JMIR Diabetes
Emerging technologies, medical devices, apps, sensors, and informatics to help people with diabetes
Editor-in-Chief:
Ricardo Correa, MD, EdD (Co-Editor-in-Chief), Cleveland Clinic, United States Sheyu Li, MD (Co-Editor-in-Chief), West China Hospital, Sichuan University, China
Impact Factor 2025 CiteScore 4
Recent Articles
Highly effective anti-obesity and diabetes medications such as glucagon-like peptide 1 (GLP-1) agonists and glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 (dual) receptor agonists (RAs) have ushered in a new era of treatment of these highly prevalent, morbid conditions that have increased across the globe. However, the rapidly escalating use of GLP-1/dual RA medications is poised to overwhelm an already overburdened HCP workforce and healthcare delivery system; stifling its potentially dramatic benefits. Relying on existing systems and resources to address the oncoming rise in GLP-1/dual RA use will be insufficient. Generative artificial intelligence (GenAI) has the potential to offset the clinical and administrative demands associated with the management of patients on these medication types. Early adoption of GenAI to facilitate the management of these GLP-1/dual RAs has the potential to improve health outcomes while decreasing its concomitant workload. Research and development efforts are urgently needed to develop GenAI obesity medication management tools, as well as ensure their accessibility and utility by encouraging their integration into healthcare delivery systems.
Importance: Type 2 diabetes mellitus (T2D) is a common health issue, with heart failure (HF) being the common and lethal long-term complication. Although insulin is widely used for the treatment of T2D, evidence regarding the efficacy of insulin compared to non-insulin therapies on incident heart failure risk is missing among randomized clinical trials. Real-world evidence on insulin’s effect on long-term heart failure may supplement existing guidelines on the management of T2D.
Mobile apps designed with cultural sensitivity have demonstrated higher user acceptability and greater effectiveness in enhancing self-care skills. However, a significant gap exists in developing such apps for specific populations, such as Portuguese Americans living in southern Massachusetts, home to the second-largest Portuguese community in the United States. This group possesses unique cultural traditions, particularly in dietary practices, including a tendency toward high carbohydrate intake. Tailoring diabetes self-care apps to address these specific cultural requirements could substantially improve diabetes management within this population.
Patients with diabetes experience worse health outcomes and greater health care expenditure. Improving diabetes outcomes requires involved self-management. Peer coaching programs can help patients engage in self-management while addressing individual and structural barriers. These peer coaching programs can be scaled with digital platforms to efficiently connect patients with peer supporters who can help with diabetes self-management.
Children and adolescents with type 1 diabetes require frequent outpatient evaluation to assess glucose trends, modify insulin doses, and screen for comorbidities. Continuous glucose monitoring (CGM) provides a detailed glycemic control assessment. Telemedicine has been increasingly used since the COVID-19 pandemic.
Community health centers (CHCs) are safety-net health care facilities in the United States that provide care for a substantial number of low-income, non-English speaking adults with type 2 diabetes (T2D). Whereas patient portals have been shown to be associated with significant improvements in diabetes self-management and outcomes, they remain underused in CHCs. In addition, little is known about the specific barriers to and facilitators of patient portal use in CHCs and strategies to address the barriers.
The widespread use of mobile technologies in health care (mobile health; mHealth) has facilitated disease management, especially for chronic illnesses such as diabetes. mHealth for diabetes is an attractive alternative to reduce costs and overcome geographical and temporal barriers to improve patients’ conditions.
Preprints Open for Peer-Review
There are no preprints available for open peer-review at this time. Please check back later.