular disease in the mother in later life, and
childhood obesity in the offspring” [4]. The pooled global
prevalence was 14% in 2021, with the highest occurrence
in the Middle East - North Africa (27.6%), Southeast Asia
(20.8%), and among high-income countries (14.2%) [5].
There is considerable agreement among medical practitioners
that the development of GDM could be influenced by various
risk factors, including maternal age, obesity, family history
of diabetes, previous occurrences of GDM, and specific
ethnic backgrounds [6,7]. This is illustrated in Figure 1
(data sources: [3,8-10]) as the medical characterizations of
GDM comprising factors such as diagnosis, risks, prediction,
management, complications, and postpartum care.

Figure 1. Medical characterization of gestational diabetes mellitus. GDM: gestational diabetes mellitus.

Also, of concern to the WHO is that GDM leads to various
complications for both affected mothers and their offspring,
such as increased risks of cesarean delivery, pre-eclampsia,
and type 2 diabetes (T2D) for mothers. Children are at
higher risk of macrosomia, hypoglycemia, respiratory distress
syndrome, and an increased likelihood of developing obesity
and T2D later in life [11]. The long-term health risks include
elevated chances of developing T2D and cardiovascular
diseases for both mother and child [12]. In the Global South
and developing countries [8,13], GDM presents significant
challenges due to:

1. Higher prevalence rates in certain regions, particularly
South Asia and the Middle East.

2. Limited health care resources for screening, diagnosis,
and management.

3. Genetic factors in certain ethnic groups increase GDM
risk.

4. Rapid urbanization and lifestyle changes leading to
increased obesity rates.

5. Potential underdiagnoses due to lack of routine
screening.

Effective GDM treatment requires multiple diagnostic tests,
including oral glucose tolerance tests, random plasma glucose
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tests, and fasting plasma glucose tests. The treatment options
include regular blood glucose monitoring, dietary modifica-
tions, lifestyle changes, and, when necessary, pharmacologi-
cal interventions such as insulin or oral hypoglycemic agents
[9]. The recent advancements in AI-driven tools, such as the
AI Drug Mix and Dose Advisor developed for T2D [2], have
shown potential in optimizing pharmacological interventions
by customizing drug and dose recommendations to individ-
ual patient profiles. Similar approaches could be valuable in
improving glycemic management in GDM cases, enhancing
personalized care in postpartum treatment, drug discovery
with therapy, and reducing long-term risks of developing
chronic diseases in general.

Despite growing interest in AI-driven clinical support,
current models often struggle to integrate diverse, multisource
medical data into actionable insights, especially in condi-
tions such as GDM, where missing information and diag-
nostic delays contribute to less desirable outcomes. These
limitations are particularly prominent in resource-constrained
settings, where systemic challenges, such as insufficient
screening tools, lack of standardized care protocols, and
limited provider training, complicate effective diagnosis
and treatment [8,13]. As a result, the timely and effective
treatment of GDM remains difficult, further endangering
maternal and fetal health.

In such contexts, the unavailability of specialized
professionals, economic constraints, and cultural challenges
also influence treatment adherence and engagement [14,15].
The limited awareness between both the public and health
care providers continues to contribute to improper manage-
ment of GDM [16], reinforcing the urgent need for robust,
context-sensitive clinical decision support [17,18].

To address these gaps, we propose a novel solution
using specialized GenAI techniques for GDM management.
Specifically, we develop a proof-of-concept (PoC) of a
clinical support system that uses a knowledge graph (KG)
supporting a local large language model (LLM). This system
extracts and integrates intervention strategies from peer-
reviewed research to support physicians in making contextu-
ally relevant treatment decisions.

Standalone local LLMs, however, face known limita-
tions, including hallucinations and reduced reliability when
handling domain-specific, complex queries [19]. To address
these issues, we introduce a retrieval-augmented generation
(RAG) mechanism that improves the accuracy and relevance
of outputs by supplementing the LLM with contextual data
[20,21]. This hybrid approach could elevate the clinical utility
of GenAI for complex, low-resource health care scenarios
such as GDM.

By generating structured, evidence-informed recommenda-
tions in real time, our system lays the foundation for scalable
and explainable AI support tools customized to maternal
health. The following section reviews previous ML and
LLM-based approaches to GDM detection and prediction,
positioning our work within this evolving research landscape.
It is stated at this juncture that while the distinction between
LLMs and local LLMs is clear, it is less so between local
LLMs and small language models (SLMs). The prototype
developed in this study assumed a local LLM architecture
but could be repurposed as SLMs, particularly in resource-
constrained locations of the Global South. A concise feature
comparison of LLMs, local LLMs, and SLMs is provided in
Textbox 1.

Textbox 1. Feature comparison of large language models, local large language models, and small language models.
Large language models
Large language models (LLMs) are typically based on deep learning, trained on massive amounts of text and increasingly
multimedia data to understand, generate, and manipulate human language. LLMs work by learning to predict the next word
in a sequence based on the context of the input prompt, using billions of parameters to refine these predictions. They excel
at natural language processing tasks such as text completion, translation, summarization, question-answering, and content
generation.
Local LLMs
Local LLMs run inside the private data center of an entity or organization. Local LLMs are fine-tuned with the organiza-
tion’s data (eg, patient records or standard rules) and can provide specific context to a query or prompt that general-purpose
chatbots cannot or should be legally allowed to deliver. Particularly in the domains of sensitive and confidential data (such
as a patient’s medical conditions), such prompts may have to be subject to rigorous access, authentication, and accounting
controls.
Small language model
A small language model is designed to understand and generate natural language, similar to LLMs, but on a much smaller
scale, with fewer parameters and a simpler architecture. Small language models are optimized for efficiency and can be
deployed on resource-constrained devices like smartphones or local servers, offering benefits such as faster training and
execution, lower energy consumption, and improved privacy by allowing for on-device processing and less reliance on
cloud connectivity. A use case could be first responders in emergency room situations.

Recent advances in ML have shown promise in improving
the early diagnosis and personalized management of chronic
conditions such as GDM. These models identify high-risk
individuals during pregnancy, customize treatment plans, and
ultimately enhance maternal and neonatal health outcomes.

Several studies have developed ML algorithms that account
for demographic variations, for example [22,23], present
models customized to Asian women [10] used decision trees
and ensemble learning for early GDM detection, reporting
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high sensitivity and specificity. However, these models often
fail to capture the full complexity of GDM-related factors.

The efforts to improve model interpretability include
research, such as meta-reviews of clinical studies on
complications during pregnancy and their treatments [24],
on clinically explainable ML approaches for blood glucose
monitoring [25,26], and the use of extreme gradient boosting

to identify key risk factors [27]. However, several studies [25,
26,28,29] note limitations in integrating high-quality datasets,
supporting real-time interventions, or embedding models
within clinical systems. Table 1 presents these representa-
tive models, underscoring the trade-offs between accuracy,
interpretability, and practical usability.

Table 1. Representative research deep learning or machine learning models for predicting gestational diabetes mellitus.
Study Year Model Key contributions and limitations
Kokori et al [22] and
Kumar et al [23]

2024 Demographic-specific MLa model • KCsb: Accurate predictions for specific demographics
(Asian women).

• Limits: Limited integration into health care systems.
Kurt et al [10] 2023 Decision trees and ensemble • KCs: High sensitivity and specificity.

• Limits: Fails to capture all GDMc-related factors.
Wu et al [29] 2024 Clinically interpretable ML • KCs: Emphasized interpretable models for GDM.

• Limits: Limited real-time application.
Wu et al [25] 2022 ML-based models • KCs: Importance of high-quality datasets.

• Limits: Lacks interpretability and integration.
aML: machine learning.
bKC: key contribution.
cGDM: gestational diabetes mellitus.

These limitations highlight the need for models that go
beyond static risk prediction to support context-aware clinical
decision-making. In this regard, LLMs offer transformative
potential as they generate patient-specific recommendations
by synthesizing heterogeneous clinical data. When augmen-
ted with retrieval techniques, such models become more
effective.

Several recent studies have discussed the expanding role
of LLMs across health care domains[30]. For example, an AI

system developed for liver diseases [31] provided personal-
ized treatment strategies that improved diagnostic outcomes.
Graph-based retrieval-augmented generation (GraphRAG)
integration has shown benefits in nephrology by increas-
ing output precision and reliability [20], while LLMs have
supported psychotherapy automation [32] and administrative
workload reduction in personalized medicine [33]. Some of
these use cases are captured in Table 2, reinforcing the
applicability of RAG-augmented LLMs in clinical practice.

Table 2. Representative use cases of artificial intelligence in clinical health care.
Study Year Model Key contributions
Ge et al [31] 2024 AIa model for liver diseases Enhanced diagnostic accuracy and patient management tailored for liver diseases.
Ong et al [34] 2023 Clinical decision support

system
Improved clinical decision-making with RAGb-enhanced LLMsc, offering precise
predictions and treatments.

Miao et al [20] 2024 LLM-RAG for nephrology Improved accuracy and reliability in nephrology advice by integrating RAG with
LLMs.

Stade et al [32] 2024 LLMs in psychotherapy Explored the potential of LLMs to support and potentially automate aspects of
psychotherapy.

Tripathi et al [33] 2024 Personalized medicine AI
model

Demonstrated how LLMs can automate administrative tasks, reducing clinicians’
workload from electronic medical records.

aAI: artificial intelligence.
bRAG: retrieval-augmented generation.
cLLM: large language model.

Noting the above, this paper proposes a novel architecture
for GDM care that integrates (1) a local LLM for domain-spe-
cific control and privacy, (2) an RAG engine for contextual
grounding, and (3) a domain-specific KG to capture interrela-
ted medical evidence.

This combination enables real-time generation of
explainable, evidence-informed treatment recommendations
for GDM management, even in resource-constrained settings.

As compared with previous studies, such as those by Nambiar
et al [2] and Tripathi et al [33], which focused on gen-
eral dosing automation or task simplification, this study
addresses a critical gap: the need for adaptive, fine-grained,
and explainable intervention support in the prenatal context.

From a technical standpoint, our contributions are (1)
the construction of a GDM-specific KG derived from
peer-reviewed literature; (2) the use of RAG-enhanced
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local-LLMs to retrieve, contextualize, and generate targeted
care pathways; and (3) a PoC system architecture that is
interpretable, domain-grounded, and designed for offline,
privacy-preserving environments.

The PoC will support timely intervention and align
with the practical realities of underserved clinical contexts;
consider the plight of a rural doctor in the Global South,
where internet connectivity, specialist clinician availability,
and cutting-edge expertise may be limited. It represents a step
toward deploying technically robust and clinically meaningful
AI to applications of acute need.

Following this introduction, the remainder of this paper is
organized as follows. The next section addresses the methods,
and specifically, a description of developing design artifacts
for a PoC. In the Results section, we put the system through
simulated scenarios and test the responses for accuracy, bias,
and performance benchmarking. In the Discussion section,
we present the principal findings along with an analysis of
key contributions of the research. The paper ends with a
section on Conclusions, which also covers limitations and
suggestions for further research.

Methods
Prototyping a PoC
Health care professionals, particularly those in densely
populated and resource-constrained regions of the Global
South, often face significant challenges in accessing timely,
evidence-based medical insights. Attending training sessions
or reviewing vast volumes of literature under time pressure is
impractical, especially in scenarios where specialist expertise
or standardized guidelines are lacking. Our approach uses
computational methods to extract, structure, and contextual-
ize medical knowledge using GenAI and KG technologies to
address this need.

Our primary objective was to develop a PoC of a
clinical AI assistant that would support the management
of GDM. This GraphRAG-based architecture combines
entity extraction from published research, KG construction,
and RAG to generate clinically grounded, context-aware
responses. As illustrated in Figure 2, the PoC framework
follows a 5-stage pipeline.

Figure 2. Process flow of the proposed graph-based retrieval-augmented generation approach, showing data collection, entity extraction, knowledge
graph construction, and retrieval-augmented generation for AI-assisted clinical support for gestational diabetes mellitus. API: application program-
ming interface; GDM: gestational diabetes mellitus; LLM: large language model; PRISMA: Preferred Reporting Items for Systematic Reviews and
Meta-Analyses.

• Data collection and preparation: The Semantic Scholar
API retrieved relevant research articles on GDM
interventions. A PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses)–guided
filtering process was applied to ensure that inclusion
criteria were met, resulting in a refined corpus of 1212
high-quality articles.

• Entity extraction: Using GPT-3.5 Turbo (OpenAI)
and few-shot prompting, entities such as treatments,
outcomes, risk factors, and disease indicators were
extracted from full-text articles. Semantic consolidation
(eg, grouping “low-carb diet” and “reduced carbohy-
drate intake”) ensured terminological consistency.

• KG construction: Extracted entities and their relation-
ships were encoded into a Neo4j graph database. The
graph allowed efficient traversal of clinical pathways,
such as connecting interventions to outcomes and
risk profiles. Each node and edge pair was annotated
with medical metadata, such as intervention strength,
evidence level, or prevalence.

• Query processing and graph retrieval: When a user
query is submitted (eg, “What treatments control
GDM?”), the system was designed to retrieve relevant
subgraphs using Cypher queries. These results are then
passed to the LLM for augmentation and contextual
response generation by incorporating patient records.
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• Response generation: The final output is a clinically
coherent and relevant response integrating retrieved
evidence and a generative explanation. For example,
based on retrieved data, the model might respond:
“Insulin therapy controls GDM by lowering blood sugar
levels and preventing complications.” If asked why, the
system might explain: “Insulin enables glucose uptake
by cells throughout the body, particularly muscle
and fat cells, by facilitating glucose transport across
cell membranes. Without adequate insulin, glucose
accumulates in the bloodstream while cells are starved
of this essential energy source.”

This multistep process would allow the system to
access reputable and current medical research to produce
explainable, evidence-grounded outputs for clinical decision

support. Each component of this workflow is further detailed
in the following subsections.
Data Collection
To develop a high-quality domain-specific KG for GDM, we
conducted a systematic search using the Semantic Scholar
API [35], a widely used biomedical research platform. The
query term “gestational diabetes interventions” was selected
to target studies focused on treatment strategies and clinical
outcomes. The search was restricted to articles published
between January 2000 and May 2024, to cover both founda-
tional and contemporary research. The data collection and
filtering process adopted PRISMA guidelines, as illustrated in
Figure 3.

Figure 3. PRISMA flow diagram showing the systematic data collection and filtering process, detailing identification, screening, eligibility
assessment, and inclusion of research articles for knowledge graph construction.

• Identification: The initial search produced 2305 journal
articles. No records were found from registers.
Automated filters removed 638 ineligible records based
on metadata mismatches or irrelevant domains. No
duplicate entries were detected.

• Screening: The remaining 1667 articles were screened
by 2 reviewers (FR and SB) based on titles and
abstracts. This stage ensured that only articles related to
GDM diagnosis, treatment, management, or interven-
tion outcomes were retained.

• Eligibility: A total of 1212 full-text articles were
deemed eligible based on the inclusion criteria. Articles
were excluded at this stage (n=455) due to full-text
unavailability, access limitations, or insufficient clinical
relevance.

• Inclusion: The final corpus consisted of 1212 peer-
reviewed studies, all of which were used to extract
entities and construct the GDM-focused KG.

While Semantic Scholar provided comprehensive coverage
and metadata-rich access, reliance on a single source
introduces potential limitations, such as limited representation
of non-English or region-specific research and sensitivity to
keyword variations. Future work could explore multilingual
database integration and broader query strategies to reduce
potential selection bias.

Nonetheless, for developing our PoC, the selected dataset
offered sufficient diversity and clinical validity to enable
meaningful experimentation and system development.

JMIR DIABETES Evangelista et al

https://diabetes.jmir.org/2026/1/e76454 JMIR Diabetes 2026 | vol. 11 | e76454 | p. 6
(page number not for citation purposes)

https://diabetes.jmir.org/2026/1/e76454


Entity Extraction
Following the curation of the GDM research corpus, the
next step involved extracting clinically relevant concepts,
including treatments, risk factors, and outcomes, from
the published research. This process was executed using
OpenAI’s GPT-3.5 Turbo 16K API [36], which supported
advanced natural language processing for domain-specific
knowledge extraction. Rather than relying on pretrained
biomedical ontologies, we adopted a lightweight prompting-
based approach aligned with our PoC’s experimental and
modular goals.

A few-shot prompting strategy was applied to guide the
language model in identifying and structuring entities of
interest in a usable format. Guided by 3 medical doctors,
the prompts were manually engineered to show expected
outputs, such as intervention types (eg, insulin therapy, diet,
and physical activity), intervention parameters (eg, frequency,
duration, and dosage), and associated maternal and infant
outcomes. This enabled the model to consolidate synony-
mous or semantically related expressions (such as “low
carbohydrate diet” and “reduced carb intake”) into a unified
entity representation. The same prompts also encouraged
disambiguation of overlapping terms and discouraged the
duplication of entities across articles.

The outputs were parsed into structured formats, which
included both individual entities and the semantic relation-
ships among them, for example, linking “insulin therapy”
as a treatment that “controls” GDM, or connecting “smart-
phone-based lifestyle interventions” to enhanced “maternal
outcomes.” These entities and their connections were then
directly integrated into the KG in the next stage of develop-
ment.

This stage of entity extraction was led by the coauthor
(FR), who specializes in bioinformatics and uses a technique
we describe as “medical prompt engineering.” The objective
was to simulate how future clinical AI assistants might
extract structured knowledge from unstructured medical
literature autonomously. However, we acknowledge that such
extractions would require validation by specialist health care
professionals to ensure accuracy and reliability for clinical
deployment.

The overall entity extraction workflow, including prompt
design, model guidance, semantic structuring, and preparation
for graph integration, is visualized in Figure 4.

Figure 4. Entity extraction workflow using large language models. The diagram is an example of the process for extracting interventions, risk
factors, and relationships, which produces structured and context-aware knowledge representation for gestational diabetes mellitus management.
GDM: gestational diabetes mellitus; LLM: large language model.

Construction of the KG
Upon completion of the entity and relationship extraction,
the structured data were integrated into a KG using Neo4j,
a widely used open-source graph database [37]. Neo4j is
optimized for representing interconnected biomedical data,
making it well-suited for capturing the multifactorial nature
of GDM management, which involves dynamic relationships
between interventions, risk factors, outcomes, and complica-
tions [38].

The KG construction process involved linking each
extracted entity, such as insulin therapy, dietary strategies, or
risk factors like obesity, to its semantically relevant mappings
using directional edges labeled with relationship types (eg,
“controls,” “contributes to,” and “enhances”). Each node was
annotated with descriptive labels and properties derived from
the literature, and relationships were encoded with metadata
such as source references or study types, when available.

All nodes and edges were imported into Neo4j through a
structured ingestion pipeline, enabling clinicians or research-
ers to query the KG using the Cypher query language. This
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functionality allowed for exploratory clinical queries, such
as identifying interventions most frequently associated with
improved maternal outcomes in high-risk GDM cases or
tracing evidence paths for specific treatment combinations.

The resulting KG facilitated context-aware clinical
decision support by surfacing specific evidence-informed
insights. For example, a clinician’s query, such as “What
are the best interventions for GDM in patients with a

BMI over 30?” could retrieve targeted graph segments
linking relevant interventions (eg, low glycemic index diet
and structured exercise regimens) to outcomes validated
in the literature. This dynamic capability is depicted in
Figure 5, which illustrates a representative graph traversal
initiated by a clinician’s question, leading to personalized
treatment recommendations based on the structural relation-
ships captured in the KG.

Figure 5. Knowledge graph–powered clinical support system for gestational diabetes mellitus. The graph-based search retrieves relevant interven-
tions and relationships, giving treatment recommendations. GDM: gestational diabetes mellitus; KG: knowledge graph.

The KG serves as the core reasoning backbone of the
prototype clinical assistant, consolidating distributed medical
evidence into a queryable visual knowledge substrate that can
be updated as new medical evidence emerges.
KG-Based RAG
To enhance the clinical utility of the constructed KG, we then
implemented an RAG approach [39]. This hybrid architecture
combines traditional retrieval mechanisms with generative
LLMs to produce contextually grounded and medically
sound responses. In clinical settings, where decision-mak-
ing depends on subtle interpretation and evidence-based
insights, this integration mitigates the limitations of stand-
alone generative systems like SLMs.

While LLMs, such as ChatGPT (OpenAI), can pro-
duce fluent and context-aware responses, they are prone
to hallucinations, outdated knowledge, and domain-specific
inaccuracies [19]. Conversely, RAG addresses these gaps

by coupling LLMs with reputable (peer-reviewed) external
knowledge sources. For example, no medical claim, such as
bleach being a valid treatment for COVID-19, would have
gone into the KG. In our PoC, entity-aware retrieval from the
Neo4j-based GDM KG provides factual context, which the
LLM then uses to generate a tailored response. This integra-
tion significantly improves factual grounding and interpreta-
bility, essential in critical domains, such as maternal health
[20,21].

Using the PoC follows a 5-stage pipeline, visualized in
Figures 6 and 7. Beginning with an initial clinical query,
the system encodes the user input and dynamically retrieves
semantically matched information from the KG. This process
accounts for risk factors, interventions, and patient-spe-
cific context, including medical records and socioeconomic
profiles, thereby aligning output with real-world variability in
treatment planning.
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Figure 6. End-to-end process flow of the graph-based retrieval-augmented generation solution. The pipeline processes medical literature and patient
data, integrating them into a structured knowledge graph for AI-driven clinical decision support. GDM: gestational diabetes mellitus; KG: knowledge
graph; LLM: large language model.

Figure 7. Structured retrieval and response generation process in graph-based retrieval-augmented generation. The diagram shows how clinician
queries interact with medical knowledge sources, pattern matching, and graph-based retrieval to enhance artificial intelligence–generated responses.
GDM: gestational diabetes mellitus; LLM: large language model.

Figure 6 shows the underlying LLM-KG pipeline, includ-
ing entity extraction, relationship linking, and graph query
generation. Figure 7 offers a complementary perspective
by emphasizing end-to-end data flow, from patient query
and literature matching to LLM response generation, thus
highlighting how both structured (graph-based) and unstruc-
tured (textual) data are integrated to yield context-aware,
personalized responses.

Although Figures 6 and 7 present a simplified overview
of system functionality, the development process required

iterative prompt engineering, guided tuning, and manual
validation to align LLM outputs with the domain-specific
vocabulary and relationships obtained from GDM research
literature [32,33]. This iterative refinement helped ensure
that the GraphRAG PoC consistently produces clinically
meaningful recommendations rooted in the KG, avoiding
spurious correlations and unverified claims.
Evaluation Framework and Metrics
The evaluation of the GraphRAG-powered local LLM
for GDM was conducted through a structured framework
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designed to assess both technical performance and clinical
relevance. Applications of AI in health care require rigorous
validation beyond prompt engineering. This study used a
multidimensional evaluation process using a combination of
quantitative metrics and clinician-generated prompts.
Evaluation Objectives
The primary objective of the evaluation was to measure the
effectiveness of the proposed PoC in three “fit for purpose”
criteria: (1) generating clinically relevant, context-aware
responses to queries on GDM management; (2) comparing its
performance against widely used open-source LLMs in terms
of accuracy and interpretability; and (3) assessing whether
the retrieval-augmented approach of GraphRAG significantly
improves response quality in medical decision support. These
criteria reflect the critical nature of clinical decision-mak-
ing, where AI-generated content’s clarity, accuracy, and
contextual relevance directly affect patient safety and clinical
outcomes.
Testing Environment
The evaluation was conducted in a simulated environment,
without the involvement of live patients or human partici-
pants. The GraphRAG-powered local LLM was deployed on
an offline computing environment, ensuring that no external
API calls or third-party cloud services influenced the test
outcomes. The KG was prepopulated with medical research
articles, as described in the “Prototyping a PoC” section, and
served as the contextual knowledge base for all retrieval-aug-
mented queries.
Prompt Design and Benchmark Models
The prompts used in the evaluation were carefully crafted
to simulate realistic clinical and layperson queries. These
prompts were generated from two user groups: (1) layper-
sons represented by 5 contributors (the authors) simulating
patient queries, verified for clarity and simplicity; and (2)
clinicians comprising 2 general practitioners (GPs) and 1

specialist physician, who created queries based on typical
clinical decision-making scenarios.

Furthermore, 2 independent medical practitioners reviewed
all prompts to ensure clinical relevance (were the prompts
aligned with real-world GDM management scenarios?) and
content clarity (did the prompts avoid ambiguous phrasing or
unrealistic edge cases?)

The GraphRAG system was then benchmarked against 3
open-source LLMs commonly used in medical AI research.
The comparison is intended to analyze the performance of
a domain-augmented local model (our PoC) against both
general-purpose and specialized health care LLMs.

• ChatGPT [36]: A versatile, general-purpose LLM.
• Claude [40]: Known for generating coherent, contextu-

ally rich responses.
• BioMistral [41]: A domain-specific medical LLM

optimized for health care contexts.
Our benchmarking compares the GraphRAG-enabled local
LLM against the above 3 LLM models to assess clinical
relevance, contextual accuracy, and terminological consis-
tency. These models were selected based on availability,
health care domain relevance, and ease of integration into
our evaluation pipeline. While we acknowledge the increasing
prevalence of open-source LLMs such as LLaMA 3 (Meta
AI), due to hardware compatibility constraints and inference
framework differences at the time of testing, we could not
integrate LLaMA 3 within the test environment. LLaMA
3 and other emerging open-source models, such as Mistral
7B (Mistral AI) and Phi-3 (Microsoft), should be included
in future benchmarking updates to expand our comparative
analysis, which is suggested as future work.
Evaluation Metrics and Rationale
Following established practices in evaluating health care AI
models [42,43], we used 5 complementary metrics, each
addressing a distinct dimension of AI-generated response
quality. These are presented in Table 3.

Table 3. Metrics and their clinical significance in evaluating artificial intelligence–generated responses.
Metric Purpose Significance
Relevance score Measures alignment between response content and user

query.
Critical for clinical decision support, where irrelevant or off-
topic answers compromise safety.

BLEUa score Evaluates syntactic similarity and phrase structure match
against reference answers.

Ensures AIb responses replicate validated medical language
without distortion.

Jaccard similarity Quantifies overlap in key medical terms between model
response and reference.

Captures preservation of clinical terminology essential in
GDMc management.

BERTScore Assesses semantic similarity using deep contextual
embedding.

Evaluates whether model responses capture the intended
clinical meaning beyond surface text.

METEOR Evaluate fluency and coherence in response generation. Ensures clarity and interpretability for both clinicians and
patients.

aBLEU: bilingual evaluation understudy.
bAI: artificial intelligence.
cGDM: gestational diabetes mellitus.

Together, these metrics comprehensively address the
precision, contextual relevance, and interpretability of an AI

model’s outputs, which are key requirements for clinical use
cases.

JMIR DIABETES Evangelista et al

https://diabetes.jmir.org/2026/1/e76454 JMIR Diabetes 2026 | vol. 11 | e76454 | p. 10
(page number not for citation purposes)

https://diabetes.jmir.org/2026/1/e76454


Evaluation Process
The evaluation adopted the following steps:

First, each LLM, including GraphRAG, was presented
with the same curated set of 20 prompts (10 from simula-
ted layperson queries and 10 from clinicians), covering core
aspects of GDM management, such as risk factors, diagnos-
tics, treatment, and complications. The 5 coauthors (EE, FR,
SB, AN, and RS) jointly drafted the layperson prompts, while
clinical prompts were contributed by 2 practicing GPs and
reviewed by a third medical specialist.

Second, the system’s responses were compared against
reference answers, curated from clinical guidelines and expert
consensus statements.

Third, evaluation was conducted in a zero-shot retrieval-
augmented setting. No supervised training or fine-tuning was
performed. The local LLM operated on a preconstructed KG
as the contextual grounding source.

Fourth, automated evaluation metrics (bilingual evaluation
understudy [BLEU], Jaccard Similarity, BERTScore, and
METEOR) were computed using standard natural language
processing evaluation libraries. These scores reflect surface-
level accuracy, overlap in medical terminology, and semantic
similarity.

Fifth, manual relevance scores were assigned by 2
independent medical reviewers on a 1‐5 scale, based on
clinical applicability, specificity, and usefulness of responses.

Finally, results were averaged across all prompts and
models and reported for comparative analysis in the Results
section. While performance scores are high (eg, BLEU=0.99
approximately), this reflects a small, curated test set and
should not be considered generalizable. CIs and interrater
agreement were not calculated in this phase of the research.
Benchmarking Scope and Qualifications
The evaluation was designed to show the technical feasibility
and domain relevance of the GraphRAG framework, rather
than to establish clinical deployment readiness for deploy-
ment. Consequently, the following qualifications would
apply:

First, all responses were evaluated in a simulated,
offline environment without involvement of human patients,
real-time electronic health record data, or live clinical
workflows.

Second, no supervised training or dataset splitting was
involved, as the system uses RAG rather than end-to-end
training. All prompts were presented statically to each LLM.

Third, as recorded in our research logs, the KG was
constructed from a curated corpus of 1212 peer-reviewed,
English-language articles on GDM interventions, extracted
via Semantic Scholar API (2000‐2024). The KG contains
approximately 2750 nodes, 5800 edges, and 18 entity types,
including risk factors, therapies, dietary interventions, and
outcomes.

Fourth, the evaluation prompt set, while medically
validated, remains small and nonrandomized. No demo-
graphic stratification, multilingual testing, or subgroup
fairness analysis was performed.

Fifth, performance metrics assessed linguistic and
contextual quality only. There has been no empirical
validation of clinical efficacy, patient safety, or decision-mak-
ing utility.

Finally, future iterations should expand prompt diversity,
compute interrater reliability scores, and explore prompt-
based fairness auditing. Prospective clinical trials and
feedback-integrated deployment pipelines are also planned.
Ethical Considerations
This study involved the development and technical validation
of a PoC clinical AI assistant for GDM management. The
research was conducted entirely in a simulated environment
without involving human participants, personal health data,
or clinical interventions. Accordingly, formal ethics board
approval was not required for this PoC phase of the research
study.

More specifically, this was in accordance with ethical
research standards for early-stage AI system development
in health care. We ensured that no human participants, no
personal health data, and no real-time clinical interventions
resulted from this PoC phase. While fairness across subpopu-
lations was not evaluated in this version, future efforts shall
explicitly address this dimension.
Data Source Transparency
The data used in this study were drawn exclusively
from public-domain, reputable academic research, collected
through the Semantic Scholar API. All articles retrieved
were from peer-reviewed scientific publications, ensuring
no private, sensitive, or patient-level data were accessed or
processed. The use of publicly available literature aligns with
ethical practices in computational biomedical research, where
datasets are preferably in the public domain.
Simulated Testing Environment
The PoC was evaluated using simulated prompts designed by
the research team and reviewed by independent clinicians.
No real patient interactions, medical records, or clinical
environments were involved in the testing. This approach was
explicitly chosen to focus on the feasibility of the pro-
posed GraphRAG-powered knowledge retrieval and response
generation approach.

All comparisons against open-source LLMs (ChatGPT,
Claude, and BioMistral) were also conducted offline, with no
data sent to external servers during evaluation, ensuring data
security and compliance with our concern that we do not train
such models with our research data.

Responsible AI Development
The design and development of the GraphRAG framework
adhered to ethical AI principles, emphasizing:
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1. Transparency: Clear explanation of methods and
evaluation.

2. Safety: Avoidance of deploying untested AI systems in
live clinical environments.

3. Explainability: Use of a KG for contextual reasoning
and improved interpretability.

4. Bias awareness: Although no patient data were used,
future iterations will integrate fairness auditing to
minimize algorithmic bias.

Fairness and Demographic
Representation
The development of the PoC used a small set of cura-
ted prompts authored by the research team and clinicians.
Hence, no demographic, linguistic, or regional diversity
was represented in the evaluation. This limitation may
impact the generalizability of the system’s recommenda-
tions across patient populations. Future prototyping iterations
will integrate fairness-aware evaluations, including prompt
diversity across age, gender, geography, and language, to
improve equitable performance across clinical contexts.

Results
System Demonstration Scenarios
The PoC beta testing in a simulated environment high-
lighted the feasibility of the GraphRAG-powered clinical
support system for GDM management. The PoC generated
personalized, clinically relevant responses to GDM-related
queries, simulating interactions between patients, health care
professionals, and the system.

Figures 8 and 9 present an illustrative scenario display-
ing how the GraphRAG local LLM could support clinical
consultations. In this example, a patient presents a ques-
tion regarding the top risk factors for GDM. A health care
professional, such as a GP or maternity nurse, uses the
GraphRAG-enabled clinical support system to process the
query into a prompt.

Figure 8. GraphRAG-based clinical support system for gestational diabetes mellitus - iconographic representation. AI: artificial intelligence; GDM:
gestational diabetes mellitus; genAI: generative artificial intelligence.
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Figure 9. GraphRAG-based clinical support system for gestational diabetes mellitus - process flow diagram. AI: artificial intelligence; GDM:
gestational diabetes mellitus; GP: general practitioner.

As illustrated in Figure 8, the system processes the initial
query. It generates a concise, contextually relevant response
(ie, with the benefit of the patient’s medical records), listing
key GDM risk factors such as maternal weight, family history
of diabetes, and maternal age. The process flow highlights
how the system integrates domain-specific medical literature
and patient-related contextual data through its underlying
Neo4j KG, enabling it to deliver evidence-based, patient-cen-
tered recommendations.

Figure 9 further elaborates on the underlying process. The
patient’s query initiates a series of steps where the system
retrieves relevant interventions and relationships from the
KG. The local LLM then generates a response with context-
aware medical knowledge. The final advisory to the health
care professional integrates the patient’s specific context and
up-to-date medical research, avoiding potential inaccuracies
and hallucinations.

This demonstration shows how GraphRAG can stream-
line clinical consultations by providing up-to-date, evidence-
backed responses. Beyond basic patient interactions, the
system can address more advanced clinical questions, such as
identifying appropriate screening tests for GDM or evaluating
intervention effectiveness. With explanation features, these
capabilities support informed decision-making for health care

providers and patients, enhancing the overall quality of care
for GDM.

The detailed results of the system’s performance in various
scenarios are presented in the following 3 subsections. The
first examines the system’s responses to layperson prompts.
The one that follows analyzes its performance with clinically
oriented queries from 2 GPs. The third presents the compara-
tive analysis of model performance using standard evaluation
metrics across GraphRAG and 3 other LLMs.
GraphRAG Local LLM Response to
Prospective Patients’ Prompts
The GraphRAG Local-LLM generated clear, clinically
relevant responses to patients’ queries related to GDM
management. These prompts were designed to simulate
questions that a general audience might ask during health
consultations with their health care provider. The system’s
responses highlighted its ability to simplify complex medical
concepts while maintaining factual accuracy and clinical
relevance.

Table 4 presents example prompts and the corresponding
GraphRAG-generated responses. For example, when asked
about the top 3 factors determining gestational diabetes risk,
the system correctly identified key risk factors such as weight,
family history of diabetes, and maternal age.
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Table 4. Responses to patient prompts.
Prompt Response
What are the top 3 factors determining gestational diabetes
risk?

• Weight: Being overweight or obese increases your risk of
gestational diabetes.

• Family history: Having a family history of diabetes or a personal
history of gestational diabetes in a previous pregnancy can increase
the risk.

• Age: Older women, especially those over 25, are at higher risk of
developing gestational diabetes.

How can we safeguard a baby’s health and wellness for
gestational diabetes patients?

• Monitor blood sugar levels, follow a healthy meal plan, engage
in regular physical activity, take prescribed medications, attend
prenatal check-ups, and follow healthcare guidance.

What nutrition is recommended to prevent gestational
diabetes?

• Eat a balanced diet high in fiber and low in added sugars
and unhealthy fats. Include fruits, vegetables, whole grains, lean
proteins, and healthy fats.

Are gestational diabetes patients more likely to have a
cesarean or a standard delivery?

• Women with gestational diabetes are more likely to have a cesarean
delivery due to risks like macrosomia, shoulder dystocia, and birth
trauma.

What neonatal screening should a couple with a family
history of diabetes undergo before planning to have a
baby? Are there precautions they could take?

• Consider genetic counseling and testing. Preconception counseling
can help identify risks and precautions, with personalized plans
developed alongside health care professionals.

These results show the system’s capacity to convey medical
information in a manner accessible to nonspecialist users. The
responses accurately addressed the queries using medically
appropriate language, ensuring clarity for a general audience.
Responses to GP Prompts
The GraphRAG system was evaluated using clinically
relevant prompts provided by GPs. These prompts simulated
real-world clinical queries related to the diagnosis, manage-
ment, and long-term planning of GDM. The system generated
medically valid responses as assessed by the participating
GPs and diabetologists, addressing both basic and advanced
aspects of GDM care.

Responses to Prompts From GP 1
Table 5 presents the responses generated by GraphRAG for
the first set of prompts from GP 1. These prompts cov-
ered foundational aspects of GDM diagnosis and manage-
ment. For example, when asked how to diagnose GDM, the
system recommended the glucose challenge and tolerance
tests, reflecting standard clinical guidelines. The responses
addressed both diagnostic procedures and recommended
clinical management steps.

The responses provided clear, evidence-aligned answers
covering diagnostic tests, management strategies, fetal
monitoring approaches, and long-term complications.

Table 5. Responses to prompts from general practitioner 1.
Prompt Response
How do I diagnose gestational diabetes? Gestational diabetes is typically diagnosed through a glucose challenge or glucose

tolerance test. A sugary solution is consumed, and blood sugar levels are tested. If
results are high, a more detailed glucose tolerance test is done. A health care provider
must confirm the diagnosis and guide management.

What measures would you advise me to take once I am
diagnosed with GDMa?

Monitor blood sugar regularly, follow a health care–guided meal plan, engage in
physical activity, attend prenatal care visits, take prescribed medications, and stay in
contact with your health care team.

What fetal changes should I monitor (and how) in
gestational diabetes?

Monitor fetal growth via regular ultrasounds, track amniotic fluid and fetal movements
(kick counts), and consult health care providers for ongoing prenatal assessments.

What are the cutting-edge medical and non-medical
interventions I could take to control GDM in pregnant
mothers?

Use technologies like continuous glucose monitors and personalized insulin therapy.
Also, nonmedical options such as tailored diets, physical activity, and stress reduction
should be applied, ideally with specialist consultation.

What are the long-term complications for GDM mothers
and their offspring?

GDM increases the risk of type 2 diabetes in mothers and raises the chance of obesity,
metabolic syndrome, and diabetes in children. Long-term follow-up is essential for
both.

aGDM: gestational diabetes mellitus.
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Prompts From GP 2 and GraphRAG
Local LLM Responses
Further evaluation was conducted using prompts from GP 2,
which explored broader clinical topics, including screening
tests, genetic factors, and emerging therapies. Table 6
summarizes the system’s responses.

According to the medical practitioners, the Graph-
RAG system generated contextually appropriate respon-
ses, addressing established clinical practices and emerging
medical topics in GDM care.

Table 6. Responses to prompts from general practitioner 2.
Prompt Response
What basic screening tests for GDMa should I perform and
monitor regularly?

Standard tests for screening and monitoring GDM include:
• Glucose challenge test (GCT) – a one-hour blood test after

consuming a sugary drink.
• Oral glucose tolerance test (OGTT) – a follow-up fasting test with

multiple blood draws.
• Glycated hemoglobin (A1C) – reflects average glucose levels over

the past months.
• Regular blood glucose monitoring – daily checks using a

glucometer. Consult a healthcare provider for tailored testing
schedules.

On balance, does medical evidence suggest a greater
genetic influence of the father or the mother for DMb?

Both parents can genetically influence the risk of DM. The extent varies by DM type
and individual genetic profiles. Environmental factors also play a key role.
  

If the patient and her husband decide to go ahead with
starting a family, what medical interventions can I
prescribe to alleviate the risk of GDM?

Medical interventions include:
• Healthy diet and lifestyle habits.
• Regular blood glucose monitoring.
• Medications such as metformin, if required.
• Referral to a nutritionist or diabetes educator.
• The provider should personalize recommendations.

Can proper oral and dental care alleviate GDM during
pregnancy? What are some effective measures?

There is no direct link between oral care and GDM prevention. However, good dental
hygiene supports overall pregnancy health. Recommendations include brushing twice
daily, flossing, and routine dental visits.

Are there promising stem-cell or epigenetic treatments that
could ease my patient’s hesitance to start a family?

Stem-cell and epigenetic research show potential, but are still in the early stages.
Patients should consult reproductive specialists for the latest updates and personalized
advice.

aGDM: gestational diabetes mellitus.
bDM: diabetes mellitus.

Comparative Model Performance

Overview of Benchmarking Procedures
The GraphRAG system was benchmarked against 3 widely
used LLMs, BioMistral, ChatGPT, and Claude, using a
standardized set of clinical prompts focused on GDM
management. The models’ responses were evaluated using
5 quantitative metrics that assessed relevance, linguistic
precision, terminology consistency, contextual understanding,
and coherence.

Benchmarking Results
Figure 10 presents a comparative analysis of the models’
average performance across 5 evaluation metrics. GraphRAG

achieved the highest scores in BLEU, Jaccard Similarity,
and BERTScore, indicating strong alignment with clinical
phrasing, preservation of key medical terms, and deep
contextual accuracy. Relevance Score and METEOR also
reflect competitive performance across all models.

Figure 11 shows a radar chart (also known as a Kav-
iat diagram) of the same results, highlighting GraphRAG’s
balanced strengths across multiple evaluation dimensions.
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Figure 10. Comparative performance of GraphRAG, BioMistral, ChatGPT, and Claude across evaluation metrics. BLEU: bilingual evaluation
understudy.

Figure 11. Radar chart visualizing model performance across key metrics. BLEU: bilingual evaluation understudy.

Key Observations
1. Relevance Score: GraphRAG and BioMistral showed

comparable results, aligning well with the clinical intent
of queries.

2. BLEU Score: GraphRAG outperformed all other
models, reflecting precise replication of validated
clinical expressions.

3. Jaccard Similarity: GraphRAG highlighted superior
consistency in medical terminology usage across
responses.
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4. BERTScore: The model achieved the highest semantic
similarity, indicating deep contextual understanding.

5. METEOR: GraphRAG generated coherent and
fluent responses suitable for clinical communication,
comparable with ChatGPT and Claude.

These findings demonstrate the technical feasibility of the
proposed GraphRAG-enabled local LLM. However, we stress
that as a PoC evaluated in a simulated environment, the
prototype is not ready to be deployed in real-world clinical
settings. Even so, these results show that the GraphRAG
approach effectively balances linguistic precision, contex-
tual depth, and clinical relevance in GDM decision support
scenarios. Besides BioMistral, ChatGPT, and Claude, new
open-source LLMs such as LLaMA 3, Mistral 7B, and Phi-3
are becoming prevalent in health care AI. Although hard-
ware and framework limitations prevented their inclusion
in this study, we recognize their importance as baselines.
Future work will add these models to expand our comparative
analysis.

Discussion
Principal Findings
This study demonstrates that the GraphRAG-enabled local
LLM consistently produces clinically relevant, contextually
grounded, and medically precise responses for managing
GDM. Through a rigorous benchmarking process against
established open-source models, BioMistral, ChatGPT, and
Claude, the GraphRAG approach achieved top-tier perform-
ance across all key evaluation metrics: BLEU Score, Jaccard
Similarity, and BERTScore. The radar chart (Figure 11)
illustrates well-balanced strengths of the model across
multiple evaluation dimensions. Notably, first, GraphRAG
matched BioMistral in Relevance Score, indicating strong
alignment with the clinical intent behind queries of the health
care providers. This score reflects how accurately the system
understands and responds to the specific clinical context
of the user, which is critical in decision support. Second,
GraphRAG outperformed all models in BLEU Score and
Jaccard Similarity, showcasing its ability to reproduce clinical
phrasing with syntactic accuracy and maintain consistency
in key medical terminologies, a vital factor for preserving
the meaning of technical medical advice. Third, it achieved
a superior BERTScore, showing deep semantic understand-
ing. This reflects the capacity of the model to generate
responses that not only match expected language structures
but also accurately convey complex clinical relationships
within GDM care. Finally, the superior performance across
these diverse metrics stems from the architectural design of
GraphRAG. By integrating domain-specific KGs with RAG,
the system grounds its responses in verified clinical evidence

rather than relying solely on probabilistic language patterns.
This integration mitigates common challenges of general-pur-
pose LLMs, such as hallucinations and domain irrelevance,
ensuring that responses are both medically accurate and
context-aware.

These findings validate the core hypothesis that combining
structured medical knowledge and patient-specific informa-
tion with GenAI significantly enhances the quality, safety,
and reliability of AI-generated clinical recommendations.
Implications for AI-Driven Clinical
Decision Support
The empirical results of this study highlight the transfor-
mative potential of GraphRAG-powered local LLMs in
advancing AI-enabled clinical decision support systems. This
is particularly the case within specialized domains, such as
GDM management, where expertise is scarce and uneven.
By combining structured retrieval from a domain-specific
KG with contextual generation, the system addresses the
longstanding gap between unstructured clinical queries and
structured evidence-based medical knowledge.

The GraphRAG approach addresses a critical limitation of
general-purpose LLMs, such as ChatGPT and Claude, which
often prioritize linguistic fluency over clinical accuracy.
While these models can generate coherent responses, they
frequently lack the domain specificity needed for accurate
clinical guidance. In comparison, the responses of Graph-
RAG consistently align with established clinical guidelines,
reflecting a deep understanding of current medical stand-
ards and practices. For example, when prompted to hear
about GDM diagnosis, GraphRAG accurately recommended
the glucose challenge and tolerance tests, mirroring clinical
best practices. This indicates that the system is not merely
generating plausible text but retrieving and contextualizing
domain-specific evidence to support clinical decision-making.

The clinical utility of such contextually enriched responses
is profound. In healthcare, where treatment decisions directly
affect patient safety and outcomes, factual accuracy and
contextual relevance are not optional but essential. The ability
of GraphRAG to consistently deliver these qualities posi-
tions it as a valuable tool for supporting health care pro-
viders, particularly in low-resource or high-pressure clinical
environments where access to specialist knowledge may be
limited.

The practical utility of GraphRAG is further illustrated
in Textbox 2, which presents a representative response to a
clinically relevant query about managing insulin resistance
in patients with GDM. Unlike generic language models,
GraphRAG provides structured, evidence-aligned recommen-
dations grounded in recent clinical guidelines.
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Textbox 2. GraphRAG response to a clinical query on managing GDM.
Query: What are the latest recommendations for managing insulin resistance in GDM patients?
GraphRAG response: Recent studies suggest a multi-faceted approach to managing insulin resistance in GDM patients,
including:
1. Personalized low glycemic index diets, emphasizing complex carbohydrates and fiber-rich foods.
2. Structured exercise programs combining aerobic and resistance training for at least 150 minutes per week.
3. Early initiation of metformin where lifestyle modifications are insufficient, as per the 2023 guidelines.
4. Continuous glucose monitoring to optimize insulin dosing and adjust lifestyle recommendations.
5. Regular screening for comorbidities such as hypertension and dyslipidemia, which contribute to insulin resistance.

The above sections highlight the ability of GraphRAG to
transform unstructured clinical questions into actionable,
guideline-compliant insights. By synthesizing evidence from
domain-specific KGs, the system avoids unsupported claims
and produces responses aligned with best clinical practices,
supporting its role as a trustworthy clinical decision support
tool.
Contributions to AI in Health Care
This study advances the field of health care AI by present-
ing a scalable, contextually enriched clinical support system
specifically designed for GDM management. We believe
that our key contribution lies in the system’s ability to
empower GPs and nonspecialist clinicians, particularly in
underserved and resource-limited health care environments
with limited access to endocrinology specialists and up-to-
date clinical knowledge. By using a KG-driven retrieval
process, the system surfaces context-specific clinical insights
without requiring clinicians to conduct exhaustive manual
literature reviews or consult multiple sources. Here, a word
of caution is in order. We reiterate that the PoC works best
as a clinical assistant; that is, a health practitioner must be in
the loop. This is important given the dangers of unsupervised
AI agents, which may usurp the role of a human caregiver
without human oversight [44]. It is concerning that a recent,
peer-reviewed (and in our view, misguided) study actually
normalizes a doctor versus machine “Turing-test of authentic-
ity” [45].

Furthermore, this study shows domain-specific superiority
over general-purpose LLMs. While models such as ChatGPT
and Claude can produce coherent responses, they lack
the fine-tuned contextual sensitivity and clinical precision
essential for specialized health care domains. In comparison,
the architecture of GraphRAG is optimized to capture the
complex relationships inherent in GDM management, such as
patient history with risk factors, availability of interventions,
and outcome pathways for follow-up medical care, thereby
enhancing both response accuracy and clinical applicability.

This study contributes to a novel retrieval-augmented
GenAI architecture that translates domain-specific medical
knowledge into clinically actionable insights. It serves a need;
namely, access to the latest, credible medical research in
time- and resource-constrained environments. In health care,
timely and science-based interventions are crucial.

Technical Innovations Driving
Performance Gains
The robust performance of the GraphRAG-enabled local
LLM stems from the integration of 3 core technical inno-
vations that address longstanding limitations in clinical AI
systems.

First, the KG integration allows for the structured
representation of complex clinical relationships between risk
factors, interventions, symptoms, and outcomes. Unlike flat
text embedding, the KG enables the system to reason over
interconnected entities and contextual dependencies, ensuring
that recommendations are grounded in the complete clinical
scenario rather than isolated data points.

Second, the RAG framework of the system addresses the
gap between static model knowledge and dynamic, evolving
medical evidence. The system mitigates temporal gaps by
integrating retrieval from an up-to-date domain-specific KG.
It reduces the risk of hallucinated or outdated responses,
a common flaw in general-purpose LLMs trained on static
corpora.

Third, the domain-specific adaptation of the model through
targeted prompting strategies and fine-tuning on GDM-related
interventions enhances its ability to understand and accurately
apply specialized clinical terminology in localized contexts.
This adaptation ensures that the system’s responses reflect
the nuanced requirements of GDM management, capturing
both the syntactic precision and semantic depth necessary for
high-stakes clinical situations like emergency room triage.

We believe that these innovations enable the system
to move beyond generic language generation, delivering
interpretable, actionable, and clinically validated responses.
This advancement represents a meaningful step toward
reliable AI-assisted clinical decision-making, especially for
chronic disease management scenarios where timely and
context-aware recommendations are essential.
Conclusions

Limitations and Challenges for Clinical
Deployment
While the initial results from this PoC study are promis-
ing, several critical limitations must be addressed before
GraphRAG can be translated into clinical practice. Inten-
ded as a PoC, the system has not undergone field valida-
tion. Future studies involving real-world patient interactions,
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clinician feedback, and longitudinal follow-up are essential to
establish the model’s safety, reliability, and usability in live
health care environments.

A second major consideration concerns data privacy
and protection. Although this PoC did not involve patient-
level data, real-world deployments would necessitate strict
adherence to data protection frameworks. The integration
of privacy-preserving learning paradigms, such as federated
learning, would allow models to be trained on decentralized
clinical data without exposing sensitive patient information.
Complementary techniques, such as blockchain for differen-
tial privacy and secure multiparty computation, could further
protect patient confidentiality.

The interpretability of AI-generated clinical responses
remains a pressing challenge. While GraphRAG uses
structured retrieval to enhance contextual grounding,
clinicians must be able to trust and explain its outputs.
Future iterations of the system should integrate explainabil-
ity frameworks such as Shapley Additive Explanations or
Local Interpretable Model-agnostic Explanations, enabling
clinicians to trace and retrieve evidence on how specific KG
pathways contribute to a given clinical recommendation.

In addition, seamless workflow integration will be critical
for adoption. Clinical decision support systems must embed
naturally within existing electronic health record platforms,
minimizing disruption to physician workflows. Without such
integration, even the most accurate systems risk being
underused in clinical practice.

As with many multistage AI pipelines, GraphRAG is also
subject to the risk of error propagation, where inaccuracies in
earlier stages, such as entity extraction or graph construction,
may be compounded in downstream response generation.
While our current prompt engineering and domain-specific
graph design reduce this risk, future versions will integrate
intermediate validation checkpoints, feedback loops, and
retrieval-failure auditing to ensure response fidelity and
system transparency.

Another key limitation is the reliance on English-language
peer-reviewed articles from a single aggregator (Seman-
tic Scholar). This has excluded regional or non-English
medical literature with culturally adapted GDM interventions.
Future work should incorporate multilingual and regionally
diverse corpora to improve the model’s generalizability and
contextual sensitivity, particularly in Global South health care
settings.

Finally, the computational demands of GraphRAG’s RAG
architecture present scalability challenges. The latency and
resource consumption must be optimized to support real-time
inference in time-sensitive clinical settings, especially in
environments where computational capacity may be limited.
Addressing these challenges is essential for transitioning
GraphRAG from an academic PoC to a clinically viable,
ethically responsible AI system.

Broader Implications and Future Research
Directions
Building on the demonstrated feasibility of our PoC,
our future research agenda is designed to advance the
GraphRAG framework along 2 primary axes: strategic
domain expansion and core technical refinement. First, we
propose to strategically adapt the framework for other
data-intensive clinical areas, including cardiovascular disease,
oncology, and mental health, where evidence-grounded
decision support is crucial. Second, we will enhance the core
retrieval engine by integrating advanced algorithms, such as
contextual BM25 and embedding-based summarization, to
improve precision. To improve robustness and transparency,
we propose implementing new retrieval-specific metrics, such
as recall and failure rates. We have established a roadmap
and aim to pursue these enhancements in our next research
cycle, solidifying the GraphRAG pipeline as a viable tool for
real-world clinical decision support.

The legal, ethical, and intellectual property considerations
will also shape future deployments. To ensure transparency
and reduce legal risks, future iterations will prioritize training
on open-access datasets such as PubMed Central, adhering
to responsible AI development practices and open science
principles.

To protect patient privacy and mitigate algorithmic
bias will remain core ethical imperatives. The federated
learning and anonymized blockchain solutions could support
decentralized training across institutions without compro-
mising patient confidentiality. Bias audits, fairness-aware
modeling, and hallucination mitigation strategies, such
as reranking retrieved evidence and diversifying training
datasets, will improve the reliability and equity of the
system’s clinical recommendations. In such a trusted
platform, integrating GraphRAG with real-time patient data
could enable personalized clinical decision support, customiz-
ing recommendations to individual genetic profiles, lifestyle
factors, and environmental exposures. This evolution toward
precision medicine would represent a significant leap forward
in AI-driven health care delivery.

To overcome the limitation of computational costs, the
enhanced system will require architectural optimizations to
enable scalability in resource-constrained clinical settings.
Techniques such as prompt caching, adaptive chunking of
graph queries, and hybrid retrieval strategies will reduce
computational costs and response latency. This will support
deployments in low-bandwidth environments, such as rural
clinics and community health centers.

In the long term, retrieval-augmented LLMs, such as
GraphRAG, are envisioned not as autonomous clinical agents
but as clinical copilots, supporting, rather than replacing
human clinicians. Their evaluation in live clinical workflows
will be critical to determining their optimal role as decision-
support systems. A reflective perspective on this motivation is
presented in Textbox 3, showing the personal origins of our
research question.
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Textbox 3. Closing vignette on gestational diabetes.
“I do not wish to alarm you, Mrs. Sharma, but you have been diagnosed with gestational diabetes and your baby is 10
pounds at birth. Both of you need to be careful.”
[Ward Nurse in Singapore’s Kandang Kerbau Maternity Hospital to the mother of the last author, circa 1961]
In 2022, the mother passed away peacefully at the age of 88, her diabetes controlled with insulin injections for decades.
The “baby” (the last author and principal investigator of this study [RS]) was diagnosed with type 2 diabetes at the age of
60, giving rise to our research question of whether a graph-based retrieval-augmented generation solution could change the
outcome for both with timely, relevant best practices.

In closing, this paper sought to establish the feasibility of
a GraphRAG-enabled local LLM architecture for gener-
ating clinically relevant, context-aware responses in the
management of diseases, such as GDM [46]. By integrat-
ing domain-specific KGs with RAG, the system outper-
formed general-purpose LLMs across multiple evaluation
metrics, offering evidence-grounded and terminologically
precise clinical recommendations. While this work serves
as a technical PoC, future research will need to focus on
(1) prospective clinical validation involving real-time patient

interaction, (2) multimodal agents to improve accessibility
and cultural sensitivity, and (3) integration of explainable
AI modules, such as Shapley Additive Explanations–based
KG traceability, resulting in enhanced trust and transparency
for the 2 key humans in the loop – the patient and her
doctor. Ultimately, we believe the transformative potential
of AI-powered decision support tools will personalize care
and improve clinical outcomes, particularly in underserved
societies.
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