JMIR Diabetes
Emerging technologies, medical devices, apps, sensors, and informatics to help people with diabetes
Editor-in-Chief:
Ricardo Correa, MD, EdD (Co-Editor-in-Chief), Cleveland Clinic, United States Sheyu Li, MD (Co-Editor-in-Chief), West China Hospital, Sichuan University, China
Impact Factor 2.6 CiteScore 4.7
Recent Articles

Despite efforts to raise glycemic targets and reduce modifiable risk factors, hypoglycemia continues to impact a large number of long-term care (LTC) residents living with diabetes mellitus and remains one of the leading causes of hospitalization in this cohort. Effective, sustainable practice strategies to monitor and maintain glycemic control in LTC are lacking. We describe the stepwise approach used by 2 LTC homes switching from traditional fingerstick testing to a continuous glucose monitoring (CGM) system as part of a quality improvement initiative to reduce nursing workload and address hypoglycemia. This was an exploratory pilot project. A working group was established at each of the 2 participating LTC homes, including representatives from management and direct care staff. Kickoff meetings were held with key direct care staff to discuss the limitations of current monitoring practices and potential solutions. The following interventions were agreed upon and implemented by the working groups: (1) initiation of structured glucose monitoring for residents using CGM (FreeStyle Libre 2), requiring scanning of sensors 4 times per day; (2) provision of staff education and training on CGM by a diabetes expert; and (3) scheduling of interdisciplinary rounds as needed to optimize diabetes management. System changes were gradually introduced in a stepwise manner over a 3-month period (intervention phase), during which the LTC homes progressed from traditional fingerstick testing to point-of-care sensor readings and then to full use of the CGM software platform. Hypoglycemia was defined as a glucose reading of ≤4mmol/L. Glucose readings were collected from 38 residents living with diabetes mellitus and receiving insulin in the 6 months before the start of the intervention phase (baseline evaluation) and in the 6 months after the end of the intervention phase (post-launch evaluation). All hypoglycemic readings detected by a sensor at a point-of-care test were validated using a fingerstick test. Nursing workload associated with glucose testing was assessed in an anonymous survey of nursing staff at baseline and post-launch. The approach resulted in a 40% reduction in nursing time required to complete a glucose reading (from 5.1 minutes per test at baseline to 3.1 minutes per test at the post-launch evaluation). The frequency of glucose monitoring increased from a total of 19,438 glucose readings in the baseline evaluation to 35,971 point-of-care sensor scans in the post-launch evaluation. The number of detected hypoglycemic events increased 12-fold, from 88 in the baseline evaluation to 1049 in the post-launch evaluation. Hypoglycemic events continue to impact a large number of LTC residents living with diabetes mellitus. CGM can improve the detection of hypoglycemic events while decreasing nursing workload. A gradual transition to CGM can help overcome underlying barriers and concerns and ensure a sustainable approach.

Exercise is an important aspect of diabetes self-management. Patients with type 1 diabetes frequently struggle with exercise-induced hyperglycemia and hypoglycemia, decreasing their willingness to exercise. Objective: We aim to build accurate and easy-to-deploy models to forecast exercise-induced glycemic events in real-world settings.


The COVID-19 pandemic led to increased patient demand for remote management of type 2 diabetes using secure messaging, or patient-provider text-based communication. Prior research on secure messaging has described the content of messages sent for type 2 diabetes management and demonstrated its impact on clinical outcomes. However, there is a gap in knowledge about how secure messaging performs as a communication medium for specific tasks in clinical care (e.g. prescription management, discussing medical questions). Additional research is needed to understand physician experiences using secure messaging to communicate with patients about clinical tasks that support diabetes management.

Clinicians currently lack an effective means for identifying youth with type 1 diabetes (T1D) who are at risk for experiencing glycemic deterioration between diabetes clinic visits. As a result, their ability to identify youth who may optimally benefit from targeted interventions designed to address rising glycemic levels is limited. Although electronic health records (EHR)-based risk predictions have been used to forecast health outcomes in T1D, no study has investigated the potential for using EHR data to identify youth with T1D who will experience a clinically significant rise in HbA1c ≥0.3% (~3 mmol/mol) between diabetes clinic visits.

The COVID-19 pandemic catalyzed the adoption of digital technologies in health care. This study assesses a digital-first integrated care model for type 2 diabetes management in Western Sydney, using continuous glucose monitoring (CGM) and virtual Diabetes Case Conferences (DCC) involving the patient, general practitioner (GP), diabetes specialist, and diabetes educator at the same time.

Inequity in diabetes technology use persists among Black and Hispanic youth with type 1 diabetes (T1D). Community health workers (CHWs) can address social and clinical barriers to diabetes device use. However, more information is needed on clinicians’ perceptions to inform the development of a CHW model for youth with T1D.

Type 2 diabetes (T2D) is a complex, chronic condition that requires ongoing management. An important aspect of effective diabetes management is shared decision-making between the person with diabetes and the healthcare professionals (HCPs) to tailor individual treatment plans. Personal health technologies can play a crucial role in this collaborative effort by providing tools for monitoring, communication, and education.


Diabetes mellitus (DM) is a chronic condition requiring effective self-management to maintain glycemic control and prevent complications. Mobile health (mHealth) apps offer potential solutions by providing real-time monitoring, personalized feedback, and educational resources. However, their long-term adoption is hindered by a lack of user involvement in the development process and insufficient cultural adaptation. This study aims to explore the perspectives of DM patients in Hong Kong on the functionalities and features of mHealth apps, highlighting the importance of tailoring these apps to meet local cultural needs.

Gestational Diabetes Mellitus (GDM), a type of blood glucose intolerance or hyperglycaemia that occurs during pregnancy, is a common condition increasing in prevalence both globally and in Australia. Mobile health applications have been shown as a useful resource for women with Type 1 diabetes and could successfully contribute to GDM management by facilitating healthy behaviours.






