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Abstract

Background: Sulfonylureas are commonly prescribed for managing type 2 diabetes, yet treatment responses vary signifi-
cantly among individuals. Although advances in machine learning (ML) may enhance predictive capabilities compared to
traditional statistical methods, their practical utility in real-world clinical environments remains uncertain.

Objective: This study aimed to evaluate and compare the predictive performance of linear regression models with several
ML approaches for predicting glycemic response to sulfonylurea therapy using routine clinical data, and to assess model
interpretability using Shapley Additive Explanations (SHAP) analysis as a secondary analysis.

Methods: A cohort of 7557 individuals with type 2 diabetes who initiated sulfonylurea therapy was analyzed, with all patients
followed for 1 year. Linear and logistic regression models were used as baseline comparisons. A range of ML models was
trained to predict the continuous change in hemoglobin Aj. (HbAi.) levels and the achievement of HbA|. <58 mmol/mol
at follow-up. These models included random forest, extreme gradient boosting, support vector machines, a conventional
feedforward neural network, and Bayesian additive regression trees. Model performance was assessed using standard metrics
including R? and root mean squared error for regression tasks and area under the receiver operating characteristic for classifica-
tion. In a subset of 2361 patients, nonfasting connecting peptide (C-peptide) was analyzed as a proxy for -cell function. SHAP
analysis was performed to identify and compare key predictors driving model performance across methods.

Results: All models exhibited similar performance, with no significant advantages of ML techniques over linear regression.
For continuous outcomes, Bayesian additive regression trees demonstrated the highest R? (0.445) and lowest root mean
squared error (0.105), though the differences among models were minimal. For the binary outcome, extreme gradient boosting
achieved the highest area under the receiver operating characteristic curve (0.712), with CIs overlapping those of other models.
Across all models, baseline HbA |, was consistently the primary predictor, explaining the majority of the variance. SHAP
analyses confirmed that baseline HbA ., age, BMI, and sex were the most influential predictors. Sensitivity analyses and
hyperparameter tuning did not significantly improve model performance. In the C-peptide subset, higher C-peptide levels were
associated with greater glycemic improvement ($=—-3.2 mmol/mol per log(C-peptide); P<.001).

Conclusions: In this large, population-based cohort, ML models did not outperform traditional regression for predicting
glycemic response to sulfonylureas. These findings suggest that limited gains from ML likely reflect an absence of strong
nonlinear or high-order interactions in routine clinical data and that available features may not capture sufficient biological
heterogeneity for complex models to confer added benefit. The inclusion of a C-peptide subset provides additional mechanistic
insight by linking preserved [-cell function with treatment response.
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Introduction

Sulfonylureas are among the most commonly prescribed
classes of glucose-lowering medications for individuals
with type 2 diabetes. Their cost-effectiveness and acces-
sibility make them particularly valuable in resource-con-
strained settings [1]. However, significant variability exists
in glycemic responses among individuals. This variability is
influenced by various clinical and biological factors, such
as age, kidney function, and genetic predispositions [2,3].
Identifying predictors of treatment response is essential for
advancing precision medicine approaches and minimizing
trial-and-error prescribing practices [4].

Because sulfonylureas lower glucose primarily by
stimulating insulin secretion from pancreatic B-cells, the
degree of preserved f3-cell function, often estimated by
circulating connecting peptide (C-peptide) [5], may influ-
ence treatment response. However, such markers are rarely
available in real-world datasets and are not routinely included
in prediction studies.

Machine learning (ML) methods have shown promise
in predicting treatment responses more accurately than
traditional regression models, particularly due to their ability
to handle complex, nonlinear interactions between variables
without requiring prespecified assumptions [6,7]. In this
context, ML approaches can capture subtle, multidimensional
relationships that may be overlooked by traditional models,
efficiently process large-scale longitudinal data, and generate
data-driven insights that inform treatment selection. ML also
offers better integration of diverse data types and improved
interpretability through explainable Al, increasing clinical
applicability [8]. Despite this promise, relatively few studies
have focused on modeling glycemic response in diabetes
using real-world data [9]. This gap in research presents a
significant opportunity for further investigation.

Here, we use sulfonylurea response as an exemplar of
diabetes drug response, due to its widespread use and the
availability of clinical data. We evaluate and compare the
efficacy of 5 ML models, including random forest, support
vector machines, extreme gradient boosting (XGBoost), a
conventional feedforward neural network (NN), and Bayesian
additive regression trees (BART), in predicting the glycemic
response to sulfonylureas in patients with type 2 diabe-
tes. These models are compared with standard linear and
logistic regression for continuous (change in hemoglobin A1,
[HbA.]) and binary (achievement of HbA . <58 mmol/mol)
outcomes. Analyses were conducted using a large real-world
cohort from the GoDARTS (Genetics of Diabetes Audit and
Research in Tayside Scotland) study, including a biologically
informative subset with C-peptide measurements to assess the
contribution of -cell function.
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In addition to comparing predictive performance across
models, we conducted a secondary analysis to examine
feature contributions using Shapley Additive Explanations
(SHAP) [10]. This analysis allowed us to determine whether
ML-derived feature importance aligns with the predictors
identified by traditional regression approaches, providing
insight into clinical interpretability and the practical utility
of ML for informing treatment choice.

Methods

Study Population

The data were obtained from the GoDARTS [11]. This
population-based cohort links prescription, clinical, and
laboratory records for individuals with diabetes in Tayside
and Fife. The inclusion criteria included patients with type
2 diabetes who initiated sulfonylurea therapy (either as
monotherapy or in combination), had a baseline HbAj,
measurement (defined as the closest value within 183 days
before to 7 days after treatment initiation), and a follow-
up HbA |, measurement after a 1-year period. The 183-day
window was selected to balance data availability and clinical
relevance. For this analysis, only 2 HbA . values per patient
were used, 1 at baseline and 1 at follow-up, in line with
the model’s aim of predicting glycemic response from initial
clinical features.

Ethical Considerations

Data provision and linkage were carried out by the Univer-
sity of Dundee Health Informatics Centre, with analysis of
anonymized data performed in an ISO27001 and Scottish
Government—accredited secure safe haven. Health Informat-
ics Centre standard operating procedures were reviewed and
approved by the National Health Service (NHS) East of
Scotland Research Ethics Service (22/ES/0034), and consent
for this study was obtained from the NHS Fife Caldi-
cott Guardian. Under these approvals, secondary analysis
of anonymised routine healthcare data does not require
additional participant consent or compensation.

Baseline Predictor Variables

Baseline clinical features included age, sex, HbA|., BMI,
total cholesterol, high-density lipoprotein (HDL) cholesterol,
smoking status, systolic blood pressure, alkaline phosphatase,
alanine transaminase, serum potassium, serum creatinine,
bilirubin, and albumin. These variables were selected based
on their availability in routine care and their known or
suspected relevance to glycemic outcomes [12]. Except for
baseline HbA (. (as defined above), all measurements were
defined as the closest recorded value within 2 years before to
90 days after sulfonylurea initiation.

To estimate average daily sulfonylurea dose, prescription
records were used to extract drug strength and quantity
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dispensed. Five sulfonylureas were included: gliclazide,
glipizide, glimepiride, glibenclamide, and tolbutamide. Each
prescription’s dose was standardized by dividing the
prescribed dose by the drug’s maximum recommended daily
dose (as per the British National Formulary). This yielded
a standardized dose unit, which was then multiplied by the
number of tablets prescribed per prescription to calculate the
total standardized dose. For each patient, the total dose was
summed across all prescriptions, excluding the last one, and
divided by treatment duration to derive the average daily
dose. This dose was then categorized into low, medium, and
high using quartiles.

Outcome Definitions

The primary continuous outcome was defined as the change
in glycated hemoglobin (HbA|.), measured in millimoles per
mole, from baseline (at the time of sulfonylurea initiation)
to the follow-up measurement closest to 12 months, within a
window of 6-15 months.

The binary outcome was defined as whether a patient
achieved a follow-up HbA . level below 58 mmol/mol.

Data Preparation

To ensure consistency and compatibility with ML mod-
els, several preprocessing steps were applied. Continuous
variables with skewed distributions underwent log transfor-
mation to approximate a normal distribution [13], enhanc-
ing model stability and reducing the influence of extreme
values. Following this, all continuous predictors, including
laboratory test results and physiological measurements, were
scaled to a range between 0 and 1 using min-max normal-
ization [14]. This rescaling placed variables on a uniform
scale, which is particularly important for algorithms like
NNs that are sensitive to variable magnitudes. Categorical
variables (eg, sex, smoking status, treatment group, average
daily dose) were converted using one-hot encoding to make
them compatible with model inputs.

Missing Data Imputation and Collinearity
Assessment

Patients missing either baseline or follow-up HbA{.
measurements were excluded. For remaining clinical
predictors, missingness was below 10% and not clustered
within specific individuals. Missing values were impu-
ted using multiple imputation by chained equations [15]
implemented in R (mice v3.18.0). Five imputed datasets
were generated with 50 iterations each, using predictive
mean matching for continuous variables. Full details of the
imputation model are provided in Section 1 in Multimedia
Appendix 1. Convergence was assessed using the mean and
variance of each variable across iterations and comparing
distributions of observed and imputed values. Analyses were
performed on pooled estimates derived using Rubin’s rules
[16].

Collinearity among predictors was evaluated using
variance inflation factors (VIFs) [17]. Predictors with VIF
values greater than 5 were reviewed for redundancy. In our
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final models, VIFs ranged from 1.06 to 1.5, indicating no
meaningful multicollinearity. As a sensitivity check, strongly
correlated clinical variables (r > 0.8) were examined, and
when overlap occurred (eg, estimated glomerular filtration
rate vs serum creatinine), the variable more routinely and
reliably measured in clinical practice (serum creatinine) was
retained.

Statistical Analysis: Baseline Models

Initial statistical analyses were conducted using linear
regression [18] for the continuous outcome and logistic
regression for the binary outcome. These models identi-
fied baseline associations between clinical predictors and
glycemic response to sulfonylurea therapy. Logistic regres-
sion estimated the probability of achieving an HbA . <58
mmol/mol. Of the 7557 individuals included, 3818 achieved
the target, and 3739 did not.

Residualization of Baseline HbA1¢

To disentangle treatment response from baseline glycemia,
change in HbA. was regressed on baseline HbA{.. The
residuals from this model were used as outcomes for
ML analyses. This allowed the identification of predic-
tors influencing glycemic response independent of baseline
HbA | levels [19].

ML Models

Five ML models were implemented, reflecting diverse
algorithmic strategies:

1. Random forest: An ensemble method that constructs
multiple decision trees on bootstrapped data and
aggregates their predictions [20].

2. Support vector machines: A kernel-based classifier that
establishes an optimal separating hyperplane [21].

3. XGBoost: A boosting technique that sequentially builds
trees to minimize residual error [22].

4. NNs: A conventional feedforward NN (multilayer
perceptron) trained using resilient backpropagation.
Comprising layers of interconnected neurons, NNs
excel at modeling complex relationships and require
larger datasets and regularization to mitigate overfitting
[23].

5. BARTs: A Bayesian ensemble method that combines
multiple regression trees and estimates uncertainty in
predictions [24]. BART is noted for strong performance
in clinical applications [25-27].

Model Implementation

For model development, a 2-stage validation framework
combining cross-validation and a held-out test set was used.
The data were randomly split into a 70% training set and
a 30% held-out test set. Within the training set, 10-fold
cross-validation [18] was used for hyperparameter tuning
and model selection to enhance model stability and reduce
overfitting. Final performance was evaluated on the held-out
test set, which remained unseen during training.

All analyses were performed in R (version 4.3.0). A
detailed description of the packages and functions used for
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each model is presented in Section 2 in Multimedia Appendix
1, and XGBoost and NN hyperparameters are provided in
Sections 3 and 4 in Multimedia Appendix 1, respectively.
All preprocessing and modeling code is publicly available on
GitHub [28].

Feature Importance

To identify the clinical features most strongly influenc-
ing model predictions, we assessed feature importance
using SHAP values along with the built-in variable impor-
tance metrics from each model. SHAP values quantify
the contribution of individual predictors to model outputs,
enabling transparent, model-agnostic interpretation. Although
SHAP can be applied to multiple model types, our results
focused on the XGBoost model because it showed optimal
predictive performance. SHAP summary plots were generated
to visualize the magnitude and direction of feature effects,
ranking predictors by their mean absolute SHAP values.
Comparative plots across models were generated to visualize
predictor impact on treatment response. This unified approach
supported consistent evaluation of feature relevance across
models and enhanced clinical interpretability.

Performance Evaluation

Model performance was assessed separately for the contin-
uous and binary outcomes. For the continuous outcome,
evaluation metrics included root mean squared error (RMSE),
mean absolute error, and the coefficient of determination (R?),
which indicates the proportion of variance in the outcome
explained by the model [29,30].
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For the binary outcome, performance was evaluated
using standard classification metrics: area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity
(recall), and specificity [31,32]. In the linear regression
models, regression coefficients were interpreted to assess the
direction and magnitude of each predictor’s association with
the outcome, while P values indicated the statistical signifi-
cance of these associations. An R? value provided an overall
measure of model fit, and a P value below .05 was considered
statistically significant.

To evaluate differences in performance across models,
a resampling-based approach was used to compare their
predictive metrics [33]. Pairwise comparisons were conducted
to assess whether any model significantly outperformed the
others.

Results

Cohort Characteristics

The study included 7557 individuals with type 2 diabetes
who initiated sulfonylurea therapy and had both baseline and
follow-up HbA . values available. The cohort had a mean age
of 63.7 (SD 11.8) years, and 57.9% (n=4377) were male. The
mean baseline HbA . was 76.5 (SD 16.7) mmol/mol (Table

1).

Table 1. Baseline demographic and clinical characteristics of the study population.

Clinical variable

Sulfonylurea cohort (N=7557)

Age at therapy initiation (y), mean (SD)
Sex, n (%)

Male

Female
Average daily dose, n (%)

Low

Medium

High
Duration of diabetes (y), mean (SD)
Duration of diabetes, n (%)

0-1 years

1-5 years

>5 years
Time of treatment (mo), mean (SD)
Time from baseline HbA |.* measurement to treatment start (d), mean (SD)
Year of drug start, mean (SD)
BMI (kg/m?), mean (SD)
Total cholesterol (mmol/L), mean (SD)
HDLY cholesterol (mmol/L), mean (SD)
Serum creatinine (#mol/L), mean (SD)
Albumin (g/L), mean (SD)

63.7 (11.8)

4377 (57.9)
3180 (42.1)

1844 (24.4)
3822 (50.6)
1891 (25)

4.96 (4.49)

1416 (18.7)
3099 (41)
3042 (40.3)
114 (2.2)
213(29.1)
2010 (6.12)
313 (6.3)
45(12)
12(0.3)
803 (27.4)
42.2 (4.0)
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Clinical variable

Sulfonylurea cohort (N=7557)

Bilirubin (#mol/L), mean (SD)
Alkaline phosphatase (U/L), mean (SD)
ALT/SGPT® (U/L), mean (SD)
Potassium (mmol/L), mean (SD)
Systolic blood pressure, mean (SD)
Smoking status, n (%)

Ever smoked —yes

Ever smoked—no

Ever smoked —unknown
Therapy group, n (%)

Mono

Dual

Triple
Index of multiple deprivation quintile, n (%)

1 (most deprived)

2

3

4

5 (least deprived)

Unknown
Ethnicity, n (%)

White

Others/mixed

Missing
Region, n (%)

Tayside

Fife
Baseline HbA |, (mmol/mol), mean (SD)

HbA | outcome (mmol/mol) (treatment HbA |.), mean (SD)
HbA | response (change from baseline; mmol/mol), mean (SD)

9.9 (5.2)
89.5 (42.1)
342 (24.4)
44(04)

137 (17.4)

5628 (74.5)
1870 (24.7)
59 (0.8)

2508 (33.2)
4251 (56.3)
798 (10.6)

1583 (16.5)
1609 (21.3)
1497 (19.8)
1396 (18.5)
1246 (16.5)
226 (3.0)

5696 (75.4)
259 (3.4)
1602 (21.2)

5965 (78.9)
1592 (21.1)
76.5 (16.7)

61.1(154)
~15.4(18)

3HbA |.: hemoglobin A .
YHDL: high-density lipoprotein.

CALT/SGPT: alanine aminotransferase/serum glutamate pyruvate transaminase.

Associations Between Clinical Covariates
and Treatment Response

A linear regression model was fit to assess the relationship
between clinical variables and the change in HbA ., defined
as the difference between baseline HbA{. and follow-up
values (ie, change=treatment—baseline HbA{.). A negative
change in HbA|. indicates a better treatment response to
sulfonylureas, while a positive change signifies a worse
response. No feature scaling (min-max normalization) was
applied to the variables in this model. The model demonstra-
ted satisfactory fit, with an R? value of 0.41 and a significant
F-statistic (222.2; P<.001).

The linear regression analysis identified several clinical
variables significantly associated with the change in HbA,

https://diabetes.jmir.org/2026/1/e82635

among individuals treated with sulfonylureas. Older age and
higher baseline HbA . were associated with greater HbA
reductions (negative coefficients), indicating more favorable
responses. In contrast, a higher BMI was associated with
smaller reductions, suggesting that individuals with higher
BMI may struggle to achieve desired glycemic control.
Additionally, sex differences indicated that male partici-
pants demonstrated slightly better response to sulfonylurea
treatment than female participants.

These associations are illustrated in Figure 1, which
presents a forest plot of the linear regression coefficients
and Cls, highlighting the magnitude and direction of each
predictor’s effect on HbA . change.
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Figure 1. Forest plot showing regression coefficients and 95% ClIs for predictors of change in hemoglobin A;. (HbA;). Points represent
model estimates and horizontal lines indicate 95% Cls. ALT: alanine aminotransferase; SGPT: alanine aminotransferase/serum glutamate pyruvate

transaminase; T2D: type 2 diabetes. *P<.05; **P<.01; ***P<.001.
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C-Peptide Analysis

In a subset of 2361 individuals with nonfasting C-peptide
data, higher C-peptide levels were strongly associated with
greater reductions in HbAj. at 12 months (linear regres-
sion: =-3.2 mmol/mol per log(C-peptide); P<.001). This
finding suggests that preserved endogenous insulin secretion
contributes to more favorable treatment outcomes.

https://diabetes.jmir.org/2026/1/e82635
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ML Model Performance for Continuous
Outcome

For the continuous outcome of predicting changes in HbA |,
several models were evaluated. The results indicate that the
BART model exhibited the lowest RMSE of 0.105 (21%) and
the lowest mean absolute error of 0.079 (16.1%), highlighting
its effective performance in estimating continuous changes.
XGBoost and NNs also performed comparably, with RMSE
values of 0.106.
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On the original HbA{. scale, this corresponds to an
approximate prediction error of 13.8 mmol/mol, comparable
to the residual standard error from the linear regression
model. Thus, the clinical prediction error was approximately
~14 mmol/mol.

Garg et al

However, the differences in RMSE and R? across all
models were minimal, indicating that while BART performed
slightly better, the performance of all models was relatively
comparable (Table 2). The similar R? and RMSE values
further suggest that no single model stands out significantly.

Table 2. Regression model performance metrics (root mean squared error [RMSE], mean absolute error [MAE], and R?) for continuous outcome

prediction across all 6 models®.

Models RMSE MAE R?

Linear regression 0.106 0.08 0434
RFP 0.108 0.082 0424
SVM¢ 0.106 0.079 0438
XGBoostd 0.106 0.08 0433
NN¢ 0.106 0.081 0.427
BART! 0.105 0.079 0.445

4RMSE is shown as the normalized values.
YRF: random forest.

€SVM: support vector machine.
dXGBoost: extreme gradient boosting.
®NN: neural network.

fBART: Bayesian additive regression trees.

Statistical Comparison of Model
Performance

In addition to reporting standard performance metrics,
statistical comparisons were performed using resampling-
based techniques. Pairwise comparisons of RMSE and R?
values across all models showed no statistically significant
differences in performance; all ML models, including the
linear regression baseline, performed similarly on this dataset.

Sensitivity Analysis: Residualized HbA 1.
Change
A sensitivity analysis was performed to evaluate predictors of

HbA . change independent of baseline glycemia. Across all
models, the maximum R? value decreased to 0.03, indicating

that only ~5% of the residual variance in 12-month HbA
response was explained by routine clinical features after
removing the effect of baseline HbA ..

The performance metrics from this analysis further
indicated that the RMSE and R? values remained consistent
across most models (Table 3). However, XGBoost and BART
showed poorer performance, with high RMSE and lower R?
values. This likely reflects the fact that these algorithms are
better suited for large, high-dimensional, or highly nonlin-
ear datasets, whereas the present dataset may not contain
sufficient complexity. This consistency across most models
suggests that while some approaches explain marginally more
variance in the sensitivity analysis, their predictive accuracy
in terms of mean squared error remains stable.

Table 3. Model performance after adjustment for baseline hemoglobin A (HbA|.) across all 6 models.

Models RMSE? MAED R2
Linear regression 0.127 0.095 0.054
RF® 0.126 0.095 0.056
svmd 0.128 0.094 0.051
XGBoost® 0.230 0.183 0.01
NNE 0.127 0.095 0.053
BART? 0214 0.191 0.021

4RMSE: root mean squared error.

PMAE: mean absolute error.

‘RF: random forest.

dSVM: support vector machine.

®XGBoost: extreme gradient boosting.

fNN: neural network.

EBART: Bayesian additive regression trees.
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ML Model Performance for Binary
Outcome

For the binary outcome of predicting achievement of HbA .
<58 mmol/mol, model performance was assessed using the
AUC and accuracy. The XGBoost model achieved the highest
AUC (0.712), followed closely by BART (0.710), indicating
modest discriminatory ability. Logistic regression performed
similarly, with an AUC of 0.702.

The ClIs for all models showed substantial overlap (ranging
from 0.681 to 0.724 for logistic regression and 0.692 to

Garg et al

0.733 for XGBoost), indicating that no model demonstrated
statistically superior discrimination. Overall, the models were
broadly comparable in their ability to distinguish responders
from nonresponders.

Model-level classification metrics are summarized in
Table 4, and the corresponding ROC curves for all models
are shown in Figure 2, illustrating their similar performance
profiles. In Figure 2, colored curves represent the individual
models, visually reinforcing the overlapping AUCs and the
absence of meaningful differences in classification perform-
ance.

Table 4. Discrimination and classification performance of binary outcome models.

Models AUC? (95% CI) Accuracy Precision Recall
Logistic regression 0.702 (0.681-0.724) 0.654 0.657 0.628
RFP 0.708 (0.687-0.729) 0.652 0.656 0.628
SVM¢ 0.705 (0.684-0.727) 0.65 0.656 0.618
XGBoostd 0.712 (0.692-0.733) 0.646 0.65 0.625
NN¢ 0.699 (0.678-0.72) 0.645 0.645 0.636
BART! 0.71 (0.689-0.731) 0.651 0.652 636

2AUC: area under the receiver operating characteristic curve.
YRF: random forest.

€SVM: support vector machine.

dXGBoost: extreme gradient boosting.

°NN: neural network.

fBART: Bayesian additive regression trees.

Figure 2. Receiver operating characteristic (ROC) curves for binary outcome prediction models. Colors correspond to individual models as shown in
the legend. ANN: artificial neural network; AUC: area under the receiver operating characteristic curve; BART: Bayesian additive regression trees;

SVM: support vector machine; XGBoost: extreme gradient boosting.
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Feature Importance and SHAP
Interpretability

Feature importance analyses consistently identified baseline
HbA|. as the most significant predictor across all models.
Other variables such as BMI, alanine transaminase, total
cholesterol, and systolic blood pressure were also found
to be significant, though their rankings varied slightly
between algorithms. Across all 5 models, the rankings of key
predictors remained largely consistent.

Garg et al

To further explain feature contributions, a SHAP summary
plot derived from the XGBoost model is presented (Figure
3), offering a more granular view of individual feature effects
on model predictions. Baseline HbA . had the highest mean
SHAP value (0.063), followed by total cholesterol, duration
of diabetes, and age. Higher baseline HbAj. values were
associated with larger predicted reductions in HbA{. (ie,
more negative SHAP values), indicating greater expected
treatment benefit.

Figure 3. Shapley Additive Explanations (SHAP) summary plot of feature importance in predicting glycemic response. Each dot represents 1
patient. The x-axis indicates the SHAP value (impact on model output). The color gradient reflects feature values (blue=higher values; yellow=lower
values). Features are ordered by mean absolute SHAP values, indicating overall contribution to model predictions. ALT/SGPT: alanine aminotrans-
ferase/serum glutamate pyruvate transaminase; HbA.: hemoglobin A.; HDL: high-density lipoprotein; T2D: type 2 diabetes.
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The SHAP plot further shows that lower total choles-
terol values corresponded to more negative SHAP val-
ues, suggesting better predicted outcomes, whereas higher
cholesterol was linked to reduced response. Similarly, shorter
diabetes duration and younger age were associated with
more favorable predictions. For the variable sex, blue points
represent male participants and yellow points represent
female participants; male participants were associated with
more negative SHAP values, indicating a better predicted
response, compared to female participants, whose SHAP
values clustered closer to or above zero.

Discussion

Principal Findings

This study compared the predictive performance of tradi-
tional regression models and a range of ML algorithms
for predicting glycemic response to sulfonylurea therapy in
individuals with type 2 diabetes. The primary finding is
that, with the dataset used, all models demonstrated compa-
rable predictive performance. No ML approach significantly
outperformed standard regression for either the continuous
outcome or the binary outcome. These results indicate

https://diabetes.jmir.org/2026/1/e82635

that, within routinely collected clinical data, the additional
algorithmic complexity of ML methods does not necessa-
rily yield superior predictive accuracy. Regression therefore
remains a robust and interpretable option for predicting drug
response in this context.

Linear regression analysis revealed that the model
explained approximately 43% of the variance in changes to
HbA .. In the sensitivity analysis, after adjusting for baseline
HbA ¢, the maximum R? across all models dropped to 0.05,
indicating that only a small proportion of outcome variabil-
ity was captured by the remaining routine clinical features.
This highlights the need for additional or more informative
biomarkers to improve prediction.

Additionally, only about 50% (n=3818) of the partici-
pants achieved glycemic control after 1 year of sulfony-
lurea therapy, despite the relatively homogeneous clinical
characteristics of the cohort. This finding highlights con-
siderable interindividual variability in treatment response,
suggesting that additional biological and behavioral factors
may shape drug efficacy. Such heterogeneity may reflect
differences in pharmacodynamic sensitivity, medication
adherence, P-cell reserve, and underlying insulin resistance.
BMI and HDL were considered indirect proxies of insulin
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resistance, as higher BMI is typically associated with greater
insulin resistance, whereas higher HDL levels are generally
linked to improved insulin sensitivity. Consistent with this,
participants with higher BMI had poorer glycemic response,
while those with higher HDL tended to show more favora-
ble outcomes. However, direct measures of insulin resistance
were not available in this dataset.

No Added Value From ML Methods

While multiple ML algorithms were evaluated in parallel with
traditional regression models, none demonstrated superior
predictive performance. Across both continuous and binary
outcomes (Tables 2 and 4), differences in metrics such
as RMSE, R?, and AUC were small and not statistically
significant, with overlapping CIs for all models. Even after
hyperparameter tuning, predictive metrics remained modest,
suggesting that ML methods did not uncover hidden patterns
or interactions that traditional models missed.

This limited gain in predictive accuracy likely reflects
the nature of routinely collected clinical data, which may
lack sufficient biological complexity for ML algorithms to
exploit. When input variables do not encompass detailed
mechanistic information, even advanced algorithms cannot
extract additional predictive signal. Consequently, transpar-
ent and easily interpretable models, such as linear or mixed-
effects regression, may remain preferable, particularly when
predictive performance is comparable. These models allow
clinicians to understand feature contributions directly and
translate findings into actionable treatment decisions.

Although complex ML models theoretically enable the
capture of nonlinear relationships, their greater computational
burden and reduced interpretability may limit their clini-
cal utility unless they provide meaningful improvements in
accuracy. The consistency of results across all modeling
strategies, ranging from simple linear regression to ensem-
ble and NN approaches, suggests that the available clinical
features may not contain enough biological heterogeneity for
ML methods to offer an advantage.

By intentionally comparing models of differing complex-
ity, this study demonstrates that when data lack substantial
nonlinearity or high-dimensional interactions, regression-
based methods may remain more appropriate and efficient.
This finding supports the continued reliance on interpreta-
ble models in routine clinical prediction tasks, where model
parsimony and interpretability remain more valuable than
algorithmic complexity for precision-medicine applications.

Features That Inform Drug Response
Prediction

Feature importance and SHAP analyses consistently
identified baseline HbA{., age, BMI, and sex as key
predictors across regression and ML models. Baseline HbA
was the strongest predictor, reflecting both regression to
the mean and true physiological responsiveness [34]. Older
age and male sex were associated with greater HbA.
reduction, whereas higher BMI predicted poorer response,
aligning with evidence that adiposity may reduce sulfonylurea
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effectiveness [35]. These findings parallel results from
the 5-drug predictive model developed by Dennis et al
[36], suggesting that these core predictors generalize across
therapeutic classes.

C-peptide, available for a subset of participants, showed
a strong positive association with glycemic improvement,
consistent with the insulin-secretagogue mechanism of
sulfonylureas. This highlights the contribution of [-cell
reserve to treatment heterogeneity and underscores the value
of including mechanistic biomarkers to enhance model
interpretability and predictive accuracy.

Limitations

This study has several limitations. First, routinely collected
clinical data omit key determinants of treatment response
such as adherence, diet, physical activity, genetics, and social
factors. The limited availability of C-peptide prevented fuller
assessment of B-cell function, and its strong association with
response suggests that the inclusion of mechanistic biomark-
ers would likely improve predictive accuracy.

Second, the study population was limited to patients
from Tayside and Fife in Scotland, which may reduce the
generalizability of the findings to other regions or health care
systems with different population characteristics or clinical
practices.

Third, treatment response was assessed using a single
HbA . value taken between 6 and 15 months after treatment
initiation. Although data closest to 12 months post-initiation
were used, variability in the follow-up period (6-15 mo) may
introduce measurement variability and ought to be consid-
ered.

Additionally, the relatively low R? values across all
models, even after applying rigorous methods such as a 70/30
train-test split and 10-fold cross-validation, suggest that the
available clinical features alone do not explain sufficient
variation in treatment response to support strong predictive
performance.

Future Directions

Future research should focus on improving prediction models
by incorporating richer and more diverse data sources,
including genetic, metabolomic, and continuous glucose
monitoring data, as well as direct measures of insulin
resistance and [-cell function. Integrating these modali-
ties could improve model accuracy and help explain why
individuals respond differently to sulfonylurea treatment.
In addition, future studies could explore advanced model-
ing approaches, such as deep learning or hybrid models
that balance predictive power with ease of interpretation
for clinical use. The increasing availability of real-world,
longitudinal clinical data also supports the use of time-
dependent models, such as recurrent neural networks or
transformer models, to track how treatment response evolves
over time. Finally, testing these models in independent and
ethnically diverse populations will be important to assess their
generalizability and real-world applicability.
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In conclusion, this study shows that the traditional ML methods suggests that model transparency and accessi-
regression models remain robust, clinically interpretable, and bility may currently outweigh the small gains offered by
sufficient for predicting glycemic response to sulfonylurea algorithmic complexity in this context.
therapy using routine data. The comparable performance of
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