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Abstract

Background: Diabetes prediction requires accurate, privacy-preserving, and scalable solutions. Traditional machine learning
models rely on centralized data, posing risks to data privacy and regulatory compliance. Moreover, health care settings are
highly heterogeneous, with diverse participants, hospitals, clinics, and wearables, producing nonindependent and identically
distributed data and operating under varied computational constraints. Learning in isolation at individual institutions limits
model generalizability and effectiveness. Collaborative federated learning (FL) enables institutions to jointly train models
without sharing raw data, but current approaches often struggle with heterogeneity, security threats, and system coordination.

Objective: This study aims to develop a secure, scalable, and privacy-preserving framework for diabetes prediction by
integrating FL. with ensemble modeling, blockchain-based access control, and knowledge distillation. The framework is
designed to handle data heterogeneity, nonindependent and identically distributed distributions, and varying computational
capacities across diverse health care participants while simultaneously enhancing data privacy, security, and trust.

Methods: We propose a federated ensemble learning framework, FedEnTrust, that enables decentralized health care par-
ticipants to collaboratively train models without sharing raw data. Each participant shares soft label outputs, which are
distilled and aggregated through adaptive weighted voting to form a global consensus. The framework supports heterogene-
ous participants by assigning model architectures based on local computational capacity. To ensure secure and transparent
coordination, a blockchain-enabled smart contract governs participant registration, role assignment, and model submission
with strict role-based access control. We evaluated the system on the PIMA Indians Diabetes Dataset, measuring prediction
accuracy, communication efficiency, and blockchain performance.

Results: The FedEnTrust framework achieved 84.2% accuracy, with precision, recall, and F-score of 84.6%, 88.6%, and
86.4%, respectively, outperforming existing decentralized models and nearing centralized deep learning benchmarks. The
blockchain-based smart contract ensured 100% success for authorized transactions and rejected all unauthorized attempts,
including malicious submissions. The average blockchain latency was 210 milliseconds, with a gas cost of ~107,940 units,
enabling secure, real-time interaction. Throughout, patient privacy was preserved by exchanging only model metadata, not raw
data.

Conclusions: FedEnTrust offers a deployable, privacy-preserving solution for decentralized health care prediction by
integrating FL, ensemble modeling, blockchain-based access control, and knowledge distillation. It balances accuracy,
scalability, and ethical data use while enhancing security and trust. This work demonstrates that secure federated ensemble
systems can serve as practical alternatives to centralized artificial intelligence models in real-world health care applications.
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Introduction

Diabetes continues to pose a growing global health burden,
requiring timely prediction and proactive management to
reduce complications and improve quality of life [1]. While
machine learning has emerged as a powerful tool for diabetes
prediction, conventional approaches often rely on central-
ized data repositories [2-4]. This reliance introduces serious
challenges related to patient privacy, regulatory compliance
(eg, Health Insurance Portability and Accountability Act
(HIPAA), General Data Protection Regulation (GDPR), and
susceptibility to cyberattacks [5]. Moreover, centralized data
aggregation is increasingly impractical due to fragmented
data ownership across institutions and regions [6].

Real-world health care systems are inherently heterogene-
ous, encompassing a wide range of contributors—from large
hospitals and urban clinics to wearable health devices in
remote settings [7]. These entities vary significantly in data
volume, quality, and computational capacity. The data are
often nonindependent and identically distributed (non-1ID),
reflecting demographic, clinical, and behavioral diversity [8].
As a result, models trained within a single institution or
on homogeneous datasets often struggle to generalize across
settings, limiting their effectiveness and scalability.

To address these limitations, collaborative federated
learning (FL) has emerged as a compelling solution [9].
However, applying FL to real-world diabetes prediction
presents several unresolved challenges. In particular, current
FL frameworks often struggle with:
* security vulnerabilities, such as model poisoning and
adversarial manipulation [10]

* lack of coordination and trust, especially in decentral-
ized, multiparty settings [11]

» performance degradation due to client heterogeneity
and non-IID data distributions [12]

While several FL frameworks [13-16] have been explored for
decentralized health care analytics, most assume homogene-
ous model architectures, single global models, or idealized
trust environments and do not explicitly address lightweight
or resource-constrained participants at the edge [17,18].
Existing systems, such as Biscotti [19] and Chang et al
[20], rely on gradient sharing and therefore require structur-
ally aligned models and consistent computational resources,
while recent blockchain-enabled FL frameworks incorporate
differential privacy but still assume homogeneous models
or centralized coordination [21,22]. Furthermore, blockchain
[23], a promising technology for ensuring integrity, transpar-
ency, and access control in decentralized systems, has seen
limited integration with FL, especially in diabetes predic-
tion contexts. Other blockchain-enabled approaches, such as
Shalan et al [24], provide secure access control but do not
incorporate mechanisms for interoperable knowledge sharing
across heterogeneous local models.
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In contrast, FedEnTrust introduces an integrated design
that simultaneously addresses model heterogeneity, non-IID
data, trust and identity verification, and secure update
submission. By combining soft-label knowledge distillation
with blockchain-verified RBAC, FedEnTrust enables robust
collaboration across diverse health care systems while
preventing unauthorized or malicious updates. FedEnTrust
introduces a novel integration of:

* ensemble learning, allowing clients to train diverse
local models best suited to their data and computational
constraints

* soft-label knowledge distillation, enabling effective
model aggregation across non-IID participants

* blockchain-based smart contracts, which provide
tamper-proof coordination, role-based access control,
and participant accountability

FedEnTrust represents a step forward in secure and collab-
orative artificial intelligence (AI) for health care, with the
following key contributions:

1. Heterogeneity-aware ensemble design: Each participant
trains a model tailored to its resource level, supporting
real-world deployment across varied health care nodes.

2. Knowledge distillation-based aggregation: We
introduce a soft-label ensemble mechanism that
improves convergence and generalization across
non-1ID data.

3. Blockchain-enabled trust layer: Our smart contract
system enforces participant registration, access control,
and secure model submissions without a centralized
authority.

4. Comprehensive evaluation: Using the PIMA Indians
Diabetes Dataset, we demonstrate that FedEnTrust
improves prediction accuracy; maintains privacy; and
ensures secure, low-latency collaboration.

By addressing the intersection of privacy, trust, heterogeneity,
and security, FedEnTrust provides a practical and deployable
framework for Al-powered diabetes prediction in real-world,
decentralized health care systems.

Methods

Overview of FedEnTrust

FedEnTrust is a secure, privacy-preserving federated
ensemble learning framework designed to address the
challenges of decentralized diabetes prediction across
heterogeneous health care environments. It enables collabo-
rative learning without centralizing sensitive patient data,
accommodates diverse computational resources, and defends
against malicious behaviors through a blockchain-coordinated
trust infrastructure. The core modules of FedEnTrust include
(1) heterogeneity-aware local model training, (2) knowledge
distillation via soft label sharing, (3) blockchain-based secure
coordination, and (4) adaptive ensemble aggregation.
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These modules work together to realize 3 key objectives: aggregator but must first pass through blockchain-based
maintaining patient privacy, enabling equitable participation role-based access control (RBAC) validation, where the smart
across institutions with varying capacities, and ensuring contract verifies participant identity, role permissions, and
secure collaboration in a decentralized system. submission metadata. Validated soft labels are incorporated
into an adaptive weighted aggregation mechanism, producing
global pseudo-labels that are redistributed to all participants.
The blockchain records transaction hashes and role enforce-
ment events, ensuring traceability without revealing sensitive
data.

Figure 1 illustrates the end-to-end data flow across the
4 modules. Local raw data remain strictly on the device.
Each participant trains a heterogeneous local model and
generates soft-label probability vectors. These soft labels,
along with accuracy metadata, are sent off-chain to the

Figure 1. Overview of the FedEnTrust architecture. Soft labels generated by local models are authenticated through blockchain-based role-based
access control and combined using adaptive weighted aggregation to produce pseudo labels for continued local training. ML: machine learning.

7 N
| Module 1: Decentralized Participants with local ML models ]

| il N (O ) G /t\ - )
wiog | | Ed ® o 2 S |

e

| | Large Local C‘?T}"lnun_it)," Local Urban Health Local Personal Local |
| Hospital ~ Dataset el i Kiosk  Dataset|""""""""""""""] Health Tracker Dataset
g o D O ) O |
TAE-E A .
| =E § S & adn QO ||
\\Modcl 1 ch—tunc// \ModEIZ Flne-tune// \M0d613 Fine-tune / \ Model N ch—luny J
S — —t p— R —_ — —_ — - —_ J— —_ P — — I —_ R —_ —_ —_ — -1 —_ —
Y
Soft Labels Q Soft Labels Soft Labels (1) @ Soft Labels
Pty Patey) @ Pistsy) @ Il
Module 2:
Knowledge g Pseudo-labels g Pseudo-labels s Pseudo-labels  Pseudo-labels 5 |
Distillation Laye ® (distilled) ® (distilled) ® (distilled) (distilled) )
T T =) 1

Module 3: Secure Ensemble Knowledge Coordination with Blockchain

, ﬁ = %‘p ﬁ @GF .
- B = B | Adapt
BB B ; 4

i © Participants  Access Model Reject Hashing / ) = Aggregation
| Smart Contract Registration  Control Update Unauthorized Signature quule 4:
5 : Assign Roles Aggregation Attempts Verification Adaptive Model ¢
e e e e e e e e e e e e e e e a e e e e e e e e e e e e e e e e e . Aggregation O
e
Deploy N Aggregated .
[ « .
Block n . % o}{o cee
g Verified UpdatcE o"'\a
» > . Aggregation
> Prev. Block Timestamp Bloc!r.cham . m
Hash Validation Node Bj
¢ O
Block n-1|{O3E6 Merkle Root Nonce (o m] Block n+1 Pcnscmblc
https://diabetes.jmir.org/2026/1/e79166 JMIR Diabetes 2026 | vol. 11 1e79166 1 p. 3

(page number not for citation purposes)


https://diabetes.jmir.org/2026/1/e79166

JMIR DIABETES

Architectural Novelty and Comparison
With Existing FL Frameworks

Real-world health care environments exhibit substantial
diversity in computational capacity, data distributions, trust

Hasan & Li

requirements, and security risks. To contextualize the
design of FedEnTrust within this landscape, we compare
its architectural capabilities against representative FL and
blockchain-enabled frameworks in Table 1.

Table 1. Architectural comparison of FedEnTrust with representative federated learning frameworks.

Challenge in FedEnTrust (Our work) Hasan et al [15] Biscotti [19] Chang et al [20] Microcontroller FL?
real-world health care [17]

FL

Heterogeneous Heterogeneity-aware model Supports MLP Assumes all clients Single model Designed for ultra-low-

assignment; each node
trains model matching its
device capacity; ensemble
aggregation aligns
knowledge across disparate
models

compute environments
(hospitals, clinics,
kiosks, wearables)

assumes similar
capacity clients

Non-IID¢ and
imbalanced data
across institutions

Soft-label knowledge
distillation + weighted
aggregation improve cross-
site generalization with non-1ID

distributions

Smart contract—driven
RBACS; on-chain
validation of model
submissions; rejects
malicious or unauthorized
updates

Cross-institution trust
and secure
participation

On-chain validator roles +
metadata checks prevent
poisoned soft labels before
aggregation

Protection against No defense against
malicious updates
(poisoning, fake

uploads)

model uploads

Soft labels unify outputs of
RF', XGBE, DT, SVM,
KNN into comparable
probability space

Interoperability across
model types

Homogeneous ML
models; limited
interoperability

Scalability across Local model

distributed health care

Lightweight soft-label
sharing reduces

networks communication overhead  scalability
and suits mixed-resource
environments

Auditability and Full on-chain audit log of  Centralized

registrations, updates, and
permissions

traceability for
compliance (HIPAAk
or GDPR))

auditability

models but generally

Local models trained
independently; static
averaging struggles

Minimal security; no
on-chain validation

malicious gradient or

averaging; moderate

coordination; limited

run comparable
gradient-sharing deep
models

Gradient aggregation
without distillation;
non-IID data reduces
convergence

Uses blockchain only
as consensus layer,
not for role-level
access control

Consensus prevents
tampering but not
model poisoning

Requires same model
structure for gradient
fusion

Heavy blockchain
consensus overhead
limits scalability

All gradient updates
stored on-chain—high
cost

structure required;
difficult for low-
resource clients

DP9-sanitized
gradients reduce
signal strength on
non-1ID data

Smart contract
manages DP
gradients, not
participation
permissions

DP reduces leakage
but not poisoning

Single-model FL;
weights must match

DP gradient
exchange increases
bandwidth needs

Stores only
gradient summa-
ries; limited audit
transparency

power devices; not
suitable for multitier
health care

Very limited support for
complex non-I1ID
medical data

No trust or participation
assurance mechanism

No adversarial defense
features

No model
interoperability

Limited to
microcontroller
networks

Not designed for
regulated health care
settings

9FL: federated learning.

bML: machine learning.

“IID: independent and identically distributed.
dpP: differential privacy.

°RBAC: role-based access control.

fRF: random forest.

8XGB: extreme gradient boosting.

hDT: decision tree.

ISVM: support vector machine.

JKNN: k-nearest neighbors.

XHIPAA: Health Insurance Portability and Accountability Act.
IGDPR: General Data Protection Regulation.

Unlike approaches such as Hasan et al [15], Biscotti [19],
and Chang et al [20], which rely on homogeneous model
structures or gradient-based updates, FedEnTrust supports
heterogeneity-aware model assignment. Each participant
trains a locally suitable model (eg, random forest, extreme
gradient boosting, decision tree, support vector machine

https://diabetes.jmir.org/2026/1/e79166

[SVM], k-nearest neighbors [KNN]) based on its availa-
ble resources, enabling participation from hospitals, clinics,
kiosks, and wearable devices.

FedEnTrust also differs from blockchain-enabled systems
such as Shalan et al [24] and TinyFL [25]. While
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these frameworks integrate blockchain for logging or
access control, they do not incorporate soft-label knowl-
edge distillation or adaptive ensemble aggregation to
unify heterogeneous model outputs. FedEnTrust introdu-
ces a unique coupling of soft-label-based distillation with
blockchain-enforced RBAC, enabling secure verification of
participant identity and role prior to model update submis-
sion, on-chain logging of update hashes to ensure auditability,
prevention of malicious or unauthorized contributions before
they influence aggregation, and interoperability of predictions
across diverse model architectures.

This integration ensures that only authenticated, validated
soft labels contribute to the global model. This design is
particularly effective for non-IID and imbalanced health care
data settings, where traditional gradient-averaging approaches
struggle.

Module 1: Decentralized Local Training
With Heterogeneous Models

FedEnTrust begins with a network of decentralized health
care participants, including large hospitals, regional clinics,
kiosks, and personal health trackers, each training its own
machine learning model locally. These models are tailored
to each participant’s computational capabilities and data
volume. For example, high-resource hospitals may use deep
neural networks, while low-resource settings use shallow
learning such as KNN or support vector classifier (SVC) to
support real-time inference with minimal memory demands.

This heterogeneity-aware model assignment ensures that
all participants, regardless of scale or technical capacity, can
contribute meaningfully. Local training is performed privately
using internal datasets, aligning with privacy regulations such
as HIPAA and GDPR.

Module 2: Knowledge Distillation via Soft
Labels

To facilitate collaborative learning without exposing raw
data, participants generate soft labels, probability distributions
over prediction classes (eg, diabetic, nondiabetic). These
soft labels encode richer information than binary outputs
and are shared with a central aggregator, enabling cross-site
knowledge transfer.

Soft Label Generation

Each participant generates soft labels, probability distri-
butions reflecting its model’s confidence across classes,
and transmits these predictions to the aggregator. Unlike
gradient-based approaches, soft labels create an interopera-
ble representation across heterogeneous model types. Before
being used for ensemble aggregation, every soft label
submission is paired with metadata including local valida-
tion accuracy, model identifier, and round number. For an
input instance x, the participant’s model outputs a probability
vector:

https://diabetes.jmir.org/2026/1/e79166
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C
P(x) = [p, pp -, D] €R’, where )\ p.=1 (1)

c=1

These soft labels encapsulate the model’s confidence across
the Cclasses and support knowledge transfer without sharing
raw patient data or internal model parameters.

To address differences in how heterogeneous models
calibrate probability outputs, FedEnTrust applies tempera-
ture scaling, which smooths the probability distribution by
dividing logits z;(x)by a temperature parameter T:

PY(x) = softmax (Zi(x)), T=2 )

T

A temperature of T = 2 was selected because values greater
than 1 produce smoother, less overconfident probability
distributions, which improves the stability of aggregation
across models with different calibration characteristics. A
small temperature (eg, T =1) can lead to overly sharp
probabilities that amplify noise, while excessively large
values dilute useful predictive signals. Empirical testing
showed that T = 2 offers an optimal balance.

Dynamic Weight Updates Across Federated
Rounds

Once soft labels are generated by each participant model, the
system proceeds to combine these distributed outputs into a
unified global prediction. This ensemble consensus represents
a key step in transferring collective intelligence across all
nodes while respecting the constraints of data privacy and
computational diversity.

The ensemble aggregation process employs adaptive
weighted soft voting, where more reliable and accurate
models are given stronger influence. For example, a well-
resourced clinic with consistently high validation perform-
ance will contribute more to the global prediction than a basic
kiosk with limited data. However, no participant is excluded;
each contributes according to its validated strength, ensur-
ing fairness and inclusivity in the learning process. FedEn-
Trust adaptively updates the influence of each participant
during communication round ¢. Each participant evaluates its
model using a shared public validation subset to compute

Acci(t), which is the validation accuracy of participant i at

round ¢. The ensemble assigns each participant a normalized
contribution weight:

Accgt)

w = 22
l Ziv: 1Acc§t)

3

To prevent dominant institutions (eg, large hospitals
with more data) from exerting disproportionate influence,
FedEnTrust applies weight clipping, capping Wi(t) at an upper
bound. This ensures contribution fairness and reduces the risk
of bias toward specific demographic subpopulations.

JMIR Diabetes 2026 | vol. 11 1e79166 1 p. 5
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Justification for Heterogeneous Model
Assignment

The model architectures listed in Table 2 were selected to
reflect realistic resource constraints and deployment contexts:
* Random forest (hospitals): Hospitals possess sufficient
computational capacity and large datasets; random
forest models capture nonlinear relationships and
perform well on tabular clinical data.
* XGB (regional clinics): XGB provides strong perform-
ance under moderate computational resources, making
it suitable for mid-sized clinics.

Table 2. Simulated decentralized participants and their models.

Hasan & Li

* Decision trees and KNN (community clinics or kiosks):
These models require minimal training cost and support
real-time inference in low-power environments.

e Linear SVM (wearables or personal trackers): Lin-
ear SVM has a lower memory footprint than logis-
tic regression and offers more stable performance on
small, noisy physiological samples typically produced
by wearables.

Model
architecture

ID Participant Key parameters

Resource Remarks

level

Weight

1 Large hospital Random forest

data_use=50%

2 Urban health
kiosk

K-nearest
neighbors

3 Regional clinic XGBoost

data_use=30%

4 Community Decision tree

health clinic

5 Personal health
tracker

Support vector
machine

n_estimators=130max_depth=15max_features=0.75

n_neighbors=5 algorithm='auto'data_use=5%

learning_rate=0.01max_depth=10n_estimators=180

max_depth=Nonecriterion='gini'data_use=10%

kernel="linear'C=1.0data_use=5%

Very high Trains complex
models on large
datasets; serves as
a high-capacity
node

Low 0.05 Designed for low-
resource
environments
using simple,

efficient models

High 0.30 Supports
moderately
complex modeling
on medium-sized

datasets

Medium 0.10 Runs interpretable
tree-based models
with moderate

resource needs

Very low 0.05 Uses lightweight
models suitable for
wearables and

embedded devices

This heterogeneity-aware mapping allows each participant to
train a model aligned with its resource profile while still
contributing to a unified ensemble.

Enhanced Knowledge Distillation and Pseudo-
Label Generation

In each communication round ¢, participant models generate

calibrated soft probability vectors Pf(x), which are aggregated
using dynamically updated participant weights to produce a
global soft prediction.

Our proposed model aggregates the calibrated soft labels
using the dynamic weights to produce a global soft predic-
tion:

P = S Wi P(x)

i=1

“4)

Because aggregation operates entirely on probability
distributions rather than gradients or model parameters,
FedEnTrust naturally supports heterogeneous machine

https://diabetes.jmir.org/2026/1/e79166

learning architectures across hospitals, clinics, kiosks, and
personal wearable devices while preserving data locality and
privacy.

To improve the reliability of knowledge transfer, each
participant’s soft predictions undergo normalization followed
by temperature scaling (with T = 2) to smooth overconfi-
dent outputs. The ensemble output is then evaluated using
a confidence-based filtering mechanism, where pseudo-labels
are generated only if the maximum ensemble probability
satisfies:

max (P'(x)) > 7 5)
With 7 =0.7 Predictions failing this criterion are discar-
ded to prevent the propagation of uncertainty or noise.
Accepted pseudo-labels are normalized and redistributed to
participants, where they are appended to local datasets and
used for continued training in the subsequent round. This
feedback loop enables low-resource participants to bene-
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fit from globally distilled knowledge while retaining local
autonomy.

All soft-label submissions are validated through the
blockchain-based RBAC mechanism described in Module 3.
Only soft labels originating from authenticated and authorized
roles (eg, model-provider) are accepted. Validated submis-
sions are incorporated into an adaptive weighted soft-vot-
ing process, where participant weights are updated based
on observed local performance across rounds. The resulting
global outputs are then redistributed as pseudo-labels for the
next training iteration, ensuring robustness against non-IID
data distributions, preventing malicious or fabricated updates,
and enhancing cross-site generalization across heterogeneous
health care environments.

Module 3: Blockchain-Based Secure
Coordination

Overview

Module 3 employs an Ethereum-based smart contract to
authenticate participants, enforce role permissions, and log
immutable update metadata. When a node attempts to upload
soft labels, the smart contract verifies the participant’s role,
identity, timestamp, and declared accuracy. The contract then
generates and stores a hashed representation of the update,
which validator nodes review. Only soft labels that receive
approval from multivalidators are admitted to the aggrega-
tion pool. This ensures tamper resistance, prevents poison-
ing attacks, and provides end-to-end traceability for health
care compliance requirements. When a participant attempts
to contribute soft labels, the smart contract performs the
following checks:
1. Identity verification: Confirms that the contributor is a
registered network participant.
2. Role validation: Ensures the contributor holds a
permitted role to submit model outputs.

Table 3. Comparison of blockchain platforms.

Hasan & Li

3. Metadata verification: Confirms the integrity of
reported metrics (eg, accuracy, round number).

4. Hash logging: Stores a transaction hash to provide
auditability without exposing any data.

Only after passing these checks is the soft label included
in the aggregation pool. This design prevents poisoned or
fabricated updates from influencing the global model and
eliminates single points of failure in participation man-
agement. By integrating RBAC directly with knowledge
distillation, FedEnTrust establishes a secure and transpar-
ent trust layer that coordinates collaborative learning across
diverse health care nodes.

Blockchain Platform Selection and
Justification

FedEnTrust is implemented on an Ethereum-compatible
private blockchain network. Ethereum was selected due
to its deterministic smart contract execution, robust secur-
ity guarantees, and mature tooling ecosystem. The plat-
form supports Solidity-based smart contracts, Remix IDE
integration, and widely adopted standards for access control
and event logging. These characteristics make Ethereum well
suited for privacy-preserving health care collaboration, where
verifiable execution and auditability are required.

To justify this choice, we compared Ethereum with
2 commonly used permissioned blockchain platforms:
Hyperledger Fabric and Corda. Table 3 presents a feature-
level comparison of Ethereum, Hyperledger Fabric, and
Corda across network type, decentralization, smart con-
tract support, privacy mechanisms, ecosystem maturity, and
application alignment. Given the need for flexible smart
contract logic, verifiable coordination, and broad compatibil-
ity with Internet of Things (IoT) and health care prototypes,
Ethereum provides the most practical platform for FedEn-
Trust.

Feature Ethereum Hyperledger fabric Corda
Network type Public or private Permissioned Permissioned
Decentralizatio

N Highly decentralized

Smart contracts  Solidity, robust tooling

Privacy Extensible via Layer-2/private networks

Ecosystem Very large developer ecosystem

Decentralized coordination across heterogeneous

Use alignment
18 nodes

Semi-decentralized

Chaincode (Go/Java/Node.js)

Strong privacy (channels, private
collections)

Enterprise-focused

Consortium-style enterprise networks

Semi-decentralized

Contract flows for financial
logic

Strong bilateral privacy

Financial institutions

Regulated financial workflows

Adversarial Threat Model and Security
Resilience

FL deployments in real-world health care environments may
be exposed to adversarial participants attempting to manip-
ulate the global model, disrupt training, or infer sensitive
information. To address these risks, we construct a struc-
tured threat model covering three primary attack categories:

https://diabetes.jmir.org/2026/1/e79166

(1) model poisoning; (2) collusion among compromised
participants; and (3) malicious soft-label injection, where
adversaries submit manipulated pseudo-probabilities to bias
the aggregation process.

FedEnTrust incorporates multiple, tightly coupled defense
mechanisms across its blockchain coordination and ensemble
aggregation layers to provide resilience against these threats.
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1. Model poisoning and malicious soft-label injection:

A compromised participant may attempt to submit
adversarial or fabricated soft labels to influence global
predictions. FedEnTrust mitigates this risk through
smart contract—enforced RBAC, which restricts update
submission exclusively to authenticated participants
holding an authorized model-provider role. Each
submission is accompanied by metadata including
round number, reported validation accuracy, and
timestamp, which are verified for internal consistency
before acceptance. To ensure integrity and prevent
replay or tampering, all submissions are cryptograph-
ically hashed and logged on-chain. Furthermore,
FedEnTrust employs validator redundancy, requiring
approval from multiple trusted validator nodes (eg, lead
hospitals within the consortium) before a submission

is incorporated into aggregation, preventing single-node
compromise.

2. Collusion and validator compromise: To reduce the
impact of colluding or compromised participants,
FedEnTrust adopts a consortium-style multivalidator
approval mechanism. No single validator can independ-
ently approve a model update; instead, a quorum
of validators must jointly authorize submissions. The
validator set itself is managed through governed smart
contract functions, allowing secure updates to valida-
tor membership over time and eliminating static trust
assumptions.

3. Blockchain-specific threats: Public blockchain
deployments may be vulnerable to front-running,
transaction reordering, or gas manipulation attacks.
FedEnTrust avoids these risks by operating on a private
Ethereum-compatible consortium network without a
public mempool, eliminating front-running opportu-
nities. Smart contracts use fixed gas budgets and
sequential transaction counters to ensure deterministic
execution and prevent reordering attacks.

4. Privacy leakage through on-chain metadata: Although
raw data and model parameters are never shared,
metadata leakage can still pose privacy risks. FedEn-
Trust minimizes exposure by storing only hashed
identifiers and role-verification logs on-chain. No
patient-level attributes, raw predictions, or model
parameters are recorded. All soft labels remain strictly
off-chain and are exchanged only between authorized
participants and the aggregator over secure channels.

5. Aggregation-level safeguards: Beyond blockchain
enforcement, the adaptive ensemble layer further
mitigates adversarial influence by applying temperature
scaling, confidence thresholds, and weight clipping.
These mechanisms limit the amplification of extreme
or adversarial soft-label probabilities and restrict the
maximum influence any single participant can exert,
even if it reports high accuracy.

Collectively, these mechanisms establish a multilayered
security architecture that protects FedEnTrust against
common poisoning, collusion, and manipulation attempts
at the coordination and authorization layers while pre-
serving decentralized operation and data privacy. The

https://diabetes.jmir.org/2026/1/e79166
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empirical results demonstrate that unauthorized and malicious
submissions are consistently detected and rejected through
blockchain-enforced RBAC and validator checks. While this
study focuses on secure enforcement and system robustness
rather than controlled adversarial learning simulations, the
framework is explicitly designed to support future evaluation
against targeted and untargeted attacks, including label-flip-
ping, probability-shifting, and adaptive adversarial strategies.

Module 4: Adaptive Model Aggregation
and Feedback Loop

After soft labels are aggregated into a global ensem-
ble prediction, FedEnTrust redistributes this consensus to
participants as pseudo-labels for retraining. This adaptive
aggregation ensures that high-performing models contribute
more to the global prediction, while low-resource nodes still
benefit from the collective knowledge.

This module enables faster convergence across non-IID
data, fair and inclusive participation, and improved generali-
zation without data sharing.

The result is a balanced feedback loop: local mod-
els become more aligned with the ensemble, improving
personalization and global performance over time.

System Implementation and Evaluation
Setup

We evaluated FedEnTrust using the publicly available PIMA
Indians Diabetes Dataset [26], which includes 768 records of
female patients with 8 clinical attributes and a binary diabetes
outcome. Data were preprocessed using the following steps:

1. Outlier detection with IQR and local outlier factor

2. Feature engineering (eg, binning glucose, insulin levels)

3. Normalization using z scores

4. Class balancing using the synthetic minority oversam-

pling technique [27]

As shown in Table 1, to simulate a real-world heteroge-
neous environment, the dataset was split across 5 simula-
ted participants with varying data volumes and models.
Each participant’s computational weight was reflected in
the aggregation process, mimicking operational conditions
ranging from large hospitals to low-power personal devices.

Ethical Considerations

This study exclusively used publicly available, deidentified
secondary datasets. No new data were collected, and no
interaction with human participants occurred. According to
institutional policy and US federal regulations (45 CFR 46),
research involving publicly available, deidentified data does
not constitute human participant research and is therefore
exempt from institutional review board review. As a result,
institutional review board approval was not sought, and
informed consent was not required. All datasets used in this
study were fully deidentified prior to public release. The data
contained no direct or indirect identifiers, and no attempt
was made to reidentify individuals. Data were accessed
and analyzed in accordance with the terms and conditions
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specified by the data providers. No participants were recruited
for this study, and no compensation was provided.

Results

Model Performance

We evaluated the FedEnTrust framework across 5 heteroge-
neous participants over 15 communication rounds, focusing
on prediction accuracy, precision, recall, and Fi-score. The
results highlight how collaborative learning and adaptive

Hasan & Li

aggregation significantly enhance performance, especially for
participants with limited data and computational resources.

Figure 2 shows the accuracy trajectories of each partic-
ipant over the FL rounds. Participant 1 (random forest),
equipped with the largest dataset and the highest compu-
tational power, consistently achieved the highest accuracy,
acting as a de facto “teacher” during knowledge distillation.
Its influence helped guide improvements in lower-resource
nodes, such as participant 5 (SVC) and participant 2 (KNN),
which showed steady gains over time.

Figure 2. Global model accuracy improves over ensemble federated round. DT: decision tree; KNN: k-nearest neighbors; RF: random forest; SVC:

support vector classifier; XGB: extreme gradient boosting.
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Figure 3 presents the corresponding model loss curves.
All participants experienced substantial loss reduction early
on, with convergence observed by round 15. Participant 1
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maintained the lowest loss throughout, while participants 4
and 5 showed marked improvement from higher initial losses,
demonstrating the benefit of federated collaboration.
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Figure 3. Federated model losses over rounds. DT: decision tree; KNN: k-nearest neighbors; RF: random forest; SVC: support vector classifier;

XGB: extreme gradient boosting.
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Table 5. Federated Models Performance after 15 rounds

Comparing the initial and federated performance results
(Tables 4 and 5) reveals substantial gains for all partici-
pants after collaborative training. Accuracy improvements
of up to 28% are observed in lower-resource participants,
and Fj-scores increase consistently across all models,

Table 4. Initial models’ performance.

7
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L 3
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Rounds

demonstrating the effectiveness of knowledge distillation and
adaptive aggregation in heterogeneous environments. For
example, participant 4 (decision tree) improves its F|-score
from 0.71 to 0.88, while participant 3 (XGBoost) improves
from 0.64 to 0.85, highlighting the benefits of ensemble-
driven knowledge transfer.

Participant Accuracy Precision Recall F1-score

1 0.78 0.35 0.84 0.33

2 0.71 0.73 0.71 0.72

3 0.65 0.63 0.65 0.64

4 0.70 0.73 0.71 0.71

5 0.67 0.67 0.68 0.67
Table 5. Federated models’ performance after 15 rounds.

Participant Accuracy Precision Recall F1-score

1 093 0.92 0.94 093

2 0.81 0.80 0.86 0.33

3 0.84 0.85 0.86 0.85

4 0.83 0.87 0.90 0.88

5 0.80 0.79 0.87 0.83
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To further characterize performance stability across commu-
nication rounds, Table 6 reports both the final accuracy at
round 15 and the mean (SD) of accuracy over all 15 federated
rounds. The relatively low SDs indicate stable convergence
behavior for all participants, even for lightweight models such
as KNN and SVC. These results confirm that FedEnTrust

Table 6. Federated model accuracy and variability across 15 rounds.

Hasan & Li

effectively accommodates device and data heterogeneity
while maintaining strong predictive performance, privacy
preservation, and decentralized operation. Tailored model
architectures, aligned with participant resource constraints,
ensure balanced contribution and efficient deployment across
the collaborative learning process.

Participant Model Final accuracy Accuracy, mean
(SD)

1 RF? 0.93 091 (0.04)

2 KNNP 0.81 0.79 (0.03)

3 XGB¢ 0.84 0.81 (0.05)

4 pTd 0.83 0.80 (0.03)

5 svce 0.80 0.76 (0.03)

4RF: random forest.

PKNN: k-nearest neighbors.
¢XGB: extreme gradient boosting.
dDT: decision tree.

®SVC: support vector classifier.

To assess whether the performance differences between
FedEnTrust and baseline models were statistically meaning-
ful on the PIMA Indians Diabetes Dataset, we conducted a
nonparametric bootstrap significance analysis using the same
held-out test set as the main evaluation. Because accuracy,
precision, recall, and Fi-score are bounded metrics that
may deviate from normality, bootstrap resampling provides a
distribution-free and robust alternative to parametric methods
such as the ¢ test. We used a 2-tailed ¢ test, as no direc-
tional assumption was imposed a priori and the objective
was to assess whether there was any statistically significant
difference between the compared methods.

We generated B=1000 bootstrap resamples by sampling
test instances with replacement from the held-out evalua-
tion set. For each bootstrap resample, we evaluated FedEn-
Trust and the decentralized baseline from Blockchain-FL
with Differential Privacy [20], which represents the clos-
est methodologically comparable prior work under similar
privacy and decentralization constraints. This procedure
produced 1000-sample empirical distributions for both
models’ accuracy. To quantify comparative performance, we
computed the bootstrap metric difference for each resample:

b b b
A( ) = M%e)dEnTrust -M l(3a)seline (6)

where M represents the accuracy, precision, recall, or
F1-score on bootstrap resample b. We then constructed 95%
CIs for each metric difference using the percentile method.

Table 7. Blockchain system configuration.

The bootstrap CI analysis indicates that FedEnTrust
achieves statistically significant performance improvements
over the decentralized blockchain-based FL baseline [20].
Specifically, FedEnTrust attains a mean accuracy of 0.842
with a 95% bootstrap CI of 0.831-0.853, compared to
0.827 (0.814-0.839) for the decentralized baseline. The
resulting accuracy difference of +0.015 yields a 95% CI
of 0.004-0.027, which excludes zero, indicating statisti-
cal significance at a=.05. These results confirm that the
performance gains observed for FedEnTrust are not due
to random variation but rather stem from its integration
of heterogeneous ensemble learning with blockchain-backed
coordination under privacy constraints.

These findings validate that FedEnTrust’s performance
gains are not only empirical but statistically robust, reinforc-
ing the effectiveness of combining heterogeneous ensemble
learning with blockchain-backed coordination in constrained
health care environments.

Blockchain Performance

We deployed the smart contract with 6 key functions and
evaluated it under a realistic configuration consisting of 5
decentralized health care participants and 1 global aggrega-
tor. These components facilitated secure collaboration, access
management, and federated training. The details are shown in
Table 7.

Operation Count Description

Total registered participants 5 Registered using registerClient()

Federated coordination nodes 1 Global aggregator for accuracy aggregation and model ensemble
Smart contract functions deployed 6 Includes registration, role assignment, update logging, and access

checks
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To assess computational efficiency, we monitored key metrics
such as gas consumption, data size, and latency for major
smart contract operations. These measurements reflect the
cost-effectiveness and responsiveness of blockchain-mediated
tasks.

These operations incur gas overhead beyond Ethereum’s
21,000 base gas due to additional computation, state

Table 8. Smart contract performance metrics.

Hasan & Li

updates, and event emissions. The modelUpdate() function,
for example, consumes about 98,560 gas (~295 bytes of
encoded parameters), balancing cost with functional depth
and traceability (Table 8).

Average latency

Operation Average gas cost Data size (bytes) (ms)
Client registration 118,073 370 220
Role assignment 109,820 345 210
Model update 98,560 295 195
Model aggregation 105,310 315 215

Despite slight delays compared to traditional systems, the
observed latency (195-220 ms) remains acceptable for health
care applications, considering the gains in trust, verifiability,
and tamper resistance. To assess longer-term stability, we
analyzed all 212 smart contract operations recorded during
the training. All valid transactions executed successfully

Table 9. Transaction integrity and enforcement metrics.

without anomalies, indicating stable performance across
repeated interactions. The expanded evaluation in Table 9
includes average latency, latency range, and variability across
extended cycles. These findings support the suitability of the
blockchain layer for multiround federated training.

Category Values Description
Total transactions 212 All smart contract operations
Valid transactions 201 Sucs:e.ssfully executed by authorized
participants

. . Unauthorized queries (6), malicious
Rejected transactions 11.6.19%) submissions (3), invalid role updates (2)
Success rate 100% All valid transactions completed without error
Average latency 214 ms Mean execution time for valid transaction
Latency range 14.8-36.2 ms Minimum and maximum observed latency
SD +4.7 ms Variability in execution time

Latency over extended cycles (100
iterations)
Finality time ~1 block(~1 s)

Estimated throughput ~47 tx/s

Mean: 22.1 ms; variation:+5.3 ms

Long-term stability testing simulating
multiround FL?

Deterministic finality in private PoAP Ethereum
network

Consistent with private Ethereum networks

9FL: federated learning.
bPoA: proof-of-authority.

As illustrated in Figure 4, unauthorized model submissions
are automatically rejected, triggering an on-chain error:
“Client not registered.” This ensures that only authenticated

https://diabetes.jmir.org/2026/1/e79166

nodes contribute to the learning process, strengthening data
integrity.
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Figure 4. Access rejection for unauthorized participant.
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The transaction has been reverted to the initial state.
Reason provided by the contract: "Client not registered”.
If the transaction fTailed for not having enough gas, try increasing the gas Limit gently.

Throughout 15 communication rounds, the smart contract
reliably supported secure, real-time exchange of soft label
predictions and model aggregation updates. For instance,
participant 1 improved from 78% to 93% accuracy, while
participant 4 rose from 70% to 83%, all while maintaining
privacy and resisting tampering.

These results underscore the effectiveness of combining
blockchain with federated ensemble learning to achieve
scalable, secure, and privacy-preserving Al in health care
environments.

Discussion

Principal Findings

This study presents FedEnTrust, a blockchain-enabled
federated ensemble learning framework that offers a privacy-
preserving and scalable solution for decentralized diabe-
tes prediction. Our system effectively balances accuracy,
privacy, and adaptability by integrating diverse machine
learning models with knowledge distillation and adap-
tive weighted aggregation. With a predictive accuracy of

Table 10. Comparative performance on the PIMA Indians Diabetes Dataset.

84.2%, FedEnTrust demonstrates competitive performance
while maintaining strict privacy guarantees and supporting
heterogeneous health care participants ranging from hospitals
to wearable devices.

The framework’s integration with blockchain smart
contracts provides secure participant coordination, role-
based access control, and transparent model validation
without incurring substantial latency or resource overhead.
Importantly, our results show that even low-resource
participants benefit from collaboration through soft label
exchange, enabling equitable participation in the learning
process.

Comparison With Prior Work

Table 10 summarizes the performance of FedEnTrust against
the existing centralized and decentralized methods applied
to the PIMA Indians Diabetes Dataset. While centralized
deep learning approaches achieve slightly higher accuracy
(eg, 95.2% with light gradient boosting machine, 96.1% with
convolutional neural networks), these models require full
data centralization, sacrificing privacy and increasing system
vulnerability.

Model or study Accuracy (%) Precision (%)

Recall (%) F-score (%) Notes

FedEnTrust 842 84.6
MLA classifiers b
approach [28] 952 N/A
Recursive feature

elimination with a gated

recurrent unit RFE- 90.7 9205
GRU! [29]

Hybrid classification 831 N/A

approach [30]

Federated ensemble
with adaptive
weighted voting and
blockchain smart
contract integration

88.6 86.4

Centralized; evaluated
multiple classifiers
(LR®, XGBY, GB¢,
DTf, ETS, RF", and
LGBM) on PIMA
Indians dataset; best
accuracy achieved by
LGBM

N/A N/A

Centralized; utilized
RFE-GRU on PIMA
Dataset

90.7 90.5

Centralized; applied
SVMK, RF, DT, naive
Bayes with K-means
preprocessing; best

64.8 N/A
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Model or study Accuracy (%) Precision (%)

Recall (%) F-score (%) Notes

Three predictive

algorithms [31] 771

N/A

Soft voting ensemble

[32] 79.1

73.1

Ensemble hierarchical
model [33]

25.0 (positive)/98.6

83.1 (negative)

Stacking ensemble [25] 77.1 N/A

Deep learning pipeline

[34] 923

N/A

Deep CNN with
correlation-based
features [35]

96.1 944

Blockchain-FL with

adaptive DP [20] N/A

accuracy achieved by
SVM

Centralized; applied
LR, RF, and ANN;
LR achieved the best
accuracy (77.10%)
with AUC™ (.83 over
RF and ANN

N/A N/A

Centralized; combined
RF, LR, and naive
Bayes classifiers

71.6 80.9

Centralized; applied
DT and LR, fused by
neural network

384 (pos1tlve)/90 2 328
(negative)

Centralized; stacking
ensemble of ML
models; accuracy
achieved using cross-
validation protocol

N/A N/A

Centralized; deep
learning pipeline using
VAE" for data
augmentation, SAE®
for feature
augmentation, and
CNNP for
classification

N/A N/A

Centralized; applied
deep CNN with
feature selection based
on correlation

94.4 94.5

Decentralized;
implemented federated
learning with
differential privacy
using blockchain
technology

N/A N/A

4ML: machine learning.

PN/A: not applicable.

°LR: logistic regression.

dXGB: extreme gradient boosting.

°GB: gradient boosting.

fDT: decision tree.

8ET: extra tree.

"RF: random forest.

ILGBM: light gradient boosting machine.
JRFE-GRU: Recursive Feature Elimination with Gated Recurrent Unit.
kgvM: support vector machine.

TANN: artificial neural network.

MAUC: area under the curve.

DV AE: variational autoencoder.

OSAE: stacked autoencoder.

PCNN: convolutional neural network.

In contrast, FedEnTrust improves over recent decentralized
models, such as blockchain-integrated FL with differen-
tial privacy (accuracy=82.7%), by incorporating ensemble
learning and adaptive aggregation. Despite the constraints
of data fragmentation and heterogeneity, our framework
maintains robust performance across all key metrics,
including precision (84.6%), recall (88.6%), and Fj-score
(86.4%).

https://diabetes.jmir.org/2026/1/e79166

FedEnTrust achieves a favorable trade-off between
privacy, generalizability, and computational practicality,
making it well suited for real-world deployment in regulated
health care environments.
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Ethical Al Considerations: Fairness,
Transparency, and Accountability

Ethical Framework

Ethical concerns are central to the deployment of Al systems
in health care, where unequal access to computational
resources and imbalanced data distributions may inadver-
tently create or reinforce model biases. FedEnTrust incorpo-
rates several design principles aligned with emerging ethical
Al guidelines, including those recommended by the World
Health Organization and major Al governance frameworks.

Fairness Across Heterogeneous Participants

Health care institutions vary substantially in data volume,
demographic composition, and computational capacity, which
can introduce systematic bias in collaborative learning
systems. FedEnTrust is designed to mitigate such bias
by supporting heterogeneity-aware participation, allowing
low-resource nodes to contribute using models aligned with
their capabilities without sacrificing predictive performance.
Adaptive weight clipping is applied during aggregation to
prevent high-resource institutions from disproportionately
dominating the global ensemble. In addition, temperature-
calibrated soft labels are used to reduce overconfidence from
models trained on larger or more homogeneous datasets,
while confidence thresholding ensures that noisy or low-
confidence predictions are not propagated across partici-
pants. Together, these mechanisms promote more balanced
influence across diverse health care contributors and support
fairer model outcomes in heterogeneous federated environ-
ments.

Transparency and Auditability

Transparency in FedEnTrust is enabled through the block-
chain-based coordination layer, which provides immutable
audit trails for all update submissions and verifiable records
of role validation events. Each model contribution is traceably
logged, allowing the system to record which institutions
participated in and influenced each training round. This
tamper-resistant logging mechanism enhances accountabil-
ity, supports post hoc auditing, and increases trust among
participating health care entities without exposing sensitive
data or model parameters.

Privacy and Data Minimization

FedEnTrust adheres to privacy-by-design principles:
e Raw patient data remain strictly on the device
* Only soft-label vectors and hashed metadata are
transmitted
¢ No identifiable information is stored on-chain,
supporting HIPAA, GDPR, and similar regulatory
frameworks

Role-based access ensures that only authorized -clinical
entities may participate.
Accountability and Governance

The multivalidator consensus layer enables shared gover-
nance rather than reliance on a single coordinating institution.

https://diabetes.jmir.org/2026/1/e79166
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This creates a more accountable decision-making process and
aligns with ethical expectations for distributed medical Al
systems.

Blockchain Performance and Practical
Considerations

Implementation Considerations

Beyond empirical accuracy and security validation, the
practical deployment of blockchain-enabled FL systems in
health care requires careful consideration of scalability,
cost, and regulatory compliance. While the blockchain layer
in FedEnTrust demonstrated stable and reliable perform-
ance under controlled experimental conditions, real-world
health care environments introduce additional operational and
governance challenges. This section discusses key practical
considerations and outlines how FedEnTrust is designed to
address them.

Scalability and Throughput

Public blockchain platforms, such as the Ethereum main net,
face inherent constraints related to transaction throughput,
block confirmation latency, and network congestion. These
limitations can lead to unpredictable delays and may not
support the repeated coordination required across multiple FL
rounds. To address this, FedEnTrust is designed for deploy-
ment on private or consortium-based Ethereum networks,
where consensus parameters, block times, and validator
participation can be tailored to health care workflows. Such
configurations enable deterministic execution and consis-
tent performance, as observed in our evaluation. Neverthe-
less, large-scale deployments involving many institutions
may require additional enhancements, including optimized
validator load balancing, hierarchical or sharded blockchain
structures, and integration with layer-2 scaling mechanisms to
further increase throughput.

Cost Variability and Resource Requirements

In public blockchain environments, gas fees fluctuate
dramatically based on network conditions, resulting in
variable operational costs for smart contract execution. This
variability is incompatible with cost-sensitive health care
environments. Deploying FedEnTrust on a private Ethereum
network eliminates transaction fees and allows institutions
to control computational and storage overhead. However,
operating such networks requires institutional commitment
to maintain validator nodes, ensure uptime, and manage
governance policies. Future work will investigate cost-benefit
trade-offs between private, hybrid, and layer-2 blockchain
configurations for FL.

Regulatory and Compliance Constraints

Health care systems must comply with strict privacy
regulations such as HIPAA, GDPR, and provincial or national
data-protection laws. These frameworks introduce challenges,
such as prohibiting the storage of patient data or identifi-
ers on-chain, requiring transparent audit trails for collabora-
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tive analytics, and ensuring that cross-institution coordination
adheres to data-sharing agreements.

FedEnTrust addresses these concerns by storing only
hashed metadata and role-verification entries on-chain,
keeping soft labels and model outputs entirely off-chain.
However, real-world deployment requires integration with
institutional governance mechanisms to ensure compliance
documentation, legal interoperability among institutions, and
formal auditing procedures.

Generalizability to Multimodal and
Longitudinal Health Care Data

Although the PIMA dataset provides a controlled bench-
mark for evaluating prediction accuracy, it does not reflect
the complexity of real-world clinical environments. Mod-
ern health care systems generate multimodal data that may
include structured electronic health record fields, laboratory
values, medical imaging, clinician notes, and continuous
wearable sensor streams. Additionally, many health condi-
tions, including diabetes, require longitudinal modeling to
capture evolving physiological states over time.

FedEnTrust is designed to naturally extend to these
scenarios. The framework’s heterogeneity-aware model
assignment allows each participant to select model archi-
tectures aligned with its data modality and computational
resources. For example, hospitals could train sequence
models (eg, long short-term memories or transformers)
on longitudinal EHR data, while wearable devices may
contribute short-term physiological features via lightweight
SVM or tree-based models. The knowledge-distillation
component operates on probability distributions and is
therefore agnostic to model type, enabling soft-label fusion
across diverse modalities and temporal structures. This
capability is particularly suitable for integrating outputs from
time-series models, tabular models, and sensor analytics.

The blockchain-based coordination layer also supports
generalization, as its role-based validation and update logging
apply to any model output regardless of modality. Future
work will apply FedEnTrust to multicenter datasets such as
MIMIC-IV, NHANES, and integrated wearable—EHR cohorts
to evaluate its performance under more heterogeneous and
clinically realistic conditions.

Limitations

Despite promising results, several limitations remain:

* Dataset representativeness: The PIMA dataset is limited
in scope and population diversity. Future work should
evaluate FedEnTrust on broader, real-world datasets
from varied demographics and geographies.

» Extreme client heterogeneity: Devices with ultra-low
resources may still face difficulties in real-time model
adaptation. Exploring ultra-lightweight architectures

Hasan & Li

and communication compression techniques is a key
next step.

* Controlled blockchain simulation: Our blockchain
operations were simulated under stable conditions.
Future deployment on public testnets or mainnets
is necessary to assess real-world transaction delays,
scalability, and cost variability.

e Advanced threat modeling: While the smart contract
blocks unauthorized actions, adversarial behaviors such
as collusion or model poisoning were not addressed.
Future extensions may integrate anomaly detection and
audit trails to enhance system resilience.

Although the PIMA Indians Diabetes Dataset is a well-estab-
lished benchmark for evaluating diabetes prediction models,
its limited demographic diversity and relatively small size
restrict the generalizability of the findings. The simulated
heterogeneous environment in Table 2, while constructed to
reflect realistic participant variability, does not fully replicate
the complexity of multi-institution health care settings, where
differences in clinical practice, sensor characteristics, and
patient demographics lead to substantially wider non-IID
distributions. Accordingly, the results presented here should
be viewed as a controlled feasibility demonstration rather than
a comprehensive real-world validation.

Conclusions

This study presents FedEnTrust, a secure and intelligent
federated ensemble learning framework for privacy-pre-
serving diabetes prediction. Our approach addresses key
challenges in decentralized health care Al, including data
privacy, system trust, and participant heterogeneity, without
requiring access to raw patient data.

By integrating knowledge distillation and adaptive
ensemble aggregation, the framework enables resource-aware
contributions from a diverse range of participants, from
high-performance hospital systems to low-power personal
devices. The experimental results demonstrate consistent
improvements in predictive performance across all partici-
pants, validating both the effectiveness and inclusiveness of
the design.

A central innovation is the blockchain-enabled coordi-
nation layer, which ensures secure registration, role-based
access control, and verifiable model updates. Smart contract
simulations confirm the system’s efficiency, low latency, and
robustness against unauthorized actions, supporting scalable
and tamper-resistant deployment in health care environments.

In sum, FedEnTrust offers a practical, scalable solu-
tion for secure, decentralized medical Al, balancing pri-
vacy, performance, and trust. Future work will extend this
framework to additional clinical domains, multisite studies,
and dynamic personalization for broader impact in real-world
health care.
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