Published on in Vol 3, No 4 (2018): Oct-Dec

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/10212, first published .
Prediction of Glucose Metabolism Disorder Risk Using a Machine Learning Algorithm: Pilot Study

Prediction of Glucose Metabolism Disorder Risk Using a Machine Learning Algorithm: Pilot Study

Prediction of Glucose Metabolism Disorder Risk Using a Machine Learning Algorithm: Pilot Study

Journals

  1. Taninaga J, Nishiyama Y, Fujibayashi K, Gunji T, Sasabe N, Iijima K, Naito T. Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: A case-control study. Scientific Reports 2019;9(1) View
  2. Koyasu S, Nishio M, Isoda H, Nakamoto Y, Togashi K. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on 18F FDG-PET/CT. Annals of Nuclear Medicine 2020;34(1):49 View
  3. Abbas H, Alic L, Erraguntla M, Ji J, Abdul-Ghani M, Abbasi Q, Qaraqe M, Pławiak P. Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test. PLOS ONE 2019;14(12):e0219636 View
  4. Spann A, Yasodhara A, Kang J, Watt K, Wang B, Goldenberg A, Bhat M. Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review. Hepatology 2020;71(3):1093 View
  5. Wang Y, Du Z, Lawrence W, Huang Y, Deng Y, Hao Y. Predicting Hepatitis B Virus Infection Based on Health Examination Data of Community Population. International Journal of Environmental Research and Public Health 2019;16(23):4842 View
  6. Chen V, Lin T, Yeh D, Chai J, Weng J. Functional and Structural Connectome Features for Machine Learning Chemo-Brain Prediction in Women Treated for Breast Cancer with Chemotherapy. Brain Sciences 2020;10(11):851 View
  7. Wang L, Niu D, Zhao X, Wang X, Hao M, Che H. A Comparative Analysis of Novel Deep Learning and Ensemble Learning Models to Predict the Allergenicity of Food Proteins. Foods 2021;10(4):809 View
  8. Asselman A, Khaldi M, Aammou S. Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments 2023;31(6):3360 View
  9. Baradaran Rezaei H, Amjadian A, Sebt M, Askari R, Gharaei A. An ensemble method of the machine learning to prognosticate the gastric cancer. Annals of Operations Research 2023;328(1):151 View
  10. Moradifar P, Amini H, Amiri M. Hyperglycemia screening based on survey data: an international instrument based on WHO STEPs dataset. BMC Endocrine Disorders 2022;22(1) View
  11. Guo C, Li H. Application of 5G network combined with AI robots in personalized nursing in China: A literature review. Frontiers in Public Health 2022;10 View
  12. Haneef R, Tijhuis M, Thiébaut R, Májek O, Pristaš I, Tolonen H, Gallay A. Methodological guidelines to estimate population-based health indicators using linked data and/or machine learning techniques. Archives of Public Health 2022;80(1) View
  13. Homma Y, Ito S, Zhuang X, Baba T, Fujibayashi K, Kaneko K, Nishiyama Y, Ishijima M. Artificial intelligence for distinguishment of hammering sound in total hip arthroplasty. Scientific Reports 2022;12(1) View
  14. Schwartz J, Tseng E, Maruthur N, Rouhizadeh M. Identification of Prediabetes Discussions in Unstructured Clinical Documentation: Validation of a Natural Language Processing Algorithm. JMIR Medical Informatics 2022;10(2):e29803 View
  15. Shrestha B, Alsadoon A, Prasad P, Al-Naymat G, Al-Dala’in T, Rashid T, Alsadoon O. Enhancing the prediction of type 2 diabetes mellitus using sparse balanced SVM. Multimedia Tools and Applications 2022;81(27):38945 View
  16. Mohammadnezhad K, Sahebi M, Alatab S, Sadjadi A. Modeling Epidemiology Data with Machine Learning Technique to Detect Risk Factors for Gastric Cancer. Journal of Gastrointestinal Cancer 2024;55(1):287 View
  17. Orășeanu A, Brisc M, Maghiar O, Popa H, Brisc C, Șolea S, Maghiar T, Brisc C. Landscape of Innovative Methods for Early Diagnosis of Gastric Cancer: A Systematic Review. Diagnostics 2023;13(24):3608 View
  18. Owess M, Owda A, Owda M, Massad S. Supervised Machine Learning-Based Models for Predicting Raised Blood Sugar. International Journal of Environmental Research and Public Health 2024;21(7):840 View
  19. Zhang X, Yao W, Wang D, Hu W, Zhang G, Zhang Y. Development and Validation of Machine Learning Models for Identifying Prediabetes and Diabetes in Normoglycemia. Diabetes/Metabolism Research and Reviews 2024;40(8) View
  20. 金岡 丈, 今釜 崇, 岡﨑 朋, 松木 佑, 川上 武, 山﨑 和, 坂井 孝. 機械学習によるステムサイズ予測モデルの精度検証. Orthopedics & Traumatology 2024;73(3):452 View